Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Fast Minimal Triangulation

2005; Heggernes, Telle, Villanger
  • Yngve Villanger
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_142

Keywords and Synonyms

Minimal fill problem        

Problem Definition

Minimal triangulation is the addition of an inclusion minimal set of edges to an arbitrary undirected graph, such that a chordal graph is obtained. A graph is chordal if every cycle of length at least 4 contains an edge between two nonconsecutive vertices of the cycle.

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31, 212–232 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comput. Sci. 276(1–2), 17–32 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: ICALP of LNCS, vol. 3142, pp. 568–580. Springer, Berlin (2004)Google Scholar
  5. 5.
    Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time \( { {O}(n^{\alpha}log\, n) = o(n^{2.376}) } \). SIAM J. Discret. Math. 19(4), 900–913 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Huson, D.H., Nettles, S., Warnow, T.: Obtaining highly accurate topology estimates of evolutionary trees from very short sequences. In: RECOMB, 1999, pp. 198–207Google Scholar
  7. 7.
    Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of asteroidal triple-free graphs. Theor. Comput. Sci. 175, 309–335 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kratsch, D., Spinrad, J.: Minimal fill in \( { {O}(n^{2.69}) } \) time. Discret. Math. 306(3), 366–371 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discret. Appl. Math. 79, 171–188 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 146–160 (1976)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Yngve Villanger
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway