Skip to main content

Randomized Energy Balance Algorithms in Sensor Networks

2005; Leone, Nikoletseas, Rolim

  • Reference work entry
Encyclopedia of Algorithms

Keywords and Synonyms

Power conservation            

Problem Definition

Recent developments in wireless communications and digital electronics have led to the development of extremely small in size, low-power, low-cost sensor devices (often called smart dust). Such tiny devices integrate sensing, data processing and wireless communication capabilities. Examining each such resource constraint device individually might appear to have small utility; however, the distributed self-collaboration of large numbers of such devices into an ad hoc network may lead to the efficient accomplishment of large sensing tasks i. e., reporting data about the realization of a local event happening in the network area to a faraway control center.

The problem considered is the development of a randomized algorithm to balance energy among sensors whose aim is to detect events in the network area and report them to a sink. The network is sliced by the algorithm into layers composed of sensors at approximately equal...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Efthymiou, C., Nikoletseas, S., Rolim, J.: Energy Balanced Data Propagation in Wireless Sensor Networks. 4th International Workshop on Algorithms for Wireless, Mobile, Ad-Hoc and Sensor Networks (WMAN '04) IPDPS 2004, Wirel. Netw. J. (WINET) 12(6), 691–707 (2006)

    Google Scholar 

  2. Efthymiou, C., Nikoletseas, S., Rolim, J.: Energy Balanced Data Propagation in Wireless Sensor Networks. In: Wireless Networks (WINET) Journal, Special Issue on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Networks. Springer (2006)

    Google Scholar 

  3. Giridhar, A., Kumar, P.R.: Maximizing the Functional Lifetime of Sensor Networks. In: Proceedings of The Fourth International Conference on Information Processing in Sensor Networks, IPSN '05, UCLA, Los Angeles, April 25–27 2005

    Google Scholar 

  4. Guo, W., Liu, Z., Wu, G.: An Energy-Balanced Transmission Scheme for Sensor Networks. In: 1st ACM International Conference on Embedded Networked Sensor Systems (ACM SenSys 2003), Poster Session, Los Angeles, CA, November 2003

    Google Scholar 

  5. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd IEEE Hawaii International Conference on System Sciences (HICSS 2000). 2000

    Google Scholar 

  6. Jarry, A., Leone, P., Powell, O., Rolim, J.: An Optimal Data Propagation Algorithm for Maximizing the Lifespan of Sensor Networks. In: Second International Conference, DCOSS 2006, San Francisco, CA, USA, June 2006. Lecture Notes in Computer Science, vol. 4026, pp. 405–421. Springer, Berlin (2006)

    Google Scholar 

  7. Leone, P., Nikoletseas, S., Rolim, J.: An Adaptive Blind Algorithm for Energy Balanced Data Propagation in Wireless Sensor Networks. In: First International Conference on Distributed Computing in Sensor Systems (DCOSS), Marina del Rey, CA, USA, June/July 2005. Lecture Notes in Computer Science, vol. 3560, pp. 35–48. Springer, Berlin (2005)

    Google Scholar 

  8. Olariu, S., Stojmenovic, I.: Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting. In: IEEE INFOCOM, Barcelona, Spain, April 24–25 2006

    Google Scholar 

  9. Powell, O., Leone, P., Rolim, J.: Energy Optimal Data Propagation in Sensor Networks. J. Prarallel Distrib. Comput. 67(3), 302–317 (2007) http://arxiv.org/abs/cs/0508052

  10. Singh, M., Prasanna, V.: Energy-Optimal and Energy-Balanced Sorting in a Single-Hop Wireless Sensor Network. In: Proc. First IEEE International Conference on Pervasive Computing and Communications (PerCom '03), pp. 302–317, Fort Worth, 23–26 March 2003

    Google Scholar 

  11. Yu, Y., Prasanna, V.K.: Energy-Balanced Task Allocation for Collaborative Processing in Networked Embedded System. In: Proceedings of the 2003 Conference on Language, Compilers, and Tools for Embedded Systems (LCTES'03), pp. 265–274, San Diego, 11–13 June 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Leone, P., Nikoletseas, S., Rolim, J. (2008). Randomized Energy Balance Algorithms in Sensor Networks. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_323

Download citation

Publish with us

Policies and ethics