Skip to main content

Analgesic, anti-inflammatory, and anti-pyretic activity1

  • Reference work entry
Book cover Drug Discovery and Evaluation

1Contributed by M. Just and V. Laux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References

  • Bannwarth B, Demotes-Mainard F, Schæverbeke T, Dahais J (1993) Where are peripheral analgesics acting? Ann Rheum Dis 52:1–4

    PubMed  CAS  Google Scholar 

  • Besson JM, Chaouch A (1987) Peripheral and spinal mechanisms of nociception. Physiol Rev 67:67–186

    PubMed  CAS  Google Scholar 

  • Collier HOJ (1964) Analgesics. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. pp 183–203. Academic Press London, New York

    Google Scholar 

  • Lim RKS, Guzman F (1968) Manifestations of pain in analgesic evaluation in animals and man. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Academic Press, London, New York, pp 119–152

    Google Scholar 

References

  • Akiyama K, Gee KW, Mosberg HI, Hruby VJ, Yamamura HI (1985) Characterization of [3H][2-D-penicillamine,5-D-penicillamine]-enkephalin binding to δ-opiate receptors in the rat brain and neuroblastoma-glioma hybrid cell line (NG 108-15). Proc Natl Acad Sci USA 82:2543–2547

    PubMed  CAS  Google Scholar 

  • Alexander SPH, Peters JA (2000) 2000 Receptor & Ion Channel Nomenclature Supplement. Trends Pharmacol Sci pp 70–71

    Google Scholar 

  • Berzetei-Gurske IP, Troll L (1992) The μ-opioid activity of κ-opioid receptor agonist compounds in the guinea pig ileum. Eur J Pharmacol 212:283–286

    PubMed  CAS  Google Scholar 

  • Bowen WD, Hellewell SB, McGarry KA (1989) Evidence for a multi-site model of the rat brain σ receptor. Eur J Pharmacol 163:309–318

    PubMed  CAS  Google Scholar 

  • Boyle SJ, Meecham KG, Hunter JC, Hughes J (1990) [3H]-CI-977: a highly selective ligand for the k-opioid receptor in both guinea-pig and rat forebrain. Mol Neuropharmacol 1:23–29

    CAS  Google Scholar 

  • Clark CR, Birchmore B, Sharif NA, Hunter JC, Hill RG, Hughes J (1988) PD117302: a selective agonist for the κ-opioid receptor. Br J Pharmacol 93:618–626

    PubMed  CAS  Google Scholar 

  • Clark JA, Liu L, Price M, Hersh B, Edelson M, Pasternak GW (1989) Kappa opiate receptor multiplicity: Evidence for two U50,488 sensitive k1 subtypes and a novel κ3 subtype. J Pharmacol Exp Ther 251:461–468

    PubMed  CAS  Google Scholar 

  • Corbett AD, Paterson SJ, Kosterlitz HW (1992) Selectivity of ligands for opioid receptors. In: Herz A, Akil H, Simon EJ (eds) Opioids I, Handbook of Experimental Pharmacology Vol 104/I, Chapter 26, pp 645–679. Springer Berlin, Heidelberg, New York

    Google Scholar 

  • Connick JH, Hanlon G, Roberts J, France L, Fox PK, Nicholson CD (1992) Multiple σ binding sites in guinea-pig and rat brain membranes: G-protein interactions. Br J Pharmacol 107:726–731

    PubMed  CAS  Google Scholar 

  • Cotton R, Kosterlitz HW, Paterson SJ, Rance MJ, Traynor JR (1985) The use of [3H]-[D-Pen2,D-Pen5]enkephalin as a highly selective ligand for the δ-binding site. Br J Pharmacol 84:927–932

    PubMed  CAS  Google Scholar 

  • Bebonnel G, de Montigny C (1996) Modulation of NMDA and dopaminergic neurotransmissions by sigma ligands: possible implications for the treatment of psychiatric disorders. Life Sci 58:721–733

    Google Scholar 

  • de Costa BR, Bowen WD, Hellewell, Walker JM, Thurkauf A, Jacobson AE, Rice KC (1989) Synthesis and evaluation of optically pure [3H]-(+)-pentazocine, a highly potent and selective ligand for σ receptors. FEBS Lett 251:53–58

    PubMed  Google Scholar 

  • Delay-Goyet P, Seguin C, Gacel G, Roques BP (1988) [3H] [-D-Ser2 (O-tert-butyl),Leu5]enkephalyl-Thr6 and [D-Ser2 (O-tert-butyl),Leu5]enkephalyl-Thr6(O-tert-butyl). Two new enkephalin analogs with both a good selectivity and high affinity towards δ-opioid binding sites. J Biol Chem 263:4124–4130

    PubMed  CAS  Google Scholar 

  • Dhawan BN, Cesselin F, Rhaghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M (1996) International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol Rev 48:567–592

    PubMed  CAS  Google Scholar 

  • Dhawan BN, Raghubir R, Hamon M, NC-IUPHAR Subcommittee on Opioid Receptors (1998) Opioid receptors. The IUPHAR Compendium of Receptor Characterization and Classification. IUPHAR Media, London, UK, pp 218–226

    Google Scholar 

  • Fowler CJ, Fraser GL (1994) μ-, δ-, κ-Opiod receptors and their subtypes: a critical review with emphasis on radioligand binding experiments. Neurochem Int 24:401–426

    PubMed  CAS  Google Scholar 

  • Goldstein A, Naidu A (1989) Multiple opioid receptors: ligand selectivity profiles and binding site signatures. Mol Pharmacol 36:265–272

    PubMed  CAS  Google Scholar 

  • Grevel J, Yu V, Sadee W (1985) Characterization of a labile naloxone binding site in rat brain. J Neurochem 44:1647–1656

    PubMed  CAS  Google Scholar 

  • Guitard X, Codony X, Ballarin N, Dordal A, Farre AJ (1998) E-5842: A new potent and preferential sigma ligand. Preclinical pharmacological profile. CNS Drug Rev 4:201–224

    Google Scholar 

  • Hackler L, Zadina JE, Ge L-G, Kastin AJ (1997) Isolation of relatively large amounts of endomorphin-1 and endomorphin-2 from human brain cortex. Peptides 18:1635–1639

    PubMed  CAS  Google Scholar 

  • Hawkins KN, Morelli M, Gulya K, Chang KJ, Yamamura HI (1987) Autoradiographic localization of [3H][MePhe3,D-Pro4] morphiceptin ([3H]PL O17) to μ-opioid receptors in rat brain. Eur J Pharmacol 133:351–352

    PubMed  CAS  Google Scholar 

  • Hawkins KN, Knapp RJ, Lui GK, Gulya K, Kazmierski W, Wan YP, Pelton JT, Hruby VJ, Yamamura HI (1989) [3H]-[H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2] ([3H]CTOP), a potent and highly selective peptide for μ-opioid receptors in rat brain. J Pharmacol Exp Ther 248:73–80

    PubMed  CAS  Google Scholar 

  • Horan PJ, Wild KD, Misicka A, Lipkowski A, Haaseth RC, Hruby VJ, Weber SJ, Davis TP, Yamamura HI, Porreca F (1993) Agonist and antagonist profiles of [D-Ala2,Glu4]deltorphin and its [Cys4]-and [Ser4-substituted derivatives: further evidence for opioid delta receptor multiplicity. J Pharmacol Exp Ther 265:896–902

    PubMed  CAS  Google Scholar 

  • Itzhak Y, Stein I (1991) Regulation of σ receptors and responsiveness to guanine nucleotides following repeated exposure of rats to haloperidol: further evidence of multiple σ binding sites. Brain Res 566:166–172

    PubMed  CAS  Google Scholar 

  • Karbon EW, Naper K, Pontecorvo MJ (1991) [3H]DTG and [3H](+)-3-PPP label pharmacologically distinct σ binding sites in guinea pig membranes. Eur J Pharmacol 193:21–27

    PubMed  CAS  Google Scholar 

  • Knight AR, Gillard J, Wong EHF, Middlemiss DN (1991) The human σ site, which resembles that in NCB20 cells, may correspond to a low-affinity site in guinea pig brain. Neurosci Lett 131:233–236

    PubMed  CAS  Google Scholar 

  • Kosterlitz HW, Paterson SJ (1981) Tyr-D-Ala Gly-MePhe-NH(CH2)2OH is a selective ligand for the μ-opiate binding site. Br J Pharmacol 73:299P

    Google Scholar 

  • Lahti RA, Mickelson MM, McCall JM, von Voigtlander PF (1985) [3H]-U-69593, a highly selective ligand for the opioid κ-receptor. Eur J Pharmacol 109:281–284

    PubMed  CAS  Google Scholar 

  • Leitner ML, Hohmann AG, Patrick SL, Walker JM (1994) Regional variation in the ratio σ1 to σ2 binding in rat brain. Eur J Pharmacol 259:65–69

    PubMed  CAS  Google Scholar 

  • Loh HH, Smith AP (1990) Molecular characterization of opioid receptors. Annu Rev Pharmacol Toxicol 30:123–147

    PubMed  CAS  Google Scholar 

  • Mach RH, Wu L, West T, Whirrett BR Childers SR (1999) The analgesic tropane analogue [±]-SM 21 has a high affinity for σ2 receptors. Life Sci 64:PL131–137

    PubMed  CAS  Google Scholar 

  • Maguire P, Tsai N, Kamal J, Cometta-Morini C, Upton C, Loew G (1992) Pharmacological profiles of fentanyl analogs at μ, δ and κ opiate receptors. Eur J Pharmacol 213:219–225

    PubMed  CAS  Google Scholar 

  • Marki A, Otvos F, Toth G, Hoszafi S, Borsodi A (1995) Characterization of kappa opioid receptor with tritiated norBNI. Analgesia 1:557–560

    CAS  Google Scholar 

  • Martin WR (1967) Opioid antagonists. Pharmacol Rev 19:463–521

    PubMed  CAS  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine-and morphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    PubMed  CAS  Google Scholar 

  • Matsuno K, Nakazawa M, Okamoto K, Kawashima Y, Mita S (1996) Binding properties of SA4503, a novel and selective σ1 receptor agonist. Eur J Pharmacol 306:271–279

    PubMed  CAS  Google Scholar 

  • Maurice T, Phan V-L, Noda Y, Yamada K, Privat A, Nabeshima K (1999) The attenuation of learning impairment induced after exposure to CO or trimethylin in mice by sigma (σ) receptor ligands involves both σ1 and σ2 sites. Br J Pharmacol 127:335–342

    PubMed  CAS  Google Scholar 

  • McKnight AT, Rees DC (1991) Opioid receptors and their ligands. Neurotransm 7 (2):1–6

    Google Scholar 

  • Meng F, Xie G-X, Thompson RC, Mansour A, Goldstein A, Watson SJ, Akil H (1993) Cloning and pharmacological characterization of rat κ opioid receptor. Proc Natl Acad Sci USA 90:9954–9958

    PubMed  CAS  Google Scholar 

  • Miyamoto Y, Portoghese PS, Takemori AE (1993) Involvement of delta 2 opioid receptors in the development of morphine dependence in mice. J Pharmacol Exp Ther 264:1141–1145

    PubMed  CAS  Google Scholar 

  • Moyse SE, Pasquini F, Quirion R, Beaudet A (1986) 125I-FK 33-824: a selective probe for autoradiographic labeling of μ opioid receptors in the brain. Peptides 7:351–355

    PubMed  CAS  Google Scholar 

  • Monnet FP, Debonnel G, Bergeron R, Gronier B, de Montigny C (1994) The effects of sigma ligands and neuropeptide Y on N-methyl-D-aspartate-induced neuronal activation of CA3 dorsal hippocampus neurones are differentially affected by pertussis toxin. Br J Pharmacol 112:709–715

    PubMed  CAS  Google Scholar 

  • Mosberg HI, Hurst R, Hruby VJ, Gee K, Yamamura HI, Galligan JJ, Burks TF (1983) Bis-penicillamine enkephalins possess highly improved specificity toward δ opioid receptors. Proc Natl Acad Sci USA, 80:5871–5874

    PubMed  CAS  Google Scholar 

  • Mosberg HI, Omnaas JR, Goldstein A (1987) Structural requirements for δ opioid receptor binding. Mol Pharmacol 31:599–602

    PubMed  CAS  Google Scholar 

  • Nevin ST, Toth G, Nguyen TDM, Schiller PW, Borsodi A (1993) Synthesis and binding characteristics of the highly specific tritiated opioid antagonist [3H]TIPP. Life Sci 53:57–62

    Google Scholar 

  • Paakkari P, Paakkari I, Feuerstein G, Sirén AL (1992) Evidence for differential opioid μ1-and μ2-receptor-mediated regulation of heart rate in the conscious rat. Neuropharmacol 31:777–782

    CAS  Google Scholar 

  • Pasternak GW (1987) Opioid receptors. In: Psychopharmacology: The Third Generation of Progress. ed. by HY Meltzer, Raven Press New York, pp 281–288

    Google Scholar 

  • Pasternak GW (1988) Multiple morphine and enkephalin receptors and the relief of pain. JAMA. 259:1362–1367

    PubMed  CAS  Google Scholar 

  • Patricia M, et al. (1992) Pharmacological profiles of fentanyl analogs at μ, δ, and κ opiate receptors. Eur J Pharmacol 213:219–225

    Google Scholar 

  • Pert CB, Snyder SH (1973) Opiate receptor: Demonstration in nervous tissue. Science 179:1011–1014

    PubMed  CAS  Google Scholar 

  • Porreca F, Takemori AE, Sultana M, Portoghese PS, Bowen WD, Mosberg HI (1992) Modulation of mu-mediated antinociception in the mouse involves opioid delta-2 receptors. J Pharmacol Exp Ther 263:147–152

    PubMed  CAS  Google Scholar 

  • Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB, Su T-P, Tam SW, Taylor DP (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13:85–86

    PubMed  CAS  Google Scholar 

  • Reisine T, Bell GI (1993) Molecular biology of opioid receptors. Trends Neurosci 16:506–510

    PubMed  CAS  Google Scholar 

  • Rothman RB, France CP, Bykov V, de Costa BR, Jacobson AE, Woods JH, Rice KC (1989) Pharmacological activities of optically pure enantiomers of the κ opioid agonist, U50,488, and its cis diastereomer: evidence for three κ receptor subtypes. Eur J Pharmacol 167:345–353

    PubMed  CAS  Google Scholar 

  • Rothman RB, Bykov V, Xue BG, Xu H, de Costa BR, Jacobson AE, Rice KC, Kleinman JE, Brady LS (1992) Interaction of opioid peptides and other drugs with multiple kappa receptors in rat and human brain. Evidence for species differences. Pep-tides 13:977–987

    CAS  Google Scholar 

  • Rothman RB, Xu H, Char GU, Kim A, de Costa BR, Rice KC, Zimmerman DM (1993) Phenylpiperidine opioid antagonists that promote weight loss in rats have high affinity to the κ2B (enkephalin-sensitive) binding site. Peptides 14:17–20

    PubMed  CAS  Google Scholar 

  • Sheehan MJ, Hayes AG, Tyers MB (1986) Pharmacology of δ-opioid receptors in the hamster vas deferens. Eur J Pharmacol 130:57–64

    PubMed  CAS  Google Scholar 

  • Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic [3H]etorphine to rat-brain homogenate. Proc. Natl Acad Sci USA 70:1947–1949

    PubMed  CAS  Google Scholar 

  • Smith JAM, Leslie FM (1992) Use of organ systems for opioid bioassay. In: Herz A, Akil H, Simon EJ (eds) Opioids I, Handbook of Experimental Pharmacology Vol 104/I, Chapter 4, pp 53–78. Springer Berlin, Heidelberg, New York

    Google Scholar 

  • Sofuoglu M, Portoghese PS, Takemori AE (1991) Differential antagonism of delta opioid agonists by naltrindole and its benzofuran analog (NTB) in mice: evidence for delta opioid receptor subtypes. J Pharmacol Exp Ther 257:676–680

    PubMed  CAS  Google Scholar 

  • Takahashi S, Sonehara K, Takagi K, Miwa T, Horikomi K, Mita N, Nagase H, Iizuka K, Sakai K (1999) Pharmacological profile of MS-377, a novel antipsychotic agent with selective affinity for sigma receptors. Psychopharmacology 145:295–302

    PubMed  CAS  Google Scholar 

  • Terenius L (1973) Stereospecific interaction between narcotic analgesics in synaptic plasma membrane of rat cerebral cortex. Acta Pharmacol Toxicol 32:317–320

    CAS  Google Scholar 

  • Tiseo PJ, Yaksh TL (1993) Dose-dependent antagonism of spinal opioid receptor agonists by naloxone and naltrindole: additional evidence for δ-opioid receptor subtypes in the rat, Eur J Pharmacol 236:89–96

    PubMed  CAS  Google Scholar 

  • Traynor JR (1994) Opiod receptors and their subtypes: Focus on peripheral isolated tissue preparations. Neurochem Int 24:427–432

    PubMed  CAS  Google Scholar 

  • Uphouse LA, Welch SP, Ward CR, Ellis EF, Embrey JP (1993) Antinociceptive activity of intrathecal ketorolac is blocked by the κ-opioid receptor antagonist, nor-binaltorphimine. Eur J Pharmacol 242:53–58

    PubMed  CAS  Google Scholar 

  • Vaughn LK, Knapp RJ, Toth G, Wan Y-P, Ruby VJ, Yamamura HI (1989) A high affinity, highly selective ligand for the delta opioid receptor: [3H]-[D-Pen2,pCl-Phe4,D-Pen5]enkephalin. Life Sci 45:1001–1008

    PubMed  CAS  Google Scholar 

  • Walker JM, Bowen WD, Patrick SL, Williams WE, Mascarella SW, Bai X, Carroll FI (1993) A comparison of (−)-deoxybenzomorphanes devoid of opioid activity with their dextrorotatory phenolic counterparts suggests role of σ2 receptors in motor function. Eur J Pharmacol 231:61–68

    PubMed  CAS  Google Scholar 

  • Weber E, Sonders M, Quarum M, McLean S, Pou S, Keana JFW (1986) 1,3-Di(2-[5-3H]tolyl)guanidine: A selective ligand that labels σ-type receptors for psychotomimetic opiates and antipsychotic drugs. Proc Natl Acad Sci USA 83:8783–8788

    Google Scholar 

  • Wollemann M, Benyhe S, Simon (1993) The kappa-opioid receptor: evidence of different subtypes. Life Sci 52:599–611

    PubMed  CAS  Google Scholar 

  • Wüster M, Schulz R, Herz A (1981) Multiple opiate receptors in peripheral tissue preparations. Biochem Pharmacol 30:1883–1887

    PubMed  Google Scholar 

  • Zadina JE, Hackler L, Ge L-G, Kastin AJ (1997) A potent and selective endogenous agonist for the mu opiate receptor. Nature 386:499–502

    PubMed  CAS  Google Scholar 

  • Zadina JE, Schild SM, Gerall AE, Kastin AJ, Hackler L, Ge L-J, Zhang X (1999) Endomorphins: Novel endogenous μ-receptor agonists in regions of high μ-opiate receptor density. In: Sandman CA, Chronwall BM, Strand FL, Flynn FW, Beckwith B, Nachman RJ (eds) Neuropeptides. Structure and Function in Biology and Behavior. Ann New York Acad Sci 897:136–144

    CAS  Google Scholar 

  • Zagon IS, Gibo DM, McLaughlin PJ (1991) Zeta, a growth related opioid receptor in developing rat cerebellum: identification and characterization. Brain Res 551:28–35

    PubMed  CAS  Google Scholar 

  • Zamanillo D, Andreu Fovalle S, Perez MP, Romero G, Farre AJ, Guitart X (2000) Up-regulation of σ1 receptor mRNA in rat brain by a putative atypical antipsychotic and sigma receptor ligand. Neurosci Lett 282:169–1723

    PubMed  CAS  Google Scholar 

  • Zukin RS, Eghbali M, Olive D, Unterwald EM, Tempel A (1988) Characterization and visualization of rat and guinea pig brain κ opioid receptors: evidence for κ1 and κ2 opioid receptors. Proc Natl Acad Sci USA 85:4061–4065

    PubMed  CAS  Google Scholar 

References

  • Hubbard JW, Locke KW, Forster HV, Brice AG, Pan LG, Lowry TF, Forster AML, Forster MA, Cornfeldt M, Vanselous CL, Hamer RRL, Glamkowski EJ, Fielding S (1992) Cardiorespiratory effects of the novel opioid analgesic HP 736 in the anesthetized dog and conscious goat. J Pharmacol Exp Ther 260:1268–1277

    PubMed  CAS  Google Scholar 

  • McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14:213–228

    CAS  Google Scholar 

  • Mini-Symposium (1981) The in vivo differentiation of opiate receptors. Life Sci 28:1543–1584

    Google Scholar 

  • Pert CB, Snyder SH (1973) Properties of opiate-receptor binding in rat brain. Proc. Natl. Acad. Sci, USA 70:2243–2247

    PubMed  CAS  Google Scholar 

  • Pert CB, Snyder SH (1974) Opiate receptor binding of agonists and antagonists affected differentially by sodium. Molec Pharmacol 10:868–879

    CAS  Google Scholar 

  • Pert CB, Snyder SH (1975) Differential interactions of agonists and antagonists with the opiate receptor. In: Snyder and Watthysse (eds) Opiate Receptor Mechanisms. MIT Press Cambridge, pp 73–79

    Google Scholar 

  • Pert CB, Pasternak G, Snyder SH (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182:1359–1361

    PubMed  CAS  Google Scholar 

  • Wolozin BL, Nishimura S, Pasternak GW (1982) The binding of κ-and σ-opiates in rat brain. J. Neurosci 2:708–713

    PubMed  CAS  Google Scholar 

References

  • Adler MW (1981) Mini-Symposium on Opiate Receptors. Life Sci 28:1543–1584

    PubMed  CAS  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K i ) and the concentration of inhibitor which causes 50 percent inhibition (I 50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    PubMed  CAS  Google Scholar 

  • Childers S, Creese I, Snowman AM, Snyder SH (1979) Opiate receptor binding affected differentially by opiates and opioid peptides. Eur J Pharmacol 55:11–18

    PubMed  CAS  Google Scholar 

  • Goldstein A (1987) Binding selectivity profiles for ligands of multiple receptor types: Focus on opioid receptors. TIPS 8:456–459

    CAS  Google Scholar 

  • Hubbard JW, Locke KW, Forster HV, Brice AG, Pan LG, Lowry TF, Forster AML, Forster MA, Cornfeldt M, Vanselous CL, Hamer RRL, Glamkowski EJ, Fielding S (1992) Cardiorespiratory effects of the novel opioid analgesic HP 736 in the anesthetized dog and conscious goat. J Pharmacol Exp Ther 260:1268–1277

    PubMed  CAS  Google Scholar 

  • Laugwitz KL, Offermanns S, Spicher K, Schulz G (1993) μ and δ opioid receptors differentially couple to G protein subtypes in membranes of human neuroblastoma SH-SY5Y cells. Neuron 5:233–242

    Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous ChL, Cornfeldt M, Fielding St, Strupczewski JT (1990) HP 818: A centrally acting analgesic with neuroleptic properties. Drug Dev Res 19:239–256

    CAS  Google Scholar 

  • Mansour A, Lewis ME, Khachaturian H, Akil H, Watson SJ (1986) Pharmacological and anatomical evidence of selective μ, δ and κ opioid receptor binding in rat brain. Brain Res. 399:69–79

    PubMed  CAS  Google Scholar 

  • Pasternak GW (1987) Opioid receptors. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press, New York pp 281–288

    Google Scholar 

  • Pasternak GW, Wilson HA, Snyder SH (1975) Differential effects of protein-modifying reagents on the receptor binding of opiate agonists and antagonists. Mol Pharmacol 11:340–351

    PubMed  CAS  Google Scholar 

  • Robson LE, Foote RW, Maurer R, Kosterlitz HW (1984) Opioid binding sites of the κ-type in guinea pig cerebellum. Neurosci 12:621–627

    CAS  Google Scholar 

  • Snyder SH (1984) Drug and neurotransmitter receptors in the brain. Science 224:22–31

    PubMed  CAS  Google Scholar 

  • Wolozin BL; Nishimura S, Pasternak GW (1982) The binding of κ and σ opiates in rat brain. J Neurosci 2:708–713

    PubMed  CAS  Google Scholar 

  • Zukin RS, Zukin SR (1981) Multiple opiate receptors: Emerging concepts. Life Sci 29:2681–2690

    PubMed  CAS  Google Scholar 

References

  • Abbott FV et al. (1986) A dose-ratio comparison of μ and κ agonists in formalin and thermal pain. Life Sci 39:2017–2024

    PubMed  CAS  Google Scholar 

  • Cheng, YC, Prusoff WH (1973) Relationship between the inhibition constant (K i) and the concentration of inhibitor which causes 50 percent inhibition (I 50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    PubMed  CAS  Google Scholar 

  • Goodman RR, Snyder SH (1982) Autoradiographic localization of kappa opiate receptors to deep layers of the cerebral cortex may explain unique sedative and analgesic effects. Life Sci 31:1291–1294

    PubMed  CAS  Google Scholar 

  • Higginbottom M, Nolan W, O'Toole J, Ratcliffe GS, Rees DC, Roberts E (1993) The design and synthesis of kappa opioid ligands based on a binding model for kappa agonists. Bioorg Med Chem Lett 3:841–846

    CAS  Google Scholar 

  • Hubbard JW, Locke KW, Forster HV, Brice AG, Pan LG, Lowry TF, Forster AML, Forster MA, Cornfeldt M, Vanselous CL, Hamer RRL, Glamkowski EJ, Fielding S (1992) Cardiorespiratory effects of the novel opioid analgesic HP 736 in the anesthetized dog and conscious goat. J Pharmacol Exp Ther 260:1268–1277

    PubMed  CAS  Google Scholar 

  • Inenaga K, Nagamoto T, Nakao K, Yanaihara N, Yamashita HY (1994) Kappa-selective agonists decrease postsynaptic potentials and calcium components of action potentials in the supraoptic nucleus of rat hypothalamus in vitro. Neurosci 58:331–340

    CAS  Google Scholar 

  • Kosterlitz HW, Paterson SJ, Robson LE (1981) Characterization of the κ-subtype of the opiate receptor in the guinea pig brain. Br J Pharmacol 73:939–949

    PubMed  CAS  Google Scholar 

  • Mansour A, Lewis ME, Khachaturian H, Akil H, Watson SJ (1986) Pharmacological and anatomical evidence of selective μ, δ and κ opioid receptors in brain. Brain Res 399:69–79

    PubMed  CAS  Google Scholar 

  • Peter GR et al. (1987) Diuretic actions in man of a selective kappa opioid agonist: U-62,066E. J Pharmacol Exper Ther 240:128–131

    Google Scholar 

  • Robson LE, Foote RW, Maurer R, Kosterlitz HW (1984) Opioid binding sites of the κ-type in guinea pig cerebellum. Neurosci 12:621–627

    CAS  Google Scholar 

  • Salas SP, Roblero JS, López LF, Tachibana S, Huidobro-Toro JP (1992) [N-Methyl-Tyr1,N-methyl-Arg7-D-Leu8)-dynorphin-A-(1–8)ethylamide, a stable dynorphin analog, produces diuresis by kappa-opiate receptor activation in the rat. J Pharmacol Exp Ther 262:979–986

    PubMed  CAS  Google Scholar 

  • Snyder SH (1984) Drug and neurotransmitter receptors in the brain. Science 224:22–31

    PubMed  CAS  Google Scholar 

  • Steinfels GF, Cook L (1986) Antinociceptive profiles of μ and κ opioid agonists in a rat tooth pulp stimulation procedure. J Pharmacol Exper Ther 236:111–117

    CAS  Google Scholar 

  • Tyers MB (1982) Studies on the antinociceptive activities of mixtures of μ-and κ-opiate agonists and antagonists. Life Sci 31:1233–1236

    PubMed  CAS  Google Scholar 

  • Wolozin BL, Nishimura S, Pasternak GW (1982) The binding of κ-and σ-opiates in rat brain. J Neurosci 2:708–713

    PubMed  CAS  Google Scholar 

  • Zukin RS, Zukin SR (1981) Multiple opiate receptors: Emerging concepts. Life Sci 29:2681–2690

    PubMed  CAS  Google Scholar 

References

  • Chipkin RE (1986) Inhibition of enkephalinase: The next generation of analgesics. Drugs Future 11:593–606

    Google Scholar 

  • Chipkin RE, Berger JG, Billard W, Iorio LC, Chapman R, Barnett A (1988) Pharmacology of SCH 34826, an orally active enkephalinase inhibitor analgesic. J Pharm Exp Ther 245:829–838

    CAS  Google Scholar 

  • Costentin J, Vlaiculescu A, Chaillet P, Natan B, Aveaux D, Schwartz JC (1986) Dissociated effects of inhibitors of enkephalin-metabolizing peptidases or naloxone on various nociceptive responses. Eur J Pharmacol 123:37–44

    PubMed  CAS  Google Scholar 

  • Florentin D, Sassi A, Roques BP (1984) A highly sensitive fluorimetric assay for “enkephalinase”, a neutral metalloendopeptidase that releases tyrosine-glycine-glycine from enkephalins. Anal Biochem 141:62–69

    PubMed  CAS  Google Scholar 

  • Hughes J (1975) Isolation of an endogenous compound from the brain with pharmacologic properties similar to morphine. Brain Res 88:295–308

    PubMed  CAS  Google Scholar 

  • Ksander GM, Diefenbacher CG, Yuan AM, Clark F, Sakane Y, Ghai RD (1989) Enkephalinase inhibitors. I. 2,4-Dibenzylglutaric acid derivatives. J Med Chem 32:2519–2526

    PubMed  CAS  Google Scholar 

  • Llorens C, Schwartz JC (1981) Enkephalinase activity in rat peripheral organs. Eur J Pharmacol 69:113–116

    PubMed  CAS  Google Scholar 

  • Malfroy B, Schwartz JC (1982) Properties of “enkephalinase” from rat kidney: comparison of dipeptidyl-carboxypeptidase and endopeptidase activities. Biochem Biophys Res Commun 106:276–285

    PubMed  CAS  Google Scholar 

  • Malfroy B, Swerts JP, Guyon A, Roques BP, Schwartz JC (1978) High-affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature 276:523–526

    PubMed  CAS  Google Scholar 

  • Mumford RA, Pierzchala PA, Strauss AW, Zimmerman M (1981) Purification of a membrane bound metalloendopeptidase from porcine kidney that degrades peptide hormones. Proc Natl Acad Sci USA 78:6623–6627

    PubMed  CAS  Google Scholar 

  • Oshita S, Yaksh TL, Chipkin R (1990) The antinociceptive effects of intrathecally administered SCH32615, an enkephalinase inhibitor in the rat. Brain Res 515:143–148

    PubMed  CAS  Google Scholar 

  • Roques BP, Fournié-Zaluski MC, Soroca E, Lecomte LM, Malfroy B, Llorens C, Schwartz JC (1980) The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature 288:286–288

    PubMed  CAS  Google Scholar 

  • Roques BP, Fournié-Zaluski MC, Florentin D, Waksman G, Sassi A, Chaillet P, Collado H, Ciostentin J (1982) New enkephalinase inhibitors as probes to differentiate “enkephalinase” and angiotensin-converting-enzyme active sites. Life Sci 31:1749–1752

    PubMed  CAS  Google Scholar 

  • Schwartz JC (1983) Metabolism of enkephalins and the inactivating neuropeptidase concept. TINS 1983:45–48

    Google Scholar 

  • Schwartz JC, Gros C, Lecomte JM, Bralet J (1990) Enkephalinase (EC 3.4.24.11) inhibitors: protection of endogenous ANF against inactivation and potential therapeutic applications. Life Sci 47:1279–1297

    PubMed  CAS  Google Scholar 

References

  • Calò G, Guerrini R, Bigoni R, Rizzi A, Marzola G, Okawa H, Bianchi C, Lambert DG, Salvadori S, Regoli D (2000) Characterization of [Nph1]nociceptin(1–13)NH2, a new selective nociceptin receptor antagonist. Br J Pharmacol 129:1183–1193

    PubMed  Google Scholar 

  • Champion HC, Wang R, Hellstrom WJG, Kadowitz PJ (1997) Nociceptin, a novel endogenous ligand for the ORL1 receptor, has potent erectile activity in the cat. Am J Physiol 273 (Endocrinol Metab 36):E214–E219

