Skip to main content

Multistage compound real options: Theory and application

  • Reference work entry
  • 6312 Accesses

Abstract

We explore primarily the problems encountered in multivariate normal integration and the difficulty in root-finding in the presence of unknown critical value when applying compound real call option to evaluating multistage, sequential high-tech investment decisions. We compared computing speeds and errors of three numerical integration methods. These methods, combined with appropriate root-finding method, were run by computer programs Fortran and Matlab. It is found that secant method for finding critical values combined with Lattice method and run by Fortran gave the fastest computing speed, taking only one second to perform the computation. Monte Carlo method had the slowest execution speed. It is also found that the value of real option is in reverse relation with interest rate and not necessarily positively correlated with volatility, a result different from that anticipated under the financial option theory. This is mainly because the underlying of real option is a nontraded asset, which brings divide nd-like yield into the formula of compound real options.

In empirical study, we evaluate the initial public offering (IPO) price of a new DRAM chipmaker in Taiwan. The worldwide average sales price is the underlying variable and the average production cost of the new DRAM foundry is the exercise price. The twin security is defined to be a portfolio of DRAM manufacturing and packaging firms publicly listed in Taiwan stock markets. We estimate the dividend-like yield with two methods, and find the yield to be negative. The negative dividend-like yield results from the negative correlation between the newly constructed DRAM foundry and its twin security, implying the diversification advantage of a new generation of DRAM foundry with a relative low cost of investment opportunity. It has been found that there is only a 4.6 percent difference between the market IPO price and the estimated one.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   329.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Reference

  1. Amram, M.H. and Kulatilaka, N.H. (1999). “Real options.” Harvard Business School Press 11: 11–31.

    Google Scholar 

  2. Andersson, H. (1999). “Capital budgeting in a situation with variable utilization of capacity — an example from the pulp industry.” Working Paper, SSE/EFI.

    Google Scholar 

  3. Bhide, A.V. (2000). “The Origin and Evolution of New Business.” England: Oxford University Press.

    Google Scholar 

  4. Black, F. and Scholes, M. (1973). “The pricing of options and corporate liabilities.” Journal of Political Economics, 81: 637–659.

    CrossRef  Google Scholar 

  5. Brennan, M.J. and Schwartz, E.S. (1985). “Evaluating natural resource investment.” Journal of Business, 58: 135–157.

    CrossRef  Google Scholar 

  6. Brent, R.P. (1971). “Algorithms for Minimization without Derivatives.” New Jersey: Prentice-Hall.

    Google Scholar 

  7. Constantinides, G.M. (1978). “Market risk adjustment in project valuation.” Journal of Finance, 33: 603–616.

    CrossRef  Google Scholar 

  8. Copeland, T.E. and Antikarov, V. (2001). “Real Options: A Practitioner’s Guide.” New York: Texere, LLC.

    Google Scholar 

  9. Cox, J.C. and Ross, S.A. (1976). “The valuation of options for alternative stochastic processes.” Journal of Financial Economics, 3: 145–166.

    CrossRef  Google Scholar 

  10. Cox, J.C., Ingersoll, J.E. Jr., and Ross, S.A. (1985). “An inter-temporal general equilibrium model of asset prices.” Econometrica, 53: 363–384.

    CrossRef  Google Scholar 

  11. Cranley, R. and Patterson, T.N.L. (1976). “Randomization of number theoretic methods for multiple integration.” SIAM Journal of Numerical Analysis, 13: 904–914.

    CrossRef  Google Scholar 

  12. Dekker, T.J. (1969). “Finding a zero by means of successive linear interpolation,” in Dejon and Henrici (eds.) Constructive Aspects of the Fundamental Theorem of Algebra. New York: Wiley.

    Google Scholar 

  13. Drezner, Z. (1978). “Computation of the Bivariate Normal Integral.” Mathematics of Computation, 32: 277–279.

    CrossRef  Google Scholar 

  14. Drezner, Z. (1992). “Computation of the multivariate normal integral.” ACM Transactions on Mathematical Software, 18: 470–480.

    CrossRef  Google Scholar 

  15. Duan, C., Lin, W.T. and Lee, C. (2003). “Sequential capital budgeting as real options: the case of a new dram chipmaker in Taiwan.” Review of Pacific Basin Financial Markets and Policies, 6: 87–112.

    CrossRef  Google Scholar 

  16. Genz, A. (1992). “Numerical computation of the multivariate normal probabilities.” Journal of Computational and Graphical Statistics, 1: 141–150.

    Google Scholar 

  17. Genz, A. (1999). “Comparison of methods for the computation of multivariate normal probabilities.” Working Paper.

    Google Scholar 

  18. Geske, R. (1977). “The valuation of corporate liabilities as compound options.” Journal of Financial and Quantitative Analysis, 12: 541–552.

