Skip to main content

Phylogenetic Tree Construction from a Distance Matrix

1989; Hein

  • Reference work entry
Encyclopedia of Algorithms
  • 289 Accesses

Keywords and Synonyms

Phylogenetic tree construction from a dissimilarity matrix            

Problem Definition

Let n be a positive integer. A distance matrix of order n (also called a dissimilarity matrix of order n) is a matrix D of size \( { (n \times n) } \) which satisfies: (1) \( { D_{i,j} > 0 } \) for all \( { i,j \in \{1,2,\dots,n\} } \) with \( { i \neq j } \); (2) \( { D_{i,j} = 0 } \) for all \( { i,j \in \{1,2,\dots,n\} } \) with \( { i = j } \); and (3) \( { D_{i,j} = D_{j,i} } \) for all \( { i,j \in \{1,2,\dots,n\} } \).

Below, all trees are assumed to be unrooted and edge-weighted. For any tree \( { \mathcal{T} } \), the distance between two nodes u and v in \( { \mathcal{T} } \) is defined as the sum of the weights of all edges on the unique path in \( { \mathcal{T} } \) between u and v, and is denoted by \( { d_{u,v}^{\mathcal{T}} } \). A tree \( { \mathcal{T} } \) is said to realize a given distance matrix D of order n if and only if it holds that \( { \{1,2,\dots,n\} } \)is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [5] for a short survey of older algorithms which do not run in O(n 2) time.

  2. 2.

    For this case, the Culberson-Rudnicki algorithm [5] runs in \( { O(n^{3/2} \sqrt{k}) } \) time for trees in which all edge weights are equal to 1, and not in \( { O(k n \log_{k} n) } \) time as claimed in [5]. See [12] for a counterexample to [5] and a correct analysis.

Recommended Reading

  1. Abdi, H.: Additive-tree representations. In: Dress, A., von Haeseler, A. (eds.) Trees and Hierarchical Structures: Proceedings of a conference held at Bielefeld, FRG, Oct. 5–9th, 1987. Lecture Notes in Biomathematics, vol. 84, pp. 43–59. Springer (1990)

    Google Scholar 

  2. Batagelj, V., Pisanski, T., Simões-Pereira, J.M.S.: An algorithm for tree-realizability of distance matrices. Int. J. Comput. Math. 34, 171–176 (1990)

    Article  MATH  Google Scholar 

  3. Bennett, C.H., Li, M., Ma, B.: Chain letters and evolutionary histories. Sci. Am. 288, 76–81 (2003)

    Article  Google Scholar 

  4. Boesch, F.T.: Properties of the distance matrix of a tree. Quarterly Appl. Math. 26, 607–609 (1968)

    MathSciNet  Google Scholar 

  5. Culberson, J.C., Rudnicki, P.: A fast algorithm for constructing trees from distance matrices. Inf. Process. Lett. 30, 215–220 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc. (2004)

    Google Scholar 

  7. Gusfield, D.M.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  8. Hakimi, S.L., Yau, S.S.: Distance matrix of a graph and its realizability. Quarterly Appl. Math. 22, 305–317 (1964)

    MathSciNet  Google Scholar 

  9. Hein, J.: An optimal algorithm to reconstruct trees from additive distance data. Bull. Math. Biol. 51, 597–603 (1989)

    MATH  Google Scholar 

  10. King, V., Zhang, L., Zhou, Y.: On the complexity of distance-based evolutionary tree construction. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), pp. 444–453 (2003)

    Google Scholar 

  11. Nakhleh, L., Warnow, T., Ringe, D., Evans, S.N.: A comparison of phylogenetic reconstruction methods on an Indo-European dataset. Trans. Philol. Soc. 103, 171–192 (2005)

    Article  Google Scholar 

  12. Reyzin, L., Srivastava, N.: On the longest path algorithm for reconstructing trees from distance matrices. Inf. Process. Lett. 101, 98–100 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. The Canterbury Tales Project: University of Birmingham, Brigham Young University, University of Münster, New York University, Virginia Tech, and Keio University. Website: http://www.canterburytalesproject.org/

  14. Warnow, T.: Some combinatorial optimization problems in phylogenetics. In: Lovász, L., Gyárfás, G., Katona, G., Recski, A., Székely, L. (eds.) Graph Theory and Combinatorial Biology. Bolyai Society Mathematical Studies, vol. 7, pp. 363–413. Bolyai János Matematikai Társulat (1999)

    Google Scholar 

  15. Waterman, M.S., Smith, T.F., Singh, M., Beyer, W.A.: Additive evolutionary trees. J. Theor. Biol. 64, 199–213 (1977)

    Article  MathSciNet  Google Scholar 

  16. Wu, B.Y., K.-Chao, M., Tang, C.Y.: Approximation and exact algorithms for constructing minimum ultrametric trees from distance matrices. J. Combin. Optim. 3, 199–211 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

Supported in part by Kyushu University, JSPS (Japan Society for the Promotion of Science), and INRIA Lille – Nord Europe.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Jansson, J. (2008). Phylogenetic Tree Construction from a Distance Matrix. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_292

Download citation

Publish with us

Policies and ethics