Skip to main content

Single-Source Shortest Paths

1999; Thorup

  • Reference work entry
Encyclopedia of Algorithms

Keywords and Synonyms

Shortest route; Quickest route          

Problem Definition

The single source shortest path problem (SSSP) is, given a graph \( { G = (V,E,\ell) } \) and a source vertex \( { s\in V } \), to find the shortest path from s to every \( { v\in V } \). The difficulty of the problem depends on whether the graph is directed or undirected and the assumptions placed on the length function ℓ. In the most general situation \( { \ell\colon E\rightarrow \mathbb{R} } \) assigns arbitrary (positive & negative) real lengths. The algorithms of Bellman-Ford and Edmonds [1,4] may be applied in this situation and have running times of roughly O(mn),Footnote 1 where \( { m = |E| } \) and \( { n=|V| } \) are the number of edges and vertices. If ℓ assigns only non-negative real edge lengths then the algorithms of Dijkstra and Pettie‐Ramachandran [4,14] may be applied on directed and undirected graphs, respectively. These algorithms include a sorting bottleneck and, in the worst case, take \( {...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Edmonds's algorithm works for undirected graphs and presumes that there are no negative length simple cycles.

  2. 2.

    The [14] algorithm actually runs in \( { O(m + n\log\log n) } \) time if the ratio of any two edge lengths is polynomial in n.

  3. 3.

    There is some flexibility in the definition of shortest path since floating-point addition is neither commutative nor associative.

Recommended Reading

  1. Ahuja, R.K., Magnati, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Asano, Y., Imai, H.: Practical efficiency of the linear-time algorithm for the single source shortest path problem. J. Oper. Res. Soc. Jpn. 43(4), 431–447 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant shortest-path queries in road networks. In: Proceedings 9th Workshop on Algorithm Engineering and Experiments (ALENEX), 2007

    Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  5. Demetrescu, C., Goldberg, A.V., Johnson, D.: 9th DIMACS Implementation Challege—Shortest Paths. http://www.dis.uniroma1.it/~challenge9/ (2006)

  6. Goldberg, A.V.: AVG Lab. http://www.avglab.com/andrew/

  7. Goldberg, A.V.: Scaling algorithms for the shortest paths problem. SIAM J. Comput. 24(3), 494–504 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goldberg, A.V.: Shortest path algorithms: Engineering aspects. In: Proc. 12th Int'l Symp. on Algorithms and Computation (ISAAC). LNCS, vol. 2223, pp. 502–513. Springer, Berlin (2001)

    Google Scholar 

  9. Hagerup, T.: Improved shortest paths on the word RAM. In: Proc. 27th Int'l Colloq. on Automata, Languages, and Programming (ICALP). LNCS vol. 1853, pp. 61–72. Springer, Berlin (2000)

    Google Scholar 

  10. Han, Y., Thorup, M.: Integer sorting in \( { O(n\sqrt{\log\log n}) } \) expected time and linear space. In: Proc. 43rd Symp. on Foundations of Computer Science (FOCS), 2002, pp. 135–144

    Google Scholar 

  11. Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Computing many-to-many shortest paths using highway hierarchies. In: Proceedings 9th Workshop on Algorithm Engineering and Experiments (ALENEX), 2007

    Google Scholar 

  12. Pettie, S.: On the comparison‐addition complexity of all-pairs shortest paths. In: Proc. 13th Int'l Symp. on Algorithms and Computation (ISAAC), 2002, pp. 32–43

    Google Scholar 

  13. Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theor. Comput. Sci. 312(1), 47–74 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pettie, S., Ramachandran, V.: A shortest path algorithm for real-weighted undirected graphs. SIAM J. Comput. 34(6), 1398–1431 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pettie, S., Ramachandran, V., Sridhar, S.: Experimental evaluation of a new shortest path algorithm. In: Proc. 4th Workshop on Algorithm Engineering and Experiments (ALENEX), 2002, pp. 126–142

    Google Scholar 

  16. Sanders, P., Schultes, D.: Engineering Highway Hierarchies. In: Proc. 14th European Symposium on Algorithms (ESA), 2006, pp. 804–816

    Google Scholar 

  17. Thorup, M.: Undirected single‐source shortest paths with positive integer weights in linear time. J. ACM 46(3), 362–394 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Thorup, M.: Floats, integers, and single source shortest paths. J. Algorithms 35 (2000)

    Google Scholar 

  19. Thorup, M.: Quick and good facility location. In: Proceedings 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2003, pp. 178–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Pettie, S. (2008). Single-Source Shortest Paths. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_377

Download citation

Publish with us

Policies and ethics