Paleontology

1979 Edition

Echinodermata

  • D. Nichols
Reference work entry
DOI: https://doi.org/10.1007/3-540-31078-9_54

The main structural characteristics separating the phylum Echinodermata (Gr: Echinos , spiny; derma, skin) from all other animal phyla are: (1) the possession of hydraulic tube feet, connected by a tubular water-vascular system; (2) the possession of a basic five-rayed symmetry; and (3) the reticular nature of thecalcite of which the skeletal elements are composed. Of these, only the first is diagnostic: all known modern echinoderms have tube feet, and it seems highly probable that all the extinct ones had them too. The nearest thing to tube feet in any other phylum is probably the lophophoral filaments of brachiopods, which also have a coelomic lumen; but their structural and functional range is far less extensive. As for the other criteria, pentamerous symmetry may well have arisen as a response to developmental requirements coupled with demands for optimal all-round command in a radial animal (Stephenson, 1974). Though there are exceptions among both extinct and modern echinoderms,...

This is a preview of subscription content, log in to check access.

References

  1. Bather, F. A., 1915. Studies in Edrioasteroidea, I-IX. Collected papers from Geol. Mag., 1898-1915, published privately.Google Scholar
  2. Bell, B. M., 1976. A study of North American Edrioasteroidea, N.Y. State Mus. Sci. Serv. Mem. 21, 447p.Google Scholar
  3. Binyon, J., 1972. Physiology of Echinoderms. London: Pergamon, 264p.Google Scholar
  4. Boolootian, R. A., ed., 1966. Physiology of Echinodermata. New York: Wiley-Interscience, 822p.Google Scholar
  5. Campbell, A.C., 1972. The form and function of the skeleton in pedicellariae from Echinus esculentus L., Tissue & Cell, 4, 647–661.Google Scholar
  6. Christensen, A. M., 1970. Feeding biology of the sea-star Astropecten irregularis Pennant, Ophelia, 8, 1–134.Google Scholar
  7. Clark, A. H., 1915-1967. A monograph of the existing crinoids, U.S. Nat. Mus. Bull. no. 82.Google Scholar
  8. Clark, A. M., 1962. Starfishes and Their Relations. London: British Museum (Natural History), 119p.Google Scholar
  9. Clark, A. M., and Rowe, F. W. E., 1971. Monograph of Shallow-Water Indo-West Pacific Echinoderms. London: British Museum (Natural History), 238p.Google Scholar
  10. Cobb, J. L. S., 1970. The significance of the radial nerve cords in asteroids and echinoids, Zeitschr. Zellforsch., 108, 457–474.CrossRefGoogle Scholar
  11. Durham, J. W., 1955. Classification of clypeasteroid echinoids, Univ. Calif. Pub. Geol. Sci., 31, 73–198.Google Scholar
  12. Durham, J. W., 1963. Helicoplacoidea: A new class of echinoderms, Science, 140, 820–822.Google Scholar
  13. Durham, J. W., 1964. The Helicoplacoidea and some possible implications, Yale Sci. Mag., 39, 24–28.Google Scholar
  14. Durham, J. W., and Melville, R. V., 1957. A classification of echinoids, J. Paleontology, 31, 242–272.Google Scholar
  15. Fay, R. O., 1961. Blastoid studies, Univ. Kansas Paleont. Contrib. 27, Echinodermata, Art. 3, 1–147.Google Scholar
  16. Fell, H. B., 1962. The phylogeny of sea-stars, Phil. Trans. Roy. Soc. London Ser. B, 246, 381–435.Google Scholar
  17. Florkin, M., and Scheer, B. T., eds., 1969. Chemical Zoology, vol. III. Echinodermata, Nematoda, Acanthocephala. New York and London: Academic Press, 687p.Google Scholar
  18. Frizzell, D. L., and Exline, H., 1955. Monograph of fossil holothurian sclerites, Bull. Missouri Sch. Mines Metal. 89, 1–204.Google Scholar
  19. Glaessner, M. F., 1962. Pre-Cambrian fossils, Biol. Rev. Cambridge Phil. Soc., 37, 467–494.Google Scholar
  20. Hyman, L. H., 1955. The Invertebrates, IV. Echinodermata. New York: McGraw-Hill, 763p.Google Scholar
  21. Jefferies, R. P. S., 1975. Fossil evidence concerning the origin of chordates, Symp. Zool. Soc. London, 36, 253–318.Google Scholar
  22. Kier, P. M., 1965. Evolutionary trends in Paleozoic echinoids, J. Paleontology, 39, 436–465.Google Scholar
  23. Kier, P. M., 1974. Evolutionary trends and their functional significance in the post-Paleozoic echinoids, J. Paleontology, 48(3, suppl.) (Paleontol. Soc. Mem. 5), 1–95.Google Scholar
  24. Millott, N., ed., 1967. Echinoderm biology, Symp. Zool. Soc. London, 20, 240p.Google Scholar
  25. Mintz, L. W., 1968. Echinoids of the Mesozoic families Collyritidae d'Orbigny, 1853 and Disasteridae Graz, 1848, J. Paleontology, 42, 1272–1278.Google Scholar
  26. Mintz, L. W., 1970. The Edrioblastoidea: Re-evaluation based on a new specimen of Astrocystites from the Middle Ordovician of Ontario, J. Paleontology, 44, 872–880.Google Scholar
  27. Moore, R. C., ed., 1966. Treatise on Invertebrate Paleontology, pt. U, 2 vols., Echinodermata 3. Lawrence, Kansas: Geol. Soc. Amer. and Univ. Kansas Press, 695p.Google Scholar
  28. Moore, R. C., ed., 1968. Treatise on Invertebrate Paleontology, pt. S, 2 vols., Echinodermata 1. Lawrence, Kansas: Geol. Soc. Amer. and Univ. Kansas Press, 695p.Google Scholar
  29. Mortensen, T., 1928-1951. A Monograph of the Echinoidea, 5 vols. Copenhagen. Reitzel.Google Scholar
  30. Nichols, D., 1969. Echinoderms, 4th rev. ed. London: Hutchinson Univ. Library, 192p.Google Scholar
  31. Nichols, D., 1975. The Uniqueness of the Echinoderms. Oxford Biology Readers, no. 53. Oxford: Oxford University Press, 16p.Google Scholar
  32. Parsley, R. L., and Mintz, L. W., 1975. North American Paracrinoidea: (Ordovician: Paracrinozoa, new, Echinodermata), Bull. Amer. Paleontology, 68, 115p.Google Scholar
  33. Paul, C. R. C., 1968. Morphology and function of dichoporite structures in cystoids, Paleontology, 11, 697–730.Google Scholar
  34. Paul, C. R. C., 1972. Morphology and function of exothecal pore structures in cystoids, Palaeontology, 15, 1–28.Google Scholar
  35. Paul, C. R. C., 1977. Evolution of primitive echinoderms, in A. Hallam, ed., Patterns of Evolution. Amsterdam: Elsevier, 123–158.Google Scholar
  36. Regnéll, G., 1975. Review of recent research on “Pelmatozoans,” Paläont. Zeitschr., 49, 530–564.Google Scholar
  37. Roux, M., 1975. Microstructural analysis of the crinoid stem, Univ. Kansas Paleont. Contrib., 75, 1–7.Google Scholar
  38. Spencer, W. K., 1914-1965. The British Palaeozoic Asterozoa. London: Palaeontogr. Soc. Monographs, 583p.Google Scholar
  39. Sprinkle, J., 1973. Morphology and Evolution of Blastozoan Echinoderms. Cambridge, Mass.: Mus. Comp. Zool., Spec. Pub., 284p.Google Scholar
  40. Stephenson, D. G., 1974. Pentamerism and the ancestral echinoderm, Nature, 250, 82–83.CrossRefGoogle Scholar
  41. Ubaghs, G., 1971. Diversité et spécialisation des plus anciens échinodermes que 1′ on connaisse, Biol. Rev. Cambridge Phil. Soc., 46, 157–200.Google Scholar
  42. Ubaghs, G., 1975. Early Paleozoic echinoderms, Ann. Rev. Earth Planetary Sci., 3, 79–98.CrossRefGoogle Scholar
  43. Whitehouse, F. W., 1941. Early Cambrian echinoderms similar to the larval stages of recent forms, Queensland Mus. Mem. 12 (1), 28p.Google Scholar

Copyright information

© Dowden, Hutchinson & Ross, Inc. 1979

Authors and Affiliations

  • D. Nichols

There are no affiliations available