Encyclopedia of Algorithms

2008 Edition
| Editors: Ming-Yang Kao

Decremental All-Pairs Shortest Paths

2004; Demetrescu, Italiano
  • Camil Demetrescu
  • Giuseppe F. Italiano
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30162-4_102

Keywords and Synonyms

Deletions-only dynamic all-pairs shortest paths    

Problem Definition

A dynamic graph algorithm maintains a given property \( \mathcal{P} \)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms and Applications. Prentice Hall, Englewood Cliffs, NJ (1993)zbMATHGoogle Scholar
  2. 2.
    Demetrescu, C., Italiano, G.: A new approach to dynamic all pairs shortest paths. J. Assoc. Comp. Mach. 51, 968–992 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Even, S., Gazit, H.: Updating distances in dynamic graphs. Meth. Op. Res. 49, 371–387 (1985)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Fredman, M., Tarjan, R.: Fibonacci heaps and their use in improved network optimization algorithms. J. ACM 34, 596–615 (1987)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fredman, M.L.: New bounds on the complexity of the shortest path problems. SIAM J. Comp. 5(1), 87–89 (1976)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Semi‐dynamic algorithms for maintaining single source shortest paths trees. Algorithmica 22, 250–274 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic algorithms for maintaining shortest paths trees. J. Algorithm 34, 351–381 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    King, V.: Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In: Proc. 40th IEEE Symposium on Foundations of Computer Science (FOCS'99), pp. 81–99. IEEE Computer Society, New York, USA (1999)Google Scholar
  10. 10.
    Knuth, D., Plass, M.: Breaking paragraphs into lines. Software-Practice Exp. 11, 1119–1184 (1981)zbMATHCrossRefGoogle Scholar
  11. 11.
    Loubal, P.: A network evaluation procedure. Highway Res. Rec. 205, 96–109 (1967)Google Scholar
  12. 12.
    Murchland, J.: The effect of increasing or decreasing the length of a single arc on all shortest distances in a graph, tech. rep., LBS-TNT-26, London Business School. Transport Network Theory Unit, London, UK (1967)Google Scholar
  13. 13.
    Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theor. Comp. Sci. 312, 47–74 (2003) special issue of selected papers from ICALP (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ramalingam, G.: Bounded incremental computation. Lect. Note Comp. Sci. 1089 (1996)Google Scholar
  15. 15.
    Ramalingam, G., Reps, T.: An incremental algorithm for a generalization of the shortest path problem. J. Algorithm 21, 267–305 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ramalingam, G., Reps, T.: On the computational complexity of dynamic graph problems. Theor. Comp. Sci. 158, 233–277 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Rodionov, V.: The parametric problem of shortest distances. USSR Comp. Math. Math. Phys. 8, 336–343 (1968)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Schulz, F., Wagner, D., Weihe, K.: Dijkstra's algorithm on-line: an empirical case study from public railroad transport. In: Proc. 3rd Workshop on Algorithm Engineering (WAE'99), pp. 110–123. Notes in Computer Science 1668. London, UK (1999)Google Scholar
  19. 19.
    Takaoka, T.: A new upper bound on the complexity of the all pairs shortest path problem. Inf. Proc. Lett. 43, 195–199 (1992)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Camil Demetrescu
    • 1
  • Giuseppe F. Italiano
    • 1
  1. 1.Department of Information and Computer SystemsUniversity of RomeRomeItaly