Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Fully Dynamic Minimum Spanning Trees

2000; Holm, de Lichtenberg, Thorup
  • Giuseppe F. Italiano
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_156

Keywords and Synonyms

Dynamic minimum spanning forests

Problem Definition

Let \( G=(V,E) \)


Span Tree Minimum Span Tree Dynamic Algorithm Tree Edge Edge Deletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Alberts, D., Cattaneo, G., Italiano, G.F.: An empirical study of dynamic graph algorithms. ACM. J. Exp. Algorithm 2, (1997)Google Scholar
  2. 2.
    Cattaneo, G., Faruolo, P., Ferraro Petrillo, U., Italiano, G.F.: Maintaining Dynamic Minimum Spanning Trees: An Experimental Study. In: Proceeding 4th Workshop on Algorithm Engineering and Experiments (ALENEX 02), 6–8 Jan 2002. pp. 111–125Google Scholar
  3. 3.
    Eppstein, D.: Finding the k smallest spanning trees. BIT. 32, 237–248 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Eppstein, D.: Tree-weighted neighbors and geometric k smallest spanning trees. Int. J. Comput. Geom. Appl. 4, 229–238 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, A.: Sparsification – a technique for speeding up dynamic graph algorithms. J. Assoc. Comput. Mach. 44(5), 669–696 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Eppstein, D., Italiano, G.F., Tamassia, R., Tarjan, R.E., Westbrook, J., Yung, M.: Maintenance of a minimum spanning forest in a dynamic plane graph. J. Algorithms 13, 33–54 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Feder, T., Mihail, M.: Balanced matroids. In: Proceeding 24th ACM Symp. Theory of Computing, pp 26–38, Victoria, British Columbia, Canada, May 04–06 1992Google Scholar
  8. 8.
    Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees. SIAM. J. Comput. 14, 781–798 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Frederickson, G.N.: Ambivalent data structures for dynamic 2-edge-connectivity and k smallest spanning trees. In: Proceeding 32nd Symp. Foundations of Computer Science, pp 632–641, San Juan, Puerto Rico, October 01–04 1991MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Frederickson, G.N., Srinivas, M.A.: Algorithms and data structures for an expanded family of matroid intersection problems. SIAM. J. Comput. 18, 112–138 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Henzinger, M.R., King, V.: Maintaining minimum spanning forests in dynamic graphs. SIAM. J. Comput. 31(2), 364–374 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J. ACM 46(4), 502–516 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Paul, J., Simon, W.: Decision trees and random access machines. In: Symposium über Logik und Algorithmik. (1980) See also Mehlhorn, K.: Sorting and Searching, pp. 85–97. Springer, Berlin (1984)Google Scholar
  15. 15.
    Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity algorithm. SIAM. J. Comput. 14, 862–874 (1985)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Giuseppe F. Italiano
    • 1
  1. 1.Department of Information and Computer SystemsUniversity of RomeRomeItaly