Skip to main content

Biometrics in paleontology

  • Reference work entry

Part of the book series: Encyclopedia of Earth Science ((EESS))

The statistical analysis of metrical characters of fossils is a useful aid to paleontologists in the study of species and infraspecific categories. The description of a type specimen, backed up by observations on a few paratypes, can often be profitably supplemented by the statistical study of an association consisting of many specimens. The quantitative assessment of such material will then be a helpful complement to the qualitative diagnosis. Such topics as the study of growth patterns, phenotypic response to environmental stimuli, predation, etc. may also be assisted by quantitative methods.

Species and Populations

A zoological species consists of an interbreeding natural population (see Species Concept ). Obviously, it is not possible to make direct inferences about the breeding habits of fossil organisms; the paleontologist is therefore obliged to reconstruct as complete a picture as possible from the fragmentary evidence available, using morphology; stratigraphic location;...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   519.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Birks, J. J. B., 1974. Numerical zonations of Flandrian pollen data, New. Phytologist., 73, 351–358.

    Google Scholar 

  • Blackith, R. E., and Reyment, R. A., 1971. Multivariate Morphometrics. London: Academic Press, 412p.

    Google Scholar 

  • Burnaby, T. P., 1966. Growth-invariant discriminant functions and generalized distances, Biometrics, 22, 96–100.

    Google Scholar 

  • Gould, S. J., 1966. Allometry and size in ontogeny and phylogeny, Biol. Rev. Cambridge Phil. Soc., 41, 587–640.

    Google Scholar 

  • Gould, S. J., 1967. Evolutionary patterns in pelycosaurian reptiles: A factor-analytical study, Evolution, 21, 385–401.

    Google Scholar 

  • Gould, S. J., 1972. Allometric fallacies and the evolution of Gryphaea: A new interpretation based on White's criterion of geometric similarity, Evol. Biol., 6, 91–118.

    Google Scholar 

  • Imbrie, J., and Kipp, N. G., 1971. A new micropaleontological method for quantitative micropaleontology: Application to a late Pleistocene Carribean core, in K. Turekian, ed. The Late Cenozoic Glacial Ages. New Haven: Yale Univ. Press, 71–181.

    Google Scholar 

  • Jolicoeur, P., 1963. The multivariate generalization of the allometry equation, Biometrics, 19, 497–499.

    Google Scholar 

  • Jöreskog, K. G.; Klovan, J. E.; and Reyment, R. A., 1976. Geological Factor Analysis. Amsterdam: Elsevier, 180p.

    Google Scholar 

  • Kermack, K. A., 1954. A biometrical study of Micraster coranguinum and M. (Isomicraster) senonensis, Phil. Trans. Roy. Soc. London, Ser. B, 237, 375–428.

    Google Scholar 

  • Kermack, K. A., and Haldane, J. B. S., 1950. Organic correlation and allometry, Biometrika, 37, 30–41.

    Google Scholar 

  • Nichols, F., 1959. Changes in the chalk heart-urchin Micraster interpreted in relation to living forms, Phil. Trans. Roy. Soc., London, Ser. B, 242, 347–437.

    Google Scholar 

  • Reyment, R. A., 1966. Afrobolivina africana (Graham, deKlasz, Rérat): quantitative Untersuchung der Variabilität einer palaeozänen Foraminifera, Eclogae Geol. Helvetia, 59, 319–338.

    Google Scholar 

  • Reyment, R. A. 1971. Introduction to Quantitative Paleoecology. Elsevier, Amsterdam, 226p.

    Google Scholar 

  • Reyment, R. A. 1973. The discriminant function in systematic biology, in Discriminant Analysis and Applications. New York and London: Academic Press, 311–335.

    Google Scholar 

  • Reyment, R. A., and Neufville, E. M. H., 1974. Multivariate analysis of populations split by continental drift, Math. Geol., 6, 173–181.

    Google Scholar 

  • Reyment, R. A., and Ramdén, H. Å., 1970. Fortran IV program for canonical variates analysis for the CDC 3600 computer, Computer Contr. Geol. Surv. Kansas, 47, 39p.

    Google Scholar 

  • Simpson, G. G.; Roe, A.; and Lewontin, R. C., 1960. Quantitative Zoology. New York: Harcourt Brace, 440p.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J., 1969. Biometrics. San Francisco: Freeman, 776p.

    Google Scholar 

  • Sylvester-Bradley, P. C., 1958. The description of fossil populations, J. Paleontology, 32, 214–235.

    Google Scholar 

Cross-references

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Dowden, Hutchinson & Ross, Inc.

About this entry

Cite this entry

Reyment, R.A. (1979). Biometrics in paleontology . In: Paleontology. Encyclopedia of Earth Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31078-9_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-31078-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-0-87933-185-6

  • Online ISBN: 978-3-540-31078-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics