Skip to main content

Phylogenetics

  • Reference work entry
Encyclopedia of Parallel Computing
  • 120 Accesses

Synonyms

Molecular evolution; Phylogenetic inference; Reconstruction of evolutionary trees

Definition

Phylogenetics, or phylogenetic inference (bioinformatics discipline), deals with models and algorithms for reconstruction of the evolutionary history â€“ mostly in form of a (binary) evolutionary tree â€“ for a set of living biological organisms based upon their molecular (DNA) or morphological (morphological traits) sequence data.

Discussion

Introduction

The reconstruction of phylogenetic (evolutionary) trees from molecular or morphological sequence data is a comparatively old bioinformatics discipline, given that likelihood-based statistical models for phylogenetic inference were introduced in the early 1980s, while discrete criteria that rely on counting changes in the sequence data date back to the late 1960s and early 1970s.

Computationally, likelihood-based phylogenetic inference approaches represent a major challenge, because of high memory footprints and of floating point intensive...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Aberer A, Pattengale N, Stamatakis A (2010) Parallel computation of phylogenetic consensus trees. Procedia Comput Sci 1(1): 1059–1067

    Google Scholar 

  2. Aberer A, Pattengale N, Stamatakis A (2010) Parallelized phylogenetic post-analysis on multi-core architectures. J Comput Sci 1(2):107–114

    Google Scholar 

  3. Alachiotis N, Sotiriades E, Dollas A, Stamatakis A (2009) Exploring FPGAs for accelerating the phylogenetic likelihood function. In: IEEE international symposium on parallel & distributed processing, 2009. IPDPS 2009, pp 1–8. IEEE

    Google Scholar 

  4. Alachiotis N, Stamatakis A, Sotiriades E, Dollas A (2009) A reconfigurable architecture for the Phylogenetic Likelihood Function. In: International Conference on Field Programmable Logic and Applications, 2009. FPL 2009, pp 674–678. IEEE, 2009

    Google Scholar 

  5. Bakos J (2007) FPGA acceleration of gene rearrangement analysis. In: Proceedings of 15th annual IEEE symposium on field-programmable custom computing machines. IEEE, Napa, CA, pp 85–94

    Google Scholar 

  6. Bakos J, Elenis P, Tang J (2007) FPGA acceleration of phylogeny reconstruction for whole genome data. In: Proceedings of the 7th IEEE international conference on bioinformatics and bio engineering. IEEE, Boston, MA, pp 888–895

    Google Scholar 

  7. Berger S, Stamatakis A (2010) Accuracy and performance of single versus double precision arithmetics for maximum likelihood phylogeny reconstruction. Lecture notes in computer science, vol 6068. Springer, pp 270–279

    Google Scholar 

  8. Blagojevic F, Nikolopoulos D, Stamatakis A, Antonopoulos C (2007) Dynamic multigrain parallelization on the cell broadband engine. In: Proceedings of PPoPP 2007, San Jose, CA, March 2007, pp 90–100

    Google Scholar 

  9. Blagojevic F, Nikolopoulos D, Stamatakis A, Antonopoulos C, Curtis-Maury M (2007) Runtime scheduling of dynamic parallelism on accelerator-based multi-core systems. Parallel Comput 33:700–719

    Google Scholar 

  10. Blagojevic F, Nikolopoulos DS, Stamatakis A, Antonopoulos CD (2007) RAxML-Cell: Parallel phylogenetic tree inference on the cell broadband engine. In: Proceedings of international parallel and distributed processing symposium (IPDPS2007), 2007

    Google Scholar 

  11. Blanchette M, Bourque G, Sankoff D (1997) Breakpoint phylogenies. In: Miyano S, Takagi T (eds) Workshop on genome informatics, vol 8. Univ. Academy Press, pp 25–34

    Google Scholar 

  12. Bradley R, Roberts A, Smoot M, Juvekar S, Do J, Dewey C, Holmes I, Pachter L (2009) Fast statistical alignment. PLoS Comput Biol 5(5):e1000392

    MathSciNet  Google Scholar 

  13. Bryant D (1998) The complexity of the breakpoint median problem. Technical report, University of Montreal, Canada

    Google Scholar 

  14. Ceron C, Dopazo J, Zapata E, Carazo J, Trelles O (1998) Parallel implementation of DNAml program on message-passing architectures. Parallel Comput 24(5–6):701–716

    MATH  MathSciNet  Google Scholar 

  15. Charalambous M, Trancoso P, Stamatakis A (2005) Initial experiences porting a bioinformatics application to a graphics processor. Lecture notes in computer science, vol 3746. Springer, New York, pp 415–425

    Google Scholar 

  16. Chor B, Tuller T (2005) Maximum likelihood of evolutionary trees: hardness and approximation. Bioinformatics 21(1):97–106

    Google Scholar 

  17. Day W (1987) Computational complexity of inferring phylogenies from dissimilarity matrices. Bulletin of Mathematical Biology 49(4):461–467

    MATH  MathSciNet  Google Scholar 

  18. Day W, Johnson D, Sankoff D (1986) The computational complexity of inferring rooted phylogenies by parsimony. Mathematical biosciences 81(33–42):299

    MathSciNet  Google Scholar 

  19. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Google Scholar 

  20. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Google Scholar 

  21. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  22. Feng X, Cameron K, Sosa C, Smith B (2007) Building the tree of life on terascale systems. In: Proceedings of international parallel and distributed processing symposium (IPDPS2007), 2007

    Google Scholar 

  23. Fitch W, Margoliash E (1967) Construction of phylogenetic trees. Science 155(3760):279–284

    Google Scholar 

  24. Fleissner R, Metzler D, Haeseler A (2005) Simultaneous statistical multiple alignment and phylogeny reconstruction. Syst Biol 54:548–561

    Google Scholar 

  25. Goldman N, Yang Z (2008) Introduction. statistical and computational challenges in molecular phylogenetics and evolution. Philos Trans R Soc B Biol Sci 363(1512):3889

    Google Scholar 

  26. Goloboff P (1999) Analyzing large data sets in reasonable times: solution for composite optima. Cladistics 15:415–428

    Google Scholar 

  27. Goloboff PA, Catalano SA, Mirande JM, Szumik CA, Arias JS, Källersjö M, Farris JS (2009) Phylogenetic analysis of 73060 taxa corroborates major eukaryotic groups. Cladistics 25:1–20

    Google Scholar 

  28. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Google Scholar 

  29. Hedges S (1992) The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. Mol Biol Evolution 9(2):366–369

    Google Scholar 

  30. Hejnol A, Obst M, Stamatakis A, Ott M, Rouse G, Edgecombe G, Martinez P, Baguna J, Bailly X, Jondelius U, Wiens M, Müller W, Seaver E, Wheeler W, Martindale M, Giribet G, Dunn C (2009) Rooting the bilaterian tree with scalable phylogenomic and supercomputing tools. Proc R Soc B 276:4261–4270

    Google Scholar 

  31. Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process.Mol Biol Evol 21(6):1095–1109

    Google Scholar 

  32. Loytynoja A, Goldman N (2008) Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320(5883):1632

    Google Scholar 

  33. Maddison W (1997) Gene trees in species trees. Syst Biol 46(3):523

    Google Scholar 

  34. Mak T, Lam K (2003) High speed GAML-based phylogenetic tree reconstruction using HW/SW codesign. In: Bioinformatics Conference, 2003. CSB 2003. Proceedings of the 2003 IEEE, pp 470–473

    Google Scholar 

  35. Mak T, Lam K (2004) Embedded computation of maximum-likelihood phylogeny inference using platform FPGA. In: Proceedings of IEEE Computational Systems Bioinformatics Conference (CSB 04), pp 512–514

    Google Scholar 

  36. Mak T, Lam K (2004) FPGA-Based Computation for Maximum Likelihood Phylogenetic Tree Evaluation. In: Lecture notes in computer science, pp 1076–1079

    Google Scholar 

  37. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E et al (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087

    Google Scholar 

  38. Minh B, Vinh L, Haeseler A, Schmidt H (2005) pIQPNNI: parallel reconstruction of large maximum likelihood phylogenies. Bioinformatics 21(19):3794–3796

    Google Scholar 

  39. Minh B, Vinh L, Schmidt H, Haeseler A (2006) Large maximum likelihood trees. In: Proceedings of the NIC Symposium 2006, pp 357–365

    Google Scholar 

  40. Moret B, Tang J, Wang L, Warnow T (2002) Steps toward accurate reconstructions of phylogenies from gene-order data∗ 1. J Comput Syst Sci 65(3):508–525

    MATH  MathSciNet  Google Scholar 

  41. Moret B, Wyman S, Bader D, Warnow T, Yan M (2001) A new implementation and detailed study of breakpoint analysis. In: Pacific symposium on biocomputing 6:583–594

    Google Scholar 

  42. Morrison D (2007) Increasing the efficiency of searches for the maximum likelihood tree in a phylogenetic analysis of up to 150 nucleotide sequences. Syst Biol 56(6):988–1010

    Google Scholar 

  43. Ott M, Zola J, Aluru S, Johnson A, Janies D, Stamatakis A (2008) Large-scale phylogenetic analysis on current HPC architectures. Scientific Programming 16(2–3):255–270

    Google Scholar 

  44. Ott M, Zola J, Aluru S, Stamatakis A (2007) Large-scale maximum likelihood-based phylogenetic analysis on the IBM BlueGene/L. In: Proceedings of IEEE/ACM Supercomputing Conference 2007 (SC2007), IEEE, Reno, Nevada

    Google Scholar 

  45. Pattengale N, Alipour M, Bininda-Emonds O, Moret B, Stamatakis A (2010) How many bootstrap replicates are necessary? J Comput Biol 17(3):337–354

    MathSciNet  Google Scholar 

  46. Pfeiffer W, Stamatakis A (2010) Hybrid MPI/Pthreads parallelization of the RAxML phylogenetics code. In: IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010, IEEE, Atlanta, Georgia, pp 1–8

    Google Scholar 

  47. Pratas F, Trancoso P, Stamatakis A, Sousa L (2009) Fine-grain Parallelism using multi-core, Cell/BE, and GPU systems: accelerating the phylogenetic likelihood function. In: International conference on parallel processing, 2009. ICPP’09, IEEE, Vienna, pp 9–17

    Google Scholar 

  48. Price M, Dehal P, Arkin A (2010) FastTree 2–approximately maximumlikelihood trees for large alignments. PLoS One 5(3):e9490

    Google Scholar 

  49. Roch S (2006) A short proof that phylogenetic tree reconstruction by maximum likelihood is hard. IEEE/ACM transactions on Computational Biology and Bioinformatics, pp 92–94

    Google Scholar 

  50. Ronquist F, Huelsenbeck J (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574

    Google Scholar 

  51. Savill NJ, Hoyle DC, Higgs PG (2001) Rna sequence evolution with secondary structure constraints: comparison of substitution rate models using maximum-likelihood methods. Genetics 157:399–411

    Google Scholar 

  52. Smith S, Donoghue M (2008) Rates of molecular evolution are linked to life history in flowering plants. Science 322(5898):86–89

    Google Scholar 

  53. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690

    Google Scholar 

  54. Stamatakis A, Alachiotis N (2010) Time and memory efficient likelihoodbased tree searches on phylogenomic alignments with missing data. Bioinformatics 26(12):i132

    Google Scholar 

  55. Stamatakis A, Blagojevic F, Antonopoulos CD, Nikolopoulos DS (2007) Exploring new search algorithms and hardware for phylogenetics: RAxML meets the IBM Cell. J VLSI Sig Proc Syst 48(3):271–286

    Google Scholar 

  56. Stamatakis A, Ludwig T, Meier H (2004) Parallel inference of a 10.000-taxon phylogeny with maximum likelihood. In: Proceedings of Euro-Par 2004, September 2004, IEEE, Pisa Italy, pp 997–1004

    Google Scholar 

  57. Stamatakis A, Ott M (2008) Efficient computation of the phylogenetic likelihood function on multi-gene alignments and multi-core architectures. Philos Trans R Soc B, Biol Sci 363:3977–3984

    Google Scholar 

  58. Stamatakis A, Ott M (2008) Exploiting fine-grained parallelism in the phylogenetic likelihood function with MPI, Pthreads, and OpenMP: a performance study. In: Chetty M, Ngom A, Ahmad S (eds) PRIB, Lecture notes in computer science, vol 5265. Springer, Heidelberg, pp 424–435

    Google Scholar 

  59. Stamatakis A, Ott M (2009) Load balance in the phylogenetic likelihood kernel. In: International conference on parallel processing, 2009. ICPP’09, IEEE, Vienna, Austria, pp 348–355

    Google Scholar 

  60. Stamatakis A, Ott M, Ludwig T (2005) RAxML-OMP: an efficient program for phylogenetic inference on SMPs. Lecture notes in computer science, vol 3606. Springer, Berlin, Heidelberg, pp 288–302

    Google Scholar 

  61. Stewart C, Hart D, Berry D, Olsen G, Wernert E, Fischer W (2001) Parallel implementation and performance of fastDNAml – a program for maximum likelihood phylogenetic inference. In: Supercomputing, ACM/IEEE 2001 conference, ACM/IEEE, Denver, Colorado, pp 32–32

    Google Scholar 

  62. Strimmer K, Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    Google Scholar 

  63. Suchard M, Rambaut A (2009) Many-core algorithms for statistical phylogenetics. Bioinformatics 25(11):1370

    Google Scholar 

  64. Wehe A, Chang W, Eulenstein O, Aluru S (2010) A scalable parallelization of the gene duplication problem. J Parallel Distr Comput 70(3):237–244

    Google Scholar 

  65. Wheeler T (2009) Large-scale neighbor-joining with ninja. Lecture notes in computer science, vol 5724. Springer, Berlin, pp 375–389

    Google Scholar 

  66. Yang Z (2006) Computational molecular evolution. Oxford University Press, USA

    Google Scholar 

  67. Zierke S, Bakos J (2010) FPGA acceleration of the phylogenetic likelihood function for Bayesian MCMC inference methods. BMC Bioinformatics 11(1):184

    Google Scholar 

  68. Zwickl D (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD thesis, University of Texas at Austin, April 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

Stamatakis, A. (2011). Phylogenetics. In: Padua, D. (eds) Encyclopedia of Parallel Computing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_443

Download citation

Publish with us

Policies and ethics