    CrossRef  Google Scholar 

  19. Geske, R. (1979). “The valuation of compound options.” Journal of Financial Economics, 7: 63–81.

    CrossRef  Google Scholar 

  20. Granger, C.W.J. (1969). “Investigating causal relations by econometric models and cross-spectral methods.” Econometrica, 37: 424–438.

    CrossRef  Google Scholar 

  21. Hlawka, E.M (1962). “Zur angenäherten berechnung mehrfacher integrale.” Monatshefte Fur Mathematik, 66: 140–151.

    CrossRef  Google Scholar 

  22. Hull, J.C. (1997). Options, Futures, and Other Derivatives, 3rd edn. Prentice-Hall.

    Google Scholar 

  23. Ibbotson, R.G. and Sinquefield, R.A. (1999). “Stocks Bonds, Bills, and Inflation Yearbook.” Chicago: Ibbotson Associates.

    Google Scholar 

  24. Keeley, R.H., Punjabi, S., and Turki, L. (1996). “Valuation of early-stage ventures: option valuation models vs. traditional approach.” Entrepreneurial and Small Business Finance, 5: 115–138.

    Google Scholar 

  25. Kelly, S. (1998) “A Binomial Lattice Approach for Valuing a Mining Property IPO.” Quarterly Review of Economics and Finance, 38: 693–709.

    CrossRef  Google Scholar 

  26. Kemna, A.G.Z (1993). “Case studies on real options.” Financial Management, 22: 259–270.

    CrossRef  Google Scholar 

  27. Korobov, N.M. (1957). “The approximate calculation of multiple integral using number-theoretic methods.” Doklady Akademmi Nauk SSSR, 115: 1062–1065.

    Google Scholar 

  28. Lin, W.T. (2002). “Computing a multivariate normal integral for valuing compound real options.” Review of Quantitative Finance and Accounting, 18: 185–209.

    CrossRef  Google Scholar 

  29. Luehrman, T.A. (1998a). “Strategy as Portfolio of Real Options.” Harvard Business Review, 89–99.

    Google Scholar 

  30. Luehrman, T.A (1998b). “Investment opportunities as real options: getting started on the numbers.” Harvard Business Review, 51–67.

    Google Scholar 

  31. Lyness, J.N, and Gabriel, J.R. (1969). “Comment on a new method for the evaluation of multidimensional integrals.” The Journal of Chemical Physics, 50: 565–566.

    CrossRef  Google Scholar 

  32. Majd, S. and Pindyck, R.S. (1987). “Time to build, option value, and investment decisions.” Journal of Financial Economics, 18: 7–27.

    CrossRef  Google Scholar 

  33. McDonald, R. (2002). Derivatives Markets. Addison Wesley.

    Google Scholar 

  34. McDonald, R. and Siegel, D. (1984). “Option pricing when the underlying asset earns a below-equilibrium rate of return: a note.” Journal of Finance, 39: 261–265.

    CrossRef  Google Scholar 

  35. McDonald, R. and Siegel, D. (1985). “Investment and the valuation of firms when there is an option to shut down.” International Economic Review, 26: 331–349.

    CrossRef  Google Scholar 

  36. Merton, R.C. (1973) “An intertemporal capital asset pricing model.” Econometrica, 41: 867–887.

    CrossRef  Google Scholar 

  37. Myers, S.C. (1977). “Determinants of corporate borrowing.” Journal of Financial Economics, 5: 147–176.

    CrossRef  Google Scholar 

  38. Myers, S.C. (1984). “Finance theory and financial strategy.” Interface, 14: 126–137.

    CrossRef  Google Scholar 

  39. Myers, S.C. (1987). “Finance theory and financial strategy.” Midland Corporate Finance Journal, 5: 6–13.

    Google Scholar 

  40. Pickles, E. and Smith, J.L. (1993). “Petroleum property valuation: a binomial lattice implementation of option pricing theory.” Energy Journal, 14: 1–26.

    CrossRef  Google Scholar 

  41. Pindyck, R.S. (1993). “Investments of uncertain cost.” Journal of Financial Economics, 34: 53–76.

    CrossRef  Google Scholar 

  42. Roll, R. (1977). “An analytic valuation formula for unprotected american call options on stocks with known dividends.” Journal of Financial Economics, 5: 251–258.

    CrossRef  Google Scholar 

  43. Schumpeter, J.A. (1939). Business cycles: A Theoretical, Historical, and Statistical Analysis of the Capitalist Process. New York: McGraw-Hill.

    Google Scholar 

  44. Sims, C. Hristopher A. (1980). “Macroeconomics and Reality.” Econometrica, 48: 1–48.

    CrossRef  Google Scholar 

  45. Steen, N.M., Byrne, G.D. and Gelbard, E.M. (1969). “Gaussian quadratures for integrals.” Mathematics of Computation, 23: 169–180.

    CrossRef  Google Scholar 

  46. Trigeorgis, L. (1993a). “The nature of option interactions and the valuation of investment with multiple real options.” Journal of Financial and Quantitative Analysis, 28: 1–20.

