Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Parameterized Algorithms for Drawing Graphs

2004; Dujmovic, Whitesides
  • Henning Fernau
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_281

Problem Definition

One-sided crossing minimization (OSCM) can be viewed as a specific form of drawing a bipartite graph \( { G=(V_1,V_2,E) } \)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Chen, J., Liu, Y., Lu, S., O'Sullivan, B., Razgon, I.: A Fixed-Parameter Algorithm for the Directed Feedback Vertex Set Problem. In: 40th ACM Symposium on Theory of Computing STOC 2008, May 17--20, Victoria (BC), Canada (2008) Google Scholar
  2. 2.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)Google Scholar
  3. 3.
    Dujmović, V., Fellows, M.R., Hallett, M., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F.A., Suderman, M., Whitesides, S., Wood, D.R.: A fixed‐parameter approach to 2-layer planarization. Algorithmica 45, 159–182 (2006)MathSciNetGoogle Scholar
  4. 4.
    Dujmović, V., Fernau, H., Kaufmann, M.: Fixed parameter algorithms for one-sided crossing minimization revisited. In: Liotta G. (ed.) Graph Drawing, 11th International Symposium GD 2003. LNCS, vol. 2912, pp. 332–344. Springer, Berlin (2004). A journal version has been accepted to J. Discret. Algorithms, see doi: 10.1016/j.jda.2006.12.008Google Scholar
  5. 5.
    Dujmović, V., Whitesides, S.: An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. Algorithmica 40, 15–32 (2004)MathSciNetGoogle Scholar
  6. 6.
    Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11, 379–403 (1994)MathSciNetGoogle Scholar
  7. 7.
    Fernau, H.: Two-layer planarization: improving on parameterized algorithmics. J. Graph Algorithms Appl. 9, 205–238 (2005)MathSciNetGoogle Scholar
  8. 8.
    Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization. In: Ramanujam R., Sen S. (eds.) Foundations of Software Technology and Theoretical Computer Science FSTTCS 2005. LNCS, vol. 3821, pp. 457–469. Springer, Berlin (2005)Google Scholar
  9. 9.
    Nagamochi, H.: An improved bound on the one-sided minimum crossing number in two-layered drawings. Discret. Comput. Geom. 33, 569–591 (2005)MathSciNetGoogle Scholar
  10. 10.
    Suderman, M.: Layered Graph Drawing. Ph. D. thesis, McGill University, Montréal (2005)Google Scholar
  11. 11.
    Suderman, M., Whitesides, S.: Experiments with the fixed‐parameter approach for two-layer planarization. J. Graph Algorithms Appl. 9(1), 149–163 (2005)MathSciNetGoogle Scholar
  12. 12.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybernet. 11(2), 109–125 (1981)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Henning Fernau
    • 1
  1. 1.Institute for Computer ScienceUniversity of TrierTrierGermany