Skip to main content

Multifrontal Method

  • Reference work entry

Synonyms

Linear equations solvers

Definition

The multifrontal method is a direct method for solving systems of linear equations Ax = b, when A is a sparse matrix and x and b are vectors or matrices. The multifrontal method organizes the operations that take place during the factorization of sparse matrices in such a way that the entire factorization is performed through partial factorizations of a sequence of dense and small submatrices. It is guided by a tree that represents the dependencies between those partial factorizations. In the following, the multifrontal method is formulated first for finite-element analysis and later generalized to assembled sparse matrices.

The Multifrontal Method

The multifrontal method is a direct method so that if the aim is to solve the equations

$$Ax = b,$$
(1)

where A is sparse, then this is done by performing the matrix factorization

$$PAQ = LU,$$
(2)

where P and Q are permutation matrices, L is a lower triangular matrix, and Uis an upper...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Amestoy PR, Duff IS (1993) Memory management issues in sparse multifrontal methods on multiprocessors. Int J Supercomput Appl 7:64–82

    Article  Google Scholar 

  2. Amestoy PR, Duff IS, L’Excellent J-Y (2000) Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput Methods Appl Mech Eng 184:501–520

    Article  MATH  Google Scholar 

  3. Amestoy PR, Duff IS, Puglisi C (1996) Multifrontal QR factorization in a multiprocessor environment. Numer Linear Algebra Appl 3(4):275–300

    Article  MATH  MathSciNet  Google Scholar 

  4. Amestoy PR, Guermouche A, L’Excellent J-Y, Pralet S (2006) Hybrid scheduling for the parallel solution of linear systems. Parallel Comput 32:136–156

    Article  MathSciNet  Google Scholar 

  5. Amestoy PR, Puglisi C (2002) An unsymmetrized multifrontal LU factorization. SIAM J Matrix Anal Appl 24:553–569

    Article  MATH  MathSciNet  Google Scholar 

  6. Davis TA, Duff IS (1997) An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM J Matrix Anal Appl 18:140–158

    Article  MATH  MathSciNet  Google Scholar 

  7. Duff IS, Reid JK (1983) The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans Math Softw 9:302–325

    Article  MATH  MathSciNet  Google Scholar 

  8. Duff IS, Reid JK (1984) The multifrontal solution of unsymmetric sets of linear equations. SIAM J Sci Stat Comput 5:633–641

    Article  MATH  MathSciNet  Google Scholar 

  9. Eisenstat SC, Liu JWH (2005) The theory of elimination trees for sparse unsymmetric matrices. SIAM J Matrix Anal Appl 26: 686–705

    Article  MATH  MathSciNet  Google Scholar 

  10. Eisenstat SC, Schultz MH, Sherman AH (1976) Applications of an element model for Gaussian elimination. In: Bunch JR, Rose DJ (eds) Sparse matrix computations. Academic, New York/London, pp 85–96

    Google Scholar 

  11. Geist GA, Ng EG (1989) Task scheduling for parallel sparse Cholesky factorization. Int J Parallel Program 18:291–314

    Article  MATH  MathSciNet  Google Scholar 

  12. George A, Liu JWH, Ng E (1989) Communication results for parallel sparse Cholesky factorization on a hypercube. Parallel Comput 10:287–298

    Article  MATH  MathSciNet  Google Scholar 

  13. Guermouche A, L’Excellent J-Y (2006) Constructing memory-minimizing schedules for multifrontal methods. ACM Trans Math Softw 32:17–32

    Article  MathSciNet  Google Scholar 

  14. Gupta A (2002) Recent advances in direct methods for solving unsymmetric sparse systems of linear equations. ACM Trans Math Softw 28:301–324

    Article  MATH  Google Scholar 

  15. Irons BM (1970) A frontal solution program for finite-element analysis. Int J Numer Methods Eng 2:5–32

    Article  MATH  Google Scholar 

  16. Liu JWH (1986) On the storage requirement in the out-of-core multifrontal method for sparse factorization. ACM Trans Math Softw 12:249–264

    Article  MATH  Google Scholar 

  17. Liu JWH (1992) The multifrontal method for sparse matrix solution: theory and practice. SIAM Rev 34:82–109

    Article  MATH  MathSciNet  Google Scholar 

  18. Matstoms P (1995) Parallel sparse QR factorization on shared memory architectures. Parallel Comput 21:473–486

    Article  MATH  Google Scholar 

  19. Pothen A, Sun C (1993) A mapping algorithm for parallel sparse Cholesky factorization. SIAM J Sci Comput 14:1253–1257

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Amestoy, P., Buttari, A., Duff, I., Guermouche, A., L’Excellent, JY., Uçar, B. (2011). Multifrontal Method. In: Padua, D. (eds) Encyclopedia of Parallel Computing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_86

Download citation

Publish with us

Policies and ethics