Skip to main content

Mean variance portfolio allocation

  • Reference work entry
  • 6267 Accesses

Abstract

The basic rules of balancing the expected return on an investment against its contribution to portfolio risk are surveyed. The related concept of Capital Asset Pricing Model asserting that the expected return of an asset must be linearly related to the covariance of its return with the return of the market portfolio if the market is efficient and its statistical tests in terms of Arbitraging Price Theory are also surveyed. The intertemporal generalization and issues of estimation errors and portfolio choice are discussed as well.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   329.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Best, M.J. and Grauer, R.R. (1991). “On the sensitivity of mean variance efficient portfolios to changes in asset means: some analytical and computational results.” The Review ofFinancial Studies, 4(2): 315–342.

    CrossRef  Google Scholar 

  2. Black, F. (1971). “Capital market equilibrium with restricted borrowing.” Journal of Business, 45: 444–454.

    CrossRef  Google Scholar 

  3. Britten-Jones, M.. (1999). “The sampling error in estimates of mean efficient portfolio weight.” The Journal of Finance, 54(2): 655–671.

    CrossRef  Google Scholar 

  4. Campbell, J.Y., Lo, A.W., and MacKinley, A.C. (1997). The Econometrics of Financial Markets. Princeton, NJ: Princeton University Press.

    Google Scholar 

  5. Chopra, Vijay K. (1991). “Mean variance revisited: near optimal portfolios and sensitivity to input variations.” Russell Research Commentary.

    Google Scholar 

  6. Chopra, V.K. and Ziemba, W.T. (1993). “The effect of errors in mean, variances, and covariances on optimal portfolio choice.” Journal of Portfolio Management, Winter, 6–1

    CrossRef  Google Scholar 

  7. Connor, G. (1984). “A unified beta pricing theory.” Journal of Economic Theory, 34: 13–31.

    CrossRef  Google Scholar 

  8. De Santis, G., Litterman, B., Vesval, A., and Winkelmann, K. (2003). “Covariance Matrix Estimation,” in Modern Investment Management, B. Litterman and the Quantitative Resources Group, Goldman Sachs Asset Management (ed.) Hoboken, NJ: Wiley.

    Google Scholar 

  9. Dybvig, P.H. (1985). “An explicit bound on individual assets’ deviation from APT pricing in a finite economy.” Journal of Financial Economics, 12: 483–496.

    CrossRef  Google Scholar 

  10. Dybvig, P.H. and Ross, S.A. (1985). “Yes, the APT is testable.” Journal of Fiance, 40: 1173–1183.

    CrossRef  Google Scholar 

  11. Fama, E.F. (1996). “Multifactor portfolio efficiency and multifactor asset pricing.” Journal of Financial and Quantitative Analysis, 31(4): 441–465.

    CrossRef  Google Scholar 

  12. Frankfurter, G.M., Phillips, H.E., and Seagle, J.P. (1971). “Portfolio selection: the effects of uncertain means, variances, and covariances.” Journal of Financial and Quantitative Analysis, 6(5): 1251–1262.

    CrossRef  Google Scholar 

  13. Gibbons, M.R. (1982). “Multivariate tests of financial models: a new approach.” Journal of Financial Economics, 10: 3–27.

    CrossRef  Google Scholar 

  14. Gibbons, M.R., Ross, S.A., and Shanken, J. (1989). “A test of efficiency of a given portfolio.” Econometrica, 57: 1121–4152.

    CrossRef  Google Scholar 

  15. Grinblatt, M. and Titman, S. (1987). “The relation between mean-variance efficiency and arbitrage pricing.” Journal of Business, 60(1): 97–112.

    CrossRef  Google Scholar 

  16. Jorion, P. (1986). “Bayes-Stein estimation for portfolio analysis.” Journal of Financial and Quantitative Analysis, 21(3): 279–292.

    CrossRef  Google Scholar 

  17. Klein, R.W. and Bawa,V.S. (1976). “The effect of estimation risk on optimal portfolio choice.” Journal of Financial Economics, 3: 215–231.

    CrossRef  Google Scholar 

  18. Lintner, J. (1965). “The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets.” Review of Economics and Statistics, 47(1): 13–37.

    CrossRef  Google Scholar 

  19. Litterman, B. and the Quantitative Resources Group, Goldman Sachs Asset Management (2003). Modern Investment Management. Hoboken, NJ: John Wiley.

    Google Scholar 

  20. Markowitz, H.M. (1952). “Portfolio selection.” The Journal of Finance, 7: 77–91.

    Google Scholar 

  21. Markowitz, H.M. (1959). Portfolio Selection: Efficient Diversification of Investments, New York: John Wiley.

    Google Scholar 

  22. Marschak, J. (1938). “Money and the theory of assets.” Econometrica, 6:311–325.

    CrossRef  Google Scholar 

  23. Merton, R.C. (1973). “An intertemporal capital asset pricing model.” Econometrica, 41: 867–887.

    CrossRef  Google Scholar 

  24. Michaud, R.O. (1989). “The Markowitz optimization enigma: Is ‘optimized’ optimal?” Financial Analysis Journal, 45: 31–42.

    CrossRef  Google Scholar 

  25. Roll, R. and Ross, S.A. (1980). “An empirical investigation of the arbitrage pricing theory.” Journal of Finance, 33: 1073–1103.

    CrossRef  Google Scholar 

  26. Ross, R. (1977). “A critique of the asset pricing theory’s tests, part 1: One past and potential testability of the theory.” Journal of Financial Economics, 4: 129–176.

    CrossRef  Google Scholar 

  27. Stambaugh, R.F. (1982). “On the exclusion of assets from tests of the two parameter model.” Journal of Financial Economics, 10: 235–268.

    CrossRef  Google Scholar 

  28. Shanken, J. (1982). “The arbitrage pricing theory: Is it testable?” Journal of Finance, 37(5): 1129–1140.

    CrossRef  Google Scholar 

  29. Shanken, J. (1985). “Multivariate tests of the zero-beta.” Journal of Financial Economics, 14: 327–348.

    CrossRef  Google Scholar 

  30. Sharpe, W.F. (1964). “Capital asset prices: a theory of market equilibrium under conditions of risk.” Journal of Finance, 19: 425–442.

    Google Scholar 

  31. Von Neumann, J. and Morgenstern, O. (1947). Theory of Games and Economic Behavior, 2nd edn. Princeton: Princeton University Press.

    Google Scholar 

  32. Zhou, G. (1991). “Small samples tests of portfolio efficiency.” Journal of Financial Economics, 30: 165–191.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this entry

Cite this entry

Hsiao, C., Wang, SH. (2006). Mean variance portfolio allocation. In: Lee, CF., Lee, A.C. (eds) Encyclopedia of Finance. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-26336-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-26336-6_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-26284-0

  • Online ISBN: 978-0-387-26336-6

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics