Encyclopedia of Parallel Computing

2011 Edition
| Editors: David Padua

Terrestrial Ecosystem Carbon Modeling

  • Dali Wang
  • Daniel Ricciuto
  • Wilfred Post
  • Michael W. Berry
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-09766-4_395

Synonyms

Definition

A Terrestrial Ecosystem Carbon Model (TECM) is a category of process-based ecosystem models that describe carbon dynamics of plants and soils within global terrestrial ecosystems. A TECM generally uses spatially explicit information on climate/weather, elevation, soils, vegetation, and water availability as well as soil- and vegetation-specific parameters to make estimates of important carbon fluxes and carbon pool sizes in terrestrial ecosystems.

Discussion

Introduction

Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because of the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are eight...

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.
    Bacastow RB, Keeling CD (1973) Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: II. Changes from AD 1700 to 2070 as deduced from a geochemical model. In: Woodwell GM, Pecan EV (eds) Carbon and the biosphere. CONF-720510. National Technical Information Service, Springfield, Virginia, pp 86–135Google Scholar
  2. 2.
    Emanuel WR, Killough GG, Post WM, Shugart HH (1984) Modeling terrestrial ecosystems in the global carbon cycle with shifts in carbon storage capacity by land-use change. Ecology 65(3): 970–983Google Scholar
  3. 3.
    Lieth H (1975) Modeling the primary productivity of the world. In: Lieth H, Wittaker RH (eds) Primary productivity of the biosphere, ecological studies, vol 14. Springer-Verlag, New York, pp 237–283Google Scholar
  4. 4.
    Sellers JP, Randell DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounua L (1996) A revised land surface parametrization (SiB 2) for atmospheric GCMs. Part I: model formulation. J Climate 9:676–705Google Scholar
  5. 5.
    Dickinson R, Henderson-sellers A, Kennedy P (1993) Biosphere-atmosphere transfer scheme (BATS) version as coupled to the NCAR community climate model. Technical report, National Center for Atmospheric ResearchGoogle Scholar
  6. 6.
    Ducoudré N, Laval K, Perrier A (1993) SECHIBA, a new set of parametrizations of the hydrologic exchanges at the land/ atmosphere interface within the LMD atmospheric general circulation model. J Climate 6(2):248–273Google Scholar
  7. 7.
    Friend AD, Stevens AK, Knox RG, Cannell MGR (1997) A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol Model 95:249–287Google Scholar
  8. 8.
    Prentice IC, Heimann M, Sitch S (2000) The carbon balance of the terrestrial biosphere: ecosystem models and atmospheric observations. Ecol Appl 10:1553–1573Google Scholar
  9. 9.
    Moorcroft P, Hurtt GC, Pacala SW (2001) A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol Monogr 71(4):557–586Google Scholar
  10. 10.
    Govindarajan S, Dietze MC, Agarwal PK, Clark JS (2004) A scalable simulator for forest dynamics. In: Proceedings of the twentieth annual symposium on computational geometry SCG 04, Brooklyn, NY, pp 106–115, doi:10.1145/997817.997836Google Scholar
  11. 11.
    Yang W, Ni-Meister W, Kiang NY, Moorcroft P, Strahler AH, Oliphant A (2010) A clumped-foliage canopy radiative transfer model for a Global Dynamic Terrestrial Ecosystem Model II: Comparison to measurements. Agricultural and Forest Meteorology, 150(7):895–907, doi:10.1016/j.agrformet.2010.02.008Google Scholar
  12. 12.
    Trabalka JR, Reichle DE (ed) (1986) The changing carbon cycle: a global analysis. Springer-Verlag, BerlinGoogle Scholar
  13. 13.
    Field CB, Raupach MR (ed) (2004) The global carbon cycle: integrating human, climate, and the natural world. Island, Washington, DCGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dali Wang
    • 1
  • Daniel Ricciuto
    • 2
  • Wilfred Post
    • 1
  • Michael W. Berry
    • 2
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of Electrical Engineering and Computer ScienceThe University of TennesseeKnoxvilleUSA