Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Fully Dynamic Higher Connectivity

1997; Eppstein, Galil, Italiano, Nissenzweig
  • Giuseppe F. Italiano
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_154

Keywords and Synonyms

Fully dynamic edge connectivity; Fully dynamic vertex connectivity        

Problem Definition

The problem is concerned with efficiently maintaining information about edge and vertex connectivity in a dynamically changing graph. Before defining formally the problems, a few preliminary definitions follow.

Given an undirected graph \( { G=(V,E) } \)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Dinitz, E.A.: Maintaining the 4-edge‐connected components of a graph on-line. In: Proc. 2nd Israel Symp. Theory of Computing and Systems, 1993, pp. 88–99Google Scholar
  2. 2.
    Dinitz, E.A., Karzanov A.V., Lomonosov M.V.: On the structure of the system of minimal edge cuts in a graph. In: Fridman, A.A. (ed) Studies in Discrete Optimization, pp. 290–306. Nauka, Moscow (1990). In RussianGoogle Scholar
  3. 3.
    Eppstein, D., Galil Z., Italiano G.F., Nissenzweig A.: Sparsification – a technique for speeding up dynamic graph algorithms. J. Assoc. Comput. Mach. 44(5), 669–696 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Frederickson, G.N.: Ambivalent data structures for dynamic 2-edge‐connectivity and k smallest spanning trees. SIAM J. Comput. 26(2), 484–538 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Galil, Z., Italiano, G. F.: Fully dynamic algorithms for 2-edge‐connectivity. SIAM J. Comput. 21, 1047–1069 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Galil, Z., Italiano, G.F.: Maintaining the 3-edge‐connected components of a graph on-line. SIAM J. Comput. 22, 11–28 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Harary, F.: Graph Theory. Addison‐Wesley, Reading (1969)Google Scholar
  8. 8.
    Henzinger, M.R.: Fully dynamic biconnectivity in graphs. Algorithmica 13(6), 503–538 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Henzinger, M.R.: Improved data structures for fully dynamic biconnectivity. SIAM J. Comput. 29(6), 1761–1815 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Henzinger, M., King V.: Fully dynamic biconnectivity and transitive closure. In: Proc. 36th IEEE Symposium on Foundations of Computer Science (FOCS'95), 1995, pp. 664–672Google Scholar
  11. 11.
    Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J. ACM 46(4), 502–516 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Holm, J., de Lichtenberg, K., Thorup, M.: Poly‐logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48, 723–760 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Karzanov, A.V., Timofeev, E. A.: Efficient algorithm for finding all minimal edge cuts of a nonoriented graph. Cybernetics 22, 156–162 (1986)zbMATHCrossRefGoogle Scholar
  14. 14.
    La Poutré, J.A.: Maintenance of triconnected components of graphs. In: Proc. 19th Int. Colloquium on Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 623, pp. 354–365. Springer, Berlin (1992)Google Scholar
  15. 15.
    La Poutré, J.A.: Maintenance of 2- and 3-edge‐connected components of graphs II. SIAM J. Comput. 29(5), 1521–1549 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    La Poutré, J.A., van Leeuwen, J., Overmars, M.H.: Maintenance of 2- and 3‑connected components of graphs, part I: 2- and 3-edge‐connected components. Discret. Math. 114, 329–359 (1993)zbMATHCrossRefGoogle Scholar
  17. 17.
    La Poutré, J.A., Westbrook, J.: Dynamic two‐connectivity with backtracking. In: Proc. 5th ACM-SIAM Symp. Discrete Algorithms, 1994, pp. 204–212Google Scholar
  18. 18.
    Westbrook, J., Tarjan, R.E.: Maintaining bridge‐connected and biconnected components on-line. Algorithmica 7, 433–464 (1992)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Giuseppe F. Italiano
    • 1
  1. 1.Department of Information and Computer SystemsUniversity of RomeRomeItaly