1979 Edition


  • Robert Riding
Reference work entry

Algae were among the earliest forms of life on earth and are very abundant in aqueous environments at the present day. They are an extremely diverse group of lower plants characterized by relatively unspecialized reproductive organs rather than by general morphological simplicity. During much of the history of life on earth, algae have had profound effects on the biosphere as sources of both atmospheric oxygen and food for higher organisms.

Ten or more divisions of algae can be recognized, each being equivalent in rank to an animal phylum. They exhibit a wide range of vegetative structure, often with marked parallelism between groups. Consequently, the primary classification of algae is based on more fundamental details such as cell structure and composition, and the nature of food resources and photosynthetic pigments. As a result, the classification of fossil algae is difficult, and must be based primarily on gross morphological features. An additional problem is that relatively few...

This is a preview of subscription content, log in to check access.


  1. Adey, W. H., and Macintyre, I. G., 1973. Crustose coralline algae; a re-evaluation in the geological sciences, Geol. Soc. Amer. Bull., 84, 883–903.Google Scholar
  2. Barton, E. S. 1901. The genus Halimeda, Siboga Expedition Monogr. 60, 1–32.Google Scholar
  3. Black, M. 1965. Coccoliths, Endeavour, 24, 131–137.Google Scholar
  4. Black, M. 1968. Taxonomic problems in the study of coccoliths, Palaeontology, 11, 793–813.Google Scholar
  5. Cloud, P. E., Jr., 1968, Pre-metazoan evolution and the origins of the Metazoa, in E. T. Drake, ed., Evolution and Environment. New Haven: Yale Univ. Press, 1–72.Google Scholar
  6. Cloud, P. E., Jr., and Semikhatov, M. A., 1969. Proterozoic stromatolite zonation, Amer. J. Sci., 267, 1017–1061.CrossRefGoogle Scholar
  7. Downie, C., 1967. The geological history of the microplankton, Rev. Palaeobot. Palynol., 1, 269–281.Google Scholar
  8. Elliott, G. F., 1955. The Permian calcareous alga Gymnocodium, Micropaleontology, 1, 83–90.Google Scholar
  9. Elliott, G. F., 1968. Permian to Palaeocene calcareous algae (Dasycladaceae) of the Middle East, Bull. British Mus. (Nat. Hist.) Geology, Suppl. 4, 111p.Google Scholar
  10. Fritsch, F. E., 1935, 1945. The Structure and Reproduction of the Algae. vols. 1, 2. London: Cambridge Univ. Press, 791p. 939p.Google Scholar
  11. Flügel, E., ed., 1977. Fossil Algae. Berlin: Springer, 375p.Google Scholar
  12. Garrett, P., 1970. Phanerozoic stromatolites: Non-competitive ecologic restriction by grazing and burrowing animals, Science, 169, 171–173.Google Scholar
  13. Hofmann, H. J., 1969. Attributes of stromatolites, Geol. Surv. Canada Paper 69-39, 58p.Google Scholar
  14. Johnson, J. H., 1961. Limestone-building Algae and Algal Limestones. Golden, Co.: Colorado School of Mines, 187p.Google Scholar
  15. Logan, B. W., 1961. Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia, J. Geol., 69, 517–533.CrossRefGoogle Scholar
  16. Logan, B. W.; Rezak, R.; and Ginsburg, R. N., 1964. Classification and environmental significance of algal stromatolites, J. Geol., 72, 68–83.Google Scholar
  17. Milliman, J. D., 1974. Marine Carbonates. Berlin: Springer, 375p.Google Scholar
  18. Monty, C. L. V., 1973. Les nodules de manganèse sont des stromatolithes océaniques, Comptes Rendus Acad. Sci., Ser. D, 276, 3285–3288.Google Scholar
  19. Nitecki, M. H., 1972. North American Silurian receptaculitid algae, Fieldiana, Geol., 28, 108p.Google Scholar
  20. Peck, R. E., 1953. Fossil charophytes, Bot. Rev., 19, 209–227.Google Scholar
  21. Pia, J. 1920. Die Siphoneae Verticillatae vom Karbon bis zur Kreide, Verh. Zool.-Bot. Gesell. Wien, 11(2), 1–263.Google Scholar
  22. Pia, J., 1927. Thallophyta, in M. Hirmer, ed. Handbuch der Paläobotanik. München: Oldenbourg, 31–136.Google Scholar
  23. Riding, R., 1977a. Skeletal stromatolites, in E. Flügel, ed., Recent Research on Fossil Algae. Berlin: Springer, 57–60.Google Scholar
  24. Riding, R. 1977b. Problems of affinity in Palaeozoic calcareous algae, in E. Flügel, ed., Recent Research on Fossil Algae. Berlin: Springer, 202–211.Google Scholar
  25. Rietschel, S., 1969. Die Receptaculiten, Senckenbergiana Lethaea, 50, 465–517.Google Scholar
  26. Sarjeant, W. A. S., 1974. Fossil and Living Dinoflagellates. London: Academic Press, 182p.Google Scholar
  27. Schopf, J. W., 1970. Precambrian micro-organisms and evolutionary events prior to the origin of vascular plants, Biol. Rev. Cambridge Phil. Soc., 45, 319–352.Google Scholar
  28. Stockman, K. W.; Ginsburg, R. N.; and Shinn, E. A., 1967. The production of lime-mud by algae in south Florida, J. Sed. Petrology, 37, 633–648.Google Scholar
  29. Tappan, H., 1968. Primary production, isotopes, extinctions and the atmosphere, Palaeogeography, Palaeoclimatology, Palaeoecology, 4, 187–210.Google Scholar
  30. Walter, M. R., 1972. Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian, Spec. Paper Palaeontol., 11, 190p.Google Scholar
  31. Wray, J. L., 1971. Algae in reefs through time, Proc. N. Amer. Paleontological Conv., J, 1358–1373.Google Scholar
  32. Wray, J. L. 1977. Calcareous Algae. New York: Elsevier, 185p.Google Scholar

Copyright information

© Dowden, Hutchinson & Ross, Inc. 1979

Authors and Affiliations

  • Robert Riding

There are no affiliations available