Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Perturbation theory (PT) represents one of the bridges that takes us from a simpler, exactly solvable (unperturbed) problem to a corresponding real (perturbed) problem by expressing its solutions as a series expansion in a suitably chosen “small” parameter ε in such a way that the problem reduces to the unperturbed problem when ε = 0. It originated in classical mechanics and eventually developed into an important branch of applied mathematics enabling physicists and engineers to obtain approximate solutions of various systems of differential equations [5.1,2,3,4]. For the problems of atomic and molecular structure and dynamics, the perturbed problem is usually given by the time-independent or time-dependent Schrödinger equation [5.5,6,7,8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BW:

Brillouin-Wigner

CC:

coupled cluster

CCD:

coupled cluster doubles

DODS:

different orbitals for different spins

EOM:

equation of motion

HF:

Hartree-Fock equations

MBPT:

many-body perturbation theory

MR:

multireference

PT:

perturbation theory

RSPT:

Rayleigh-Schrödinger perturbation theory

UHF:

unrestricted Hartree-Fock

References

  1. T. Kato: Perturbation Theory for Linear Operators (Springer, Berlin, Heidelberg 1966)

    MATH  Google Scholar 

  2. H. Baumgärtel: Analytic Perturbation Theory for Matrices and Operators (Akademie, Berlin 1984)

    Google Scholar 

  3. E. J. Hinch: Perturbation Methods (Cambridge Univ. Press, Cambridge 1991)

    MATH  Google Scholar 

  4. V. N. Bogaevski, A. Povzner: Algebraic Methods in Nonlinear Perturbation Theory (Springer, Berlin, Heidelberg 1991)

    MATH  Google Scholar 

  5. E. M. Corson: Perturbation Methods in the Quantum Mechanics of n -Electron Systems (Blackie & Son, London 1951)

    Google Scholar 

  6. I. Lindgren, J. Morrison: Atomic Many-Body Theory (Springer, Berlin, Heidelberg 1982)

    Google Scholar 

  7. E. K. U. Gross, E. Runge, O. Heinonen: Many-Particle Theory (Hilger, New York 1991)

    MATH  Google Scholar 

  8. F. E. Harris, H. J. Monkhorst, D. L. Freeman: Algebraic and Diagrammatic Methods in Many-Fermion Theory (Oxford Univ. Press, Oxford 1992)

    Google Scholar 

  9. H. Primas: Helv. Phys. Acta 34, 331 (1961)

    MATH  MathSciNet  Google Scholar 

  10. H. Primas: Rev. Mod. Phys. 35, 710 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Rosenblum: Duke Math. J. 23, 263 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Arfken: Mathematical Methods for Physicists (Academic, New York 1985) p. 327

    Google Scholar 

  13. Encyclopedic Dictionary of Mathematics, ed. by S. Iyanaga, Y. Kawada (MIT Press, Cambridge 1980) pp. 1494, Appendix B, Table 3

    MATH  Google Scholar 

  14. J. Paldus, J. Čížek: Adv. Quantum Chem. 9, 105 (1975)

    Article  ADS  Google Scholar 

  15. J. Paldus: Methods in Computational Molecular Physics, NATO ASI Series B, Vol. 293, ed. by S. Wilson, G. H. F. Diercksen (Plenum, New York 1992) pp. 99-194

    Google Scholar 

  16. H. J. Silverstone, T. T. Holloway: J. Chem. Phys. 52, 1472 (1970)

    Article  ADS  Google Scholar 

  17. C. Møller, M. S. Plesset: Phys. Rev. 46, 618 (1934)

    Article  MATH  ADS  Google Scholar 

  18. P. S. Epstein: Phys. Rev. 28, 695 (1926)

    Article  ADS  Google Scholar 

  19. R. K. Nesbet: Proc. R. Soc. London A 250, 312 (1955)

    Article  ADS  Google Scholar 

  20. J. Goldstone: Proc. R. Soc. London A 239, 267 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. H. M. Hugenholtz: Physica (Utrecht) 23, 481 (1957)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. K. A. Brueckner: Phys. Rev. 100, 36 (1955)

    Article  MATH  ADS  Google Scholar 

  23. L. M. Frantz, R. L. Mills: Nucl. Phys. 15, 16 (1960)

    Article  MathSciNet  Google Scholar 

  24. F. Coester: Nucl. Phys. 7, 421 (1958)

    Article  Google Scholar 

  25. F. Coester, H. Kümmel: Nucl. Phys. 17, 477 (1960)

    Article  MATH  Google Scholar 

  26. J. Čížek: J. Chem. Phys. 45, 4256 (1966)

    Article  ADS  Google Scholar 

  27. J. Čížek: Adv. Chem. Phys. 14, 35 (1969)

    Article  Google Scholar 

  28. J. Paldus, J. Čížek, I. Shavitt: Phys. Rev. A 5, 50 (1972)

    Article  ADS  Google Scholar 

  29. R. J. Bartlett: Modern Electronic Structure Theory, ed. by D. R. Yarkony (World Scientific, Singapore 1995) pp. 47-108, Part I

    Google Scholar 

  30. R. J. Bartlett (Ed.): Recent advances in computational chemistry, Recent Advances in Coupled-Cluster Methods, Vol. 3 (World Scientific, Singapore 1997)

    Google Scholar 

  31. J. Paldus, X. Li: Adv. Chem. Phys. 110, 1 (1999)

    Article  Google Scholar 

  32. J. Paldus: Handbook of Molecular Physics and Quantum Chemistry, Vol. 2, Part 3, ed. by S. Wilson (Wiley, Chichester 2003) pp. 272-313

    Google Scholar 

  33. R. J. Bartlett, G. D. Purvis: Int. J. Quantum Chem. 14, 561 (1978)

    Article  Google Scholar 

  34. T. J. Lee, G. E. Scuseria: Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, ed. by S. R. Langhoff (Kluwer, Dordrecht 1995) pp. 47-108

    Google Scholar 

  35. K. Kowalski, P. Piecuch: J. Chem. Phys. 120, 1715 (2004)

    Article  ADS  Google Scholar 

  36. J. Paldus: Relativistic and Electron Correlation Effects in Molecules and Solids, NATO ASI Series B, Vol. 318, ed. by G. L. Malli (Plenum, New York 1994) pp. 207-282

    Google Scholar 

  37. I. Lindgren, D. Mukherjee: Phys. Rep. 151, 93 (1987)

    Article  ADS  Google Scholar 

  38. B. Jeziorski, H. J. Monkhorst: Phys. Rev. A 24, 1686 (1981)

    Article  ADS  Google Scholar 

  39. X. Li, J. Paldus: J. Chem. Phys. 119, 5320, 5334, 5343 (2003)

    Article  ADS  Google Scholar 

  40. X. Li, J. Paldus: J. Chem. Phys. 120, 5890 (2004)

    Article  ADS  Google Scholar 

  41. X. Li, J. Paldus: J. Chem. Phys. 107, 6257 (1997)

    Article  ADS  Google Scholar 

  42. X. Li, J. Paldus: J. Chem. Phys. 108, 637 (1998)

    Article  ADS  Google Scholar 

  43. X. Li, J. Paldus: J. Chem. Phys. 110, 2844 (1999)

    Article  ADS  Google Scholar 

  44. X. Li, J. Paldus: J. Chem. Phys. 113, 9966 (2000)

    Article  ADS  Google Scholar 

  45. X. Li, J. Paldus: J. Chem. Phys. 118, 2470 (2003)

    Article  ADS  Google Scholar 

  46. S. Chattopadhyay, D. Pahari, D. Mukherjee, U. S. Mahapatra: J. Chem. Phys. 120, 5968 (2004)

    Article  ADS  Google Scholar 

  47. O. Christiansen: J. Chem. Phys. 120, 2149 (2004)

    Article  ADS  Google Scholar 

  48. F. J. Dyson: Phys. Rev. 75, 486 (1949)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. S. Tomonaga: Prog. Theor. Phys. (Kyoto) 1, 27 (1946)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. J. Schwinger: Phys. Rev. 74, 1439 (1948)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. M. Gell-Mann, F. Low: Phys. Rev. 84, 350 (1951)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. B. A. Lippmann, J. Schwinger: Phys. Rev. 79, 469 (1950)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. P. A. M. Dirac: Proc. R. Soc. London A 112, 661 (1926)

    Article  ADS  Google Scholar 

  54. P. A. M. Dirac: Proc. R. Soc. London A 114, 243 (1926)

    Article  ADS  Google Scholar 

  55. C. J. Joachain: Quantum Collision Theory (Elsevier, New York 1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Paldus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Paldus, J. (2006). Perturbation Theory. In: Drake, G. (eds) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-26308-3_5

Download citation

Publish with us

Policies and ethics