Skip to main content

Fully Dynamic Minimum Spanning Trees

2000; Holm, de Lichtenberg, Thorup

  • Reference work entry
Encyclopedia of Algorithms
  • 651 Accesses

Keywords and Synonyms

Dynamic minimum spanning forests

Problem Definition

Let \( G=(V,E) \) be an undirected weighted graph. The problem considered here is concerned with maintaining efficiently information about a minimum spanning tree of G (or minimum spanning forest if G is not connected), when G is subject to dynamic changes, such as edge insertions, edge deletions and edge weight updates. One expects from the dynamic algorithm to perform update operations faster than recomputing the entire minimum spanning tree from scratch.

Throughout, an algorithm is said to be fully dynamic if it can handle both edge insertions and edge deletions. A partially dynamic algorithm can handle either edge insertions or edge deletions, but not both: it is incremental if it supports insertions only, and decremental if it supports deletions only.

Key Results

The dynamic minimum spanning forest algorithm presented in this section builds upon the dynamic connectivity algorithm described in the entry...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Recommended Reading

  1. Alberts, D., Cattaneo, G., Italiano, G.F.: An empirical study of dynamic graph algorithms. ACM. J. Exp. Algorithm 2, (1997)

    Google Scholar 

  2. Cattaneo, G., Faruolo, P., Ferraro Petrillo, U., Italiano, G.F.: Maintaining Dynamic Minimum Spanning Trees: An Experimental Study. In: Proceeding 4th Workshop on Algorithm Engineering and Experiments (ALENEX 02), 6–8 Jan 2002. pp. 111–125

    Google Scholar 

  3. Eppstein, D.: Finding the k smallest spanning trees. BIT. 32, 237–248 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eppstein, D.: Tree-weighted neighbors and geometric k smallest spanning trees. Int. J. Comput. Geom. Appl. 4, 229–238 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification – a technique for speeding up dynamic graph algorithms. J. Assoc. Comput. Mach. 44(5), 669–696 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook, J., Yung, M.: Maintenance of a minimum spanning forest in a dynamic plane graph. J. Algorithms 13, 33–54 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feder, T., Mihail, M.: Balanced matroids. In: Proceeding 24th ACM Symp. Theory of Computing, pp 26–38, Victoria, British Columbia, Canada, May 04–06 1992

    Google Scholar 

  8. Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees. SIAM. J. Comput. 14, 781–798 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frederickson, G.N.: Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning trees. In: Proceeding 32nd Symp. Foundations of Computer Science, pp 632–641, San Juan, Puerto Rico, October 01–04 1991

    Article  MathSciNet  MATH  Google Scholar 

  10. Frederickson, G.N., Srinivas, M.A.: Algorithms and data structures for an expanded family of matroid intersection problems. SIAM. J. Comput. 18, 112–138 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Henzinger, M.R., King, V.: Maintaining minimum spanning forests in dynamic graphs. SIAM. J. Comput. 31(2), 364–374 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J. ACM 46(4), 502–516 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Paul, J., Simon, W.: Decision trees and random access machines. In: Symposium über Logik und Algorithmik. (1980) See also Mehlhorn, K.: Sorting and Searching, pp. 85–97. Springer, Berlin (1984)

    Google Scholar 

  15. Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity algorithm. SIAM. J. Comput. 14, 862–874 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Italiano, G. (2008). Fully Dynamic Minimum Spanning Trees. In: Kao, MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30162-4_156

Download citation

Publish with us

Policies and ethics