Encyclopedia of Parallel Computing

2011 Edition
| Editors: David Padua

Multifrontal Method

  • Patrick Amestoy
  • Alfredo Buttari
  • Iain Duff
  • Abdou Guermouche
  • Jean-Yves L’Excellent
  • Bora Uçar
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-09766-4_86



The multifrontal method is a direct method for solving systems of linear equations Ax = b, when A is a sparse matrix and x and b are vectors or matrices. The multifrontal method organizes the operations that take place during the factorization of sparse matrices in such a way that the entire factorization is performed through partial factorizations of a sequence of dense and small submatrices. It is guided by a tree that represents the dependencies between those partial factorizations. In the following, the multifrontal method is formulated first for finite-element analysis and later generalized to assembled sparse matrices.

The Multifrontal Method

The multifrontal method is a direct method so that if the aim is to solve the equations
$$Ax = b,$$
This is a preview of subscription content, log in to check access.


  1. 1.
    Amestoy PR, Duff IS (1993) Memory management issues in sparse multifrontal methods on multiprocessors. Int J Supercomput Appl 7:64–82CrossRefGoogle Scholar
  2. 2.
    Amestoy PR, Duff IS, L’Excellent J-Y (2000) Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput Methods Appl Mech Eng 184:501–520zbMATHCrossRefGoogle Scholar
  3. 3.
    Amestoy PR, Duff IS, Puglisi C (1996) Multifrontal QR factorization in a multiprocessor environment. Numer Linear Algebra Appl 3(4):275–300zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Amestoy PR, Guermouche A, L’Excellent J-Y, Pralet S (2006) Hybrid scheduling for the parallel solution of linear systems. Parallel Comput 32:136–156MathSciNetCrossRefGoogle Scholar
  5. 5.
    Amestoy PR, Puglisi C (2002) An unsymmetrized multifrontal LU factorization. SIAM J Matrix Anal Appl 24:553–569zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Davis TA, Duff IS (1997) An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM J Matrix Anal Appl 18:140–158zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Duff IS, Reid JK (1983) The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans Math Softw 9:302–325zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Duff IS, Reid JK (1984) The multifrontal solution of unsymmetric sets of linear equations. SIAM J Sci Stat Comput 5:633–641zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Eisenstat SC, Liu JWH (2005) The theory of elimination trees for sparse unsymmetric matrices. SIAM J Matrix Anal Appl 26: 686–705zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Eisenstat SC, Schultz MH, Sherman AH (1976) Applications of an element model for Gaussian elimination. In: Bunch JR, Rose DJ (eds) Sparse matrix computations. Academic, New York/London, pp 85–96Google Scholar
  11. 11.
    Geist GA, Ng EG (1989) Task scheduling for parallel sparse Cholesky factorization. Int J Parallel Program 18:291–314zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    George A, Liu JWH, Ng E (1989) Communication results for parallel sparse Cholesky factorization on a hypercube. Parallel Comput 10:287–298zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Guermouche A, L’Excellent J-Y (2006) Constructing memory-minimizing schedules for multifrontal methods. ACM Trans Math Softw 32:17–32MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gupta A (2002) Recent advances in direct methods for solving unsymmetric sparse systems of linear equations. ACM Trans Math Softw 28:301–324zbMATHCrossRefGoogle Scholar
  15. 15.
    Irons BM (1970) A frontal solution program for finite-element analysis. Int J Numer Methods Eng 2:5–32zbMATHCrossRefGoogle Scholar
  16. 16.
    Liu JWH (1986) On the storage requirement in the out-of-core multifrontal method for sparse factorization. ACM Trans Math Softw 12:249–264zbMATHCrossRefGoogle Scholar
  17. 17.
    Liu JWH (1992) The multifrontal method for sparse matrix solution: theory and practice. SIAM Rev 34:82–109zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Matstoms P (1995) Parallel sparse QR factorization on shared memory architectures. Parallel Comput 21:473–486zbMATHCrossRefGoogle Scholar
  19. 19.
    Pothen A, Sun C (1993) A mapping algorithm for parallel sparse Cholesky factorization. SIAM J Sci Comput 14:1253–1257zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Patrick Amestoy
    • 1
  • Alfredo Buttari
    • 2
  • Iain Duff
    • 3
  • Abdou Guermouche
    • 4
  • Jean-Yves L’Excellent
    • 5
  • Bora Uçar
    • 6
  1. 1.INPTUniversité de Toulouse ENSEEIHT-IRITToulouse cedex 7France
  2. 2.CNRSUniversité de ToulouseToulouse cedex 7France
  3. 3.Rutherford Appleton LaboratoryScience & Technology Facilities CouncilDidcotUK
  4. 4.LaBRIUniversité de BordeauxTalenceFrance
  5. 5.INRIAENS LyonLyonFrance
  6. 6.CNRSENS LyonLyonFrance