    CrossRef  Google Scholar 

  47. Trigeorgis, L. (1993b). “Real options and interactions with financial flexibility.” Financial Management, 25: 202–224.

    CrossRef  Google Scholar 

  48. Trigeorgis, L. (1994). “Options in capital budgeting: managerial flexibility and strategy in resoure allocation.” Cambridge, MA: MIT Press.

    Google Scholar 

  49. Trigeorgis, L. (1996). “Real options: managerial flexibility and strategy in resource allocation.” Cambridge, MA: MIT Press.

    Google Scholar 

  50. Trigeorgis, L. and Mason, S.P. (1987). “Valuing managerial flexibility.” Mildland Corporate Journal, 5: 14–21.

    Google Scholar 

  51. Zaremba, S.K. (1966). “Good lattice points, discrepancy and numerical integration.” Annali di Matematica Pura ed Applicata, 73: 293–318.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

The firm’s critical value V cr i and real call options value given δ is constant and r f = 0.08.

 

V cr2

Real call options value

Investment mode

σv

V cr 4

V cr 3

Drezner

Lattice

MC

Drezner

Lattice

MC

Up-sloping

0.1

43.52

51.27

52.61

52.65

52.65

29.67

29.67

29.67

 

0.2

43.41

50.18

49.20

49.22

49.22

29.92

30.42

30.42

 

0.3

42.77

47.85

44.45

44.50

44.50

31.30

32.25

32.25

 

0.4

41.63

44.82

39.41

39.84

39.84

33.68

34.60

34.60

 

0.5

40.15

41.53

34.62

34.80

34.80

36.58

37.96

37.96

 

0.6

38.48

38.25

30.30

30.47

30.47

39.70

40.14

40.14

 

0.7

36.74

35.13

26.54

26.56

26.56

42.62

43.00

43.00

 

0.8

35.01

32.25

23.31

23.44

23.44

45.60

45.80

45.80

 

0.9

33.32

29.64

20.59

20.62

20.62

48.42

48.50

48.50

Down-sloping

0.1

32.92

41.60

55.77

55.79

55.79

27.78

27.77

27.77

 

0.2

31.70

40.93

55.34

55.34

55.34

27.91

27.12

27.12

 

0.3

29.76

39.14

53.60

53.72

53.72

28.90

26.87

26.87

 

0.4

27.57

36.74

50.87

51.06

51.06

30.87

28.27

28.27

 

0.5

25.36

34.13

47.67

47.84

47.84

33.41

30.58

30.58

 

0.6

23.23

31.54

44.38

44.57

44.57

36.25

33.26

33.26

 

0.7

21.26

29.08

41.21

41.47

41.47

39.04

36.00

36.00

 

0.8

19.45

26.84

38.27

38.33

38.3

41.87

38.82

38.82

 

0.9

17.82

24.81

35.61

35.72

35.72

44.59

41.50

41.50

Up, then down

0.1

32.92

47.09

55.06

55.13

55.13

28.28

28.28

28.28

 

0.2

31.70

46.82

53.78

53.85

53.85

28.43

28.36

28.36

 

0.3

29.76

45.63

51.01

51.75

51.75

29.54

29.35

29.35

 

0.4

27.57

43.69

47.39

47.53

47.53

31.63

31.54

31.54

 

0.5

25.36

41.38

43.51

43.76

43.76

34.28

34.03

34.03

 

0.6

23.23

38.95

39.70

39.83

39.83

37.20

36.80

36.80

 

0.7

21.26

36.55

36.16

36.35

36.35

40.06

39.53

39.53

 

0.8

19.45

34.27

32.95

33.06

33.06

42.95

42.28

42.28

 

0.9

17.82

32.16

30.11

30.13

30.13

45.72

44.59

44.59

Down, then up

0.1

43.52

45.37

53.90

53.90

53.90

29.17

29.18

29.18

 

0.2

43.41

42.92

52.24

52.36

52.36

29.35

29.14

29.14

 

0.3

42.77

39.47

48.94

49.06

49.06

30.56

30.00

30.00

 

0.4

41.63

35.69

44.94

44.97

44.97

32.78

31.96

31.96

 

0.5

40.15

31.99

40.83

40.90

40.90

35.56

34.49

34.49

 

0.6

38.48

28.54

36.92

37.19

37.19

38.59

37.25

37.25

 

0.7

36.74

25.44

33.38

33.58

33.58

41.41

40.06

40.06

 

0.8

35.01

22.70

30.25

30.26

30.26

44.32

42.85

42.85

 

0.9

33.32

20.31

27.51

27.83

27.83

47.08

45.88

45.88

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this entry

Cite this entry

Lin, W.T., Lee, CF., Duan, CW. (2006). Multistage compound real options: Theory and application. In: Lee, CF., Lee, A.C. (eds) Encyclopedia of Finance. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-26336-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-26336-6_54

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-26284-0

  • Online ISBN: 978-0-387-26336-6

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics