Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Parameterized Matching

1993; Baker
  • Moshe Lewenstein
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_282

Problem Definition

Parameterized strings, or p-strings, are strings that contain both ordinary symbols from an alphabet Σ and parameter symbols from an alphabet Π. Two equal-length p‑strings  s and \( { s^{\prime} } \)


Pattern Match Edit Distance Parameterized Text String Match Suffix Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Amir, A., Aumann, Y., Cole, R., Lewenstein, M., Porat, E.: Function matching: Algorithms, applications and a lower bound. In: Proc. of the 30th International Colloquium on Automata, Languages and Programming (ICALP), 2003 pp. 929–942Google Scholar
  2. 2.
    Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized matching. Inf. Process. Lett. 49, 111–115 (1994)zbMATHCrossRefGoogle Scholar
  3. 3.
    Apostolico, A., Erdös, P., Lewenstein, M.: Parameterized matching with mismatches. J. Discret. Algorithms 5(1), 135–140 (2007)zbMATHCrossRefGoogle Scholar
  4. 4.
    Baker, B.S.: A theory of parameterized pattern matching: algorithms and applications. In: Proc. 25th Annual ACM Symposium on the Theory of Computation (STOC), 1993, pp. 71–80Google Scholar
  5. 5.
    Baker, B.S.: Parameterized pattern matching by Boyer-Moore-type algorithms. In: Proc. 6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1995, pp. 541–550Google Scholar
  6. 6.
    Baker, B.S.: Parameterized pattern matching: Algorithms and applications. J. Comput. Syst. Sci. 52(1), 28–42 (1996)zbMATHCrossRefGoogle Scholar
  7. 7.
    Baker, B.S.: Parameterized duplication in strings: Algorithms and an application to software maintenance. SIAM J. Comput. 26(5), 1343–1362 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Baker, B.S.: Parameterized diff. In: Proc. 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1999, pp. 854–855Google Scholar
  9. 9.
    Cole, R., Hariharan, R.: Faster suffix tree construction with missing suffix links. In: Proc. 32nd ACM Symposium on Theory of Computing (STOC), 2000 pp. 407–415Google Scholar
  10. 10.
    Fredriksson, K., Mozgovoy, M.: Efficient parameterized string matching. Inf. Process. Lett. 100(3), 91–96 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestor. J. Comput. Syst. Sci. 13, 338–355 (1984)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hazay, C., Lewenstein, M., Sokol, D.: Approximate parameterized matching. ACM Trans. Algorithms 3(3) (2007)Google Scholar
  13. 13.
    Hazay, C., Lewenstein, M., Tsur, D.: Two dimensional parameterized matching. In: Proc. of 16th Symposium on Combinatorial Pattern Matching (CPM), 2005, pp. 266–279Google Scholar
  14. 14.
    Idury, R.M., Schäffer, A.A.: Multiple matching of parametrized patterns. Theor. Comput. Sci. 154(2), 203–224 (1996)zbMATHCrossRefGoogle Scholar
  15. 15.
    Keller, O., Kopelowitz, T., Lewenstein, M.: Parameterized LCS and edit distance are NP-Complete. ManuscriptGoogle Scholar
  16. 16.
    Kosaraju, S.R.: Faster algorithms for the construction of parameterized suffix trees. In: Proc. 36th Annual Symposium on Foundations of Computer Science (FOCS), 1995, pp. 631–637Google Scholar
  17. 17.
    Landau, G.M., Vishkin, U.: Fast string matching with k differences. J. Comput. Syst. Sci. 37(1), 63–78 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    McCreight, E.M.: A space‐economical suffix tree construction algorithm. J. ACM 23, 262–272 (1976)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Moshe Lewenstein
    • 1
  1. 1.Department of Computer ScienceBar-Ilan UniversityRamat-GanIsrael