Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Degree-Bounded Trees

1994; Fürer, Raghavachari
  • Martin Fürer
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_104

Keywords and Synonyms

Bounded degree spanning trees; Bounded degree Steiner trees            

Problem Definition

The problem is to construct a spanning tree of small degree for a connected undirected graph \( { G=(V,E) } \)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Chan, T.M.: Euclidean bounded‐degree spanning tree ratios. Discret. Comput. Geom. 32(2), 177–194 (2004)zbMATHCrossRefGoogle Scholar
  2. 2.
    Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: A push-relabel algorithm for approximating degree bounded MSTs. In: Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP 2006), Part I. LNCS, vol. 4051, pp. 191–201. Springer, Berlin (2006)Google Scholar
  3. 3.
    Chvátal, V.: Tough graphs and Hamiltonian circuits. Discret. Math. 5, 215–228 (1973)zbMATHCrossRefGoogle Scholar
  4. 4.
    Fekete, S.P., Khuller, S., Klemmstein, M., Raghavachari, B., Young, N.: A network-flow technique for finding low‐weightbounded‐degree spanning trees. In: Proceedings of the 5th Integer Programming and Combinatorial Optimization Conference (IPCO 1996) and J. Algorithms 24(2), 310–324 (1997)Google Scholar
  5. 5.
    Fischer, T.: Optimizing the degree of minimum weight spanning trees, Technical Report TR93–1338. Cornell University, Computer Science Department (1993)Google Scholar
  6. 6.
    Fürer, M., Raghavachari, B.: An NC approximation algorithm for the minimum‐degree spanning tree problem. In: Proceedings of the 28th Annual Allerton Conference on Communication, Control and Computing, 1990, pp. 174–281Google Scholar
  7. 7.
    Fürer, M., Raghavachari, B.: Approximating the minimum degree spanning tree to within one from the optimal degree. In: Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1992), 1992, pp. 317–324Google Scholar
  8. 8.
    Fürer, M., Raghavachari, B.: Approximating the minimum‐degree Steiner tree to within one of optimal. J. Algorithms 17(3), 409–423 (1994)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Goemans, M.X.: Minimum bounded degree spanning trees. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 2006, pp. 273–282Google Scholar
  10. 10.
    Khuller, S., Raghavachari, B., Young, N.: Low-degree spanning trees of small weight. SIAM J. Comput. 25(2), 355–368 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Klein, P.N., Krishnan, R., Raghavachari, B., Ravi, R.: Approximation algorithms for finding low-degree subgraphs. Networks 44(3), 203–215 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Könemann, J., Ravi, R.: A matter of degree: Improved approximation algorithms for degree‐bounded minimum spanning trees. SIAM J. Comput. 31(6), 1783–1793 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Könemann, J., Ravi, R.: Primal-dual meets local search: Approximating MSTs with nonuniform degree bounds. SIAM J. Comput. 34(3), 763–773 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Raghavachari, B.: Algorithms for finding low degree structures. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems. pp. 266–295. PWS Publishing Company, Boston (1995)Google Scholar
  15. 15.
    Ravi, R., Singh, M.: Delegate and conquer: An LP-based approximation algorithm for minimum degree MSTs. In: Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP 2006) Part I. LNCS, vol. 4051, pp. 169–180. Springer, Berlin (2006)Google Scholar
  16. 16.
    Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to within one of optimal. In: Proceedings of the thirty-ninth Annual ACM Symposium on Theory of Computing (STOC 2007), New York, NY, 2007, pp. 661–670Google Scholar
  17. 17.
    Win, S.: On a connection between the existence of k-trees and the toughness of a graph. Graphs Comb. 5(1), 201–205 (1989)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Martin Fürer
    • 1
  1. 1.Department of Computer Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA