Skip to main content

Domain Decomposition

  • Reference work entry
  • 1486 Accesses

Synonyms

Functional decomposition; Grid partitioning

Definition

Domain decomposition, in the context of parallel computing, refers to partitioning of computational work among multiple processors by distributing the computational domain of a problem, in other words, data associated with the problem. In the scientific computing literature, domain decomposition mainly refers to techniques for solving partial differential equations (PDE) by iteratively solving subproblems corresponding to smaller subdomains. Although the evolution of these techniques is motivated by PDE-based computational simulations, the general methodology is applicable in a number of scientific domains not dominated by PDEs.

Introduction

One of the key steps in parallel computing is partitioning the problem to be solved into multiple smaller components that can be addressed simultaneously by separate processors with minimal communication. There are two main approaches for dividing the computational work. The first one...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Berger MJ, Bokhari SH (1987) A partitioning strategy for nonuniform problems on multiprocessors. IEEE Trans Comput 36(5):570–580

    Google Scholar 

  2. Çatalyürek UV, Boman EG, Devine KD, Bozdag D, Heaphy RT, Riesen LA (2009) A repartitioning hypergraph model for dynamic load balancing. J Parallel Distrib Comput 69(8):711–724

    Google Scholar 

  3. Chan TF, Shao JP (1995) Parallel complexity of domain decomposition methods and optimal coarse grid size. Parallel Comput 21(7):1033–1049

    MathSciNet  Google Scholar 

  4. Devine KD, Boman EG, Heaphy RT, Hendrickson BA, Teresco JD, Faik J, Flaherty JE, Gervasio LG (2005) New challenges in dynamic load balancing. Appl Numer Math 52(2–3):133–152

    MATH  MathSciNet  Google Scholar 

  5. Devine KD, Boman EG, Heaphy RT, Bisseling RH, Çatalyürek UV (2006) Parallel hypergraph partitioning for scientific computing. In: Proceedings of the 20th parallel and distributed processing symposium 2006, Rhodes Island, Greece, 10 pp

    Google Scholar 

  6. Dryja M, Widlund OB (1994) Domain decomposition algorithms with small overlap. SIAM J Sci Comput 15(3):604–620

    MATH  MathSciNet  Google Scholar 

  7. Farhat C, Lesoinne M (1993) Automatic partitioning of unstructured meshes for the parallel solution of problems in computational mechanics. Int J Numer Methods Eng 36(5):745–764

    MATH  Google Scholar 

  8. Farhat C (1988) A simple and efficient automatic fem domain decomposer. Comput Struct 28(5):579–602

    Google Scholar 

  9. Farhat C, Pierson K, Lesoinne M (2000) The second generation feti methods and their application to the parallel solution of large-scale linear and geometrically non-linear structural analysis problems. Comput Methods Appl Mech Eng 184(2–4): 333–374

    MATH  Google Scholar 

  10. Farhat C, Roux F-X (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Meth Eng 32:1205–1227

    MATH  Google Scholar 

  11. Fjällström P-O (1998) Algorithms for graph partitioning: a survey, vol 3, part 10. Linköping University Electronic Press, Sweden

    Google Scholar 

  12. Gropp WD, Keyes DE (1989) Domain decomposition on parallel computers. IMPACT Comput Sci Eng 1(4):420–439

    Google Scholar 

  13. Gropp WD, Smith BF (1993) Experiences with domain decomposition in three dimensions: overlapping schwarz methods. In: Proceedings of the 6th international symposium on domain decomposition, AMS, Providence, 1993, pp 323–333

    Google Scholar 

  14. Hendrickson B, Kolda TG (2000) Graph partitioning models for parallel computing. Parallel Comput 26(12):1519–1534

    MATH  MathSciNet  Google Scholar 

  15. Karypis G, Kumar V (1996) Parallel multilevel k-way partitioning scheme for irregular graphs. In: Proceedings of the 8th ACM/IEEE conference on supercomputing (CDROM) (Super computing ’96), Article 35, Pittsburgh, PA, USA

    Google Scholar 

  16. Karypis G, Kumar V (1999) Multilevel -way hypergraph partitioning. In: Proceedings of the 36th design automation conference, New Orleans, LA, USA, pp 343–348

    Google Scholar 

  17. Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J 49(1):291–307

    MATH  Google Scholar 

  18. Leland R, Hendrickson B (1994) An empirical study of static load balancing. In: Proceedings of scalable high performance computing conference, pp 682–685

    Google Scholar 

  19. Neuman SP (1977) Theoretical derivation of Darcy’s law. Acta Mech 25(3):153–170

    MATH  Google Scholar 

  20. Oliker L, Biswas R (1998) Plum: parallel load balancing for adaptive unstructured meshes. J Parallel Distrib Comput 52(2):150–177

    MATH  Google Scholar 

  21. Pothen A, Simon HD, Liou K (1990) Partitioning sparse matrices with eigenvectors of graphs. SIAM J Matrix Anal Appl 11(3): 430–452

    MATH  MathSciNet  Google Scholar 

  22. Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia, PA

    MATH  Google Scholar 

  23. Schamberger S, Wierum J (2005) Partitioning finite element meshes using space-filling curves. Future Gen Comp Syst 21(5):759–766

    Google Scholar 

  24. Schloegel K, Karypis G, Kumar V (2001) Wavefront diffusion and LMSR: Algorithms for dynamic repartitioning of adaptive meshes. IEEE Transactions on Parallel and Distributed Systems 12(5):451–466

    Google Scholar 

  25. Schwarz HA (1870) Uber einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 15:272–286

    Google Scholar 

  26. Simon HD (1991) Partitioning of unstructured problems for parallel processing. Comput Syst Eng 2(2–3):135–148

    Google Scholar 

  27. Sohn A, Simon H (1994) Jove: a dynamic load balancing framework for adaptive computations on an sp-2 distributed multiprocessor. Technical report, CIS, New Jersey Institute of Technology, NJ

    Google Scholar 

  28. Sun K, Zhou Q, Mohanram K, Sorensen DC (2007) Parallel domain decomposition for simulation of large-scale power grids. In: ICCAD, pp 54–59

    Google Scholar 

  29. Zhang Y, Bajaj C (2004) Finite element meshing for cardiac analysis. Technical Report 04–26, ICES, University of Texas at Austin, TX

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this entry

Cite this entry

George, T., Sarin, V. (2011). Domain Decomposition. In: Padua, D. (eds) Encyclopedia of Parallel Computing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09766-4_291

Download citation

Publish with us

Policies and ethics