Paleontology

1979 Edition

Annelida

  • Ida Thompson
Reference work entry
DOI: https://doi.org/10.1007/3-540-31078-9_9

The annelids are the most diverse and abundant members of almost all soft-bottom marine communities. The main representatives of this phylum of segmented worms are earthworms, polychaetes, and leeches. As earthworms tunnel in the soil, most polychaetes burrow in marine mud and leeches seek a living host. The fossil record is almost barren of earthworms and leeches. They leave no hard parts and almost always live in freshwater or terrestrial environments, where the chances of fossilization are poorer than in marine conditions.

Polychaetes have the best fossil record and therefore are of most interest to paleontologists. Many species of these worms have hard parts, either chitinous jaws or mineralized tubes, which are readily fossilized. In addition, they live in areas of near-shore sedimentation, where eventual recovery of fossils is most likely. But most polychaete fossils are jaws, and these are easily overlooked. They are dark and tiny, usually <1 mm long; special techniques are...

This is a preview of subscription content, log in to check access.

References

  1. Boyer, P. S., 1975. Polychaete jaw apparatus from the Devonian of central Ohio, Acta Palaeontol. Polonica, 20,(3), 184–205.Google Scholar
  2. Charletta, A. C., and Boyer, P. S., 1974. Scolecodonts from Cretaceous greensand of the New Jersey coastal plain, Micropaleontology, 20, 354–366.Google Scholar
  3. Dales, R. P., 1962. The polychaete stomodeum and the inter-relationships of the families of Polychaeta, Proc. Zool. Soc. London, 139, 389–428.Google Scholar
  4. Dales, R. P., 1967. Annelids. London: Hutchinson, 200p.Google Scholar
  5. Day, J. H., 1967. A monograph on the Polychaeta of Southern Africa. London: British Museum (Natural History), 878p.Google Scholar
  6. Ehlers, E., 1868. Ueber fossile Würner aus dem lithographischen Schiefer in Bayern, Palaeontographica, 17, 145–175.Google Scholar
  7. Eisenack, A., 1975. Beiträge zur Anneliden-Forschung, I, Neues Jahrb. Geol. Paläontol. Abh, 150, 227–252.Google Scholar
  8. Gall, J. and Grauvogel, L., 1967. Faune du Buntsandstein III. Quelques annélides du Grès à Voltzia des Vosges, Ann. Paleontol. Invertebr., 53(2), 105–110.Google Scholar
  9. Glaessner, M. F., 1961. Pre-Cambrian animals, Sci. American, 204, 72–78.CrossRefGoogle Scholar
  10. Glaessner, M. F., 1976. Early Phanerozoic annelid worms and their geological and biological significance, J. Geol. Soc. London, 132, 259–275.Google Scholar
  11. Glaessner, M. F., and Wade, M., 1966. The late Precambrian fossils from Ediacara, South Australia, Palaeontology, 9, 599–628.Google Scholar
  12. Hartmann-Schröder, G., 1967. Feinbau und Funktion des Kieferapparates der Euniciden am Beispiel von Eunice (Palola) siciliensis Grube (Polychaeta), Mitt. Hamburg. Zool. Mus. Inst., 64, 5–27.Google Scholar
  13. Howell, B. F., 1957. Vermes, in H. S. Ladd, ed., Treatise on marine ecology and paleoecology vol. 1, Paleoecology, Geol. Soc. Amer. Mem., 67, vol. 2, 805–816.Google Scholar
  14. Howell, B. F., 1962. Worms, in R. C. Moore, ed., Treatise of Invertebrate Paleontology. Pt. W, Miscellanea, Lawrence, Kansas: Geol. Soc. Amer. and Univ. Kansas Press, W144–W177.Google Scholar
  15. Jansonius, J., and Craig, J. H., 1971. Scolecodonts: I. Descriptive terminology and revision of systematic nomenclature; II. Lectotypes, hew names for homonyms, index of species, Bull. Canadian Petroleum Geol., 19, 251–302.Google Scholar
  16. Jumars, P. A., and Fauchald, K., 1977. Between-community contrasts in successful polychaete feeding strategies, in B. C. Coull, ed., Ecology of Marine Benthos. Belle Baruch Libr. Mar. Sci. 6. Columbia: Univ. South Carolina Press, 1–20.Google Scholar
  17. Kielan-Jaworowska, Z., 1966. Polychaete jaw apparatuses from the Ordovician and Silurian of Poland and a comparison with modern forms, Palaeontol. Polonica, 16, 1–152.Google Scholar
  18. Kielan-Jaworowska, Z., 1968. Scolecodonts versus jaw apparatuses, Lethaia, 1, 39–49.Google Scholar
  19. Kozur, H., 1970. Zur Klassifikation und phylogenetischen Entwicklung der fossilen Phyllodocida und Eunicida (Polychaeta), Freiberger Forschungshefte C260 Paläontologie, 35–81.Google Scholar
  20. Kozur, H., 1971. Die Eunicida und Phyllodocida des Mesozoikums, Freiberger Forschungshefte, C267, Paläontologie, p. 73–111.Google Scholar
  21. Rhoads, D. C., and Young, D. K., 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure, J. Marine Research, 28, 150–178.Google Scholar
  22. Sanders, H. L., 1956. Oceanography of Long Island Sound, 1952-1954. X. The biology of marine bottom communities. Bull. Bingham Oceanogr. Collect. 15, 345–414.Google Scholar
  23. Schwab, K. W., 1966. Microstructure of some fossil and Recent scolecodonts, J. Paleontology, 40, 416–423.Google Scholar
  24. Szaniawski, H., 1974. Some Mesozoic scolecodonts congeneric with Recent forms, Acta Palaeontol. Polonica, 19, 179–200.Google Scholar
  25. Thompson, I., 1976. Nine new species of whole-body fossil polychaetes from Essex Illinois, Fieldiana, Geol., 26, 146–183.Google Scholar
  26. Thompson, I., and Johnson, R. G., 1976. New fossil polychaete from Essex Illinois, Fieldiana, Geol., 26, 122–146.Google Scholar
  27. Walcott, C. D., 1911. Cambrian geology and paleontology, II, no. 5, Middle Cambrian annelids, Smithsonian Misc. Collect., 57, 109–144.Google Scholar

Copyright information

© Dowden, Hutchinson & Ross, Inc. 1979

Authors and Affiliations

  • Ida Thompson

There are no affiliations available