    PubMed  CAS  Google Scholar 

  • Champion HC, Bivalacqua TJ, Wang R, Hellstrom WJG, Kadowitz PJ (1998) [Tyr1]nociceptin and nociceptin have similar naloxoneinsensitive erectile activity in the cat. J Androl 19:747–753

    PubMed  CAS  Google Scholar 

  • Civelli O, Nothacker HP, Reinscheid R (1998) Reverse physiology: discovery of the novel neuropeptide, orphanin FQ/nociceptin. Crit Rev Neurobiol 12:163–176

    PubMed  CAS  Google Scholar 

  • Connor M, Vaughan CW, Chieng B, Christie MJ (1996a) Nociceptin receptor coupling to a potassium conductance in rat locus coeruleus neurones in vitro. Br J Pharmacol 119:1614–1618

    PubMed  CAS  Google Scholar 

  • Connor M, Yeo A, Henderson G (1996b) Effect of nociceptin on Ca2+ channel current and intracellular Ca2+ in the SH-SY5Y human neuroblastoma cell line. Br J Pharmacol 118:205–207

    PubMed  CAS  Google Scholar 

  • Darland T, Heinricher MM, Grandy DK (1998) OrphaninFQ/nociceptin: a role in pain and analgesia, but so much more. Trends Neurosci 21:215–221

    PubMed  CAS  Google Scholar 

  • Guerrini R, Calò G, Rizzi A, Bigoni R, Bianchi C Salvadori S, Regoli D (1998) A new selective antagonist of the nociceptin receptor. Br J Pharmacol 123:163–165

    PubMed  CAS  Google Scholar 

  • Hashimoto Y, Calò G, Guerrini R, Smith G, Lambert DG (2000) Antagonistic effects of [Nphe1]nociceptin(1–13)NH2 on nociceptin mediated inhibition of cAMP formation in Chinese hamster ovary cells stably expressing the recombinant human nociceptin receptor. Neurosci Lett 278:109–112

    PubMed  CAS  Google Scholar 

  • Hawkinson JE, Acosta-Burruel M, Espitia SE (2000) Opioid activity profiles indicate similarities between nociceptin/orphanin FQ and opioid receptors. Eur J Pharmacol 389:107–114

    PubMed  CAS  Google Scholar 

  • Meunier JC (2000) The therapeutic value of nociceptin agonists and antagonists. Expert Opin Ther Pat 10:371–388

    CAS  Google Scholar 

  • Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monserrat B, Mazarguil H; Vassart G, Parmentier M, Costentin J (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535

    PubMed  CAS  Google Scholar 

  • Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, Caput D, Vassart G, Meunier JC (1994) ORL1, a novel member of the opioid receptor family: cloning, functional expression and localization. FEBS Lett 341:33–38

    PubMed  CAS  Google Scholar 

  • Ozaki S, Kawamoto H, Itoh Y, Miyaji M, Iwasawa Y, Ohta H (2000) A potent and highly selective nonpeptidyl nociceptin/orphanin FQ receptor (ORL1) antagonist: J-113397. Eur J Pharmacol 387:R17–R18

    PubMed  CAS  Google Scholar 

  • Polidori C, Calò G, Ciccocioppo R, Geurrini R, Regoli D, Massi M (2000) Pharmacological characterization of the nociceptin receptor mediating hyperphagia: Identification of a selective antagonist. Psychopharmacology 148:430–437

    PubMed  CAS  Google Scholar 

  • Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ, Civelli O (1995) Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270:792–794

    PubMed  CAS  Google Scholar 

  • Sakurada T, Katsuyama S, Sakurada S, Inoue M, Tan No-K, Kisara K, Sakurada C, Ueda M, Sasaki J (1999) Nociceptin-induced scratching, biting and licking in mice: Involvement of spinal NK1 receptors. Br J Pharmacol 127:1712–1718

    PubMed  CAS  Google Scholar 

  • Sakurada T, Sakurada S, Katsuyama S, Hayashi T, Sakurada C, Tan No-K, Johansson H, Sandin J, Terenius L (2000) Evidence that N-terminal fragments of nociceptin modulate nociceptin-induced scratching, biting and licking in mice. Neurosci Lett 279:61–64

    PubMed  CAS  Google Scholar 

  • Salvadori S, Guerrini R, Calò G, Regoli D (1999) Structure-activity studies on nociceptin/orphanin FQ: From full agonist to partial agonist, to pure antagonist. Farmaco 54:810–825

    PubMed  CAS  Google Scholar 

  • Stanfa LC, Chapman V, Kerr N, Dickenson AH (1996) Inhibitory action of nociceptin on spinal dorsal horn neurones of the rat, in vivo. Br J Pharmacol 118:1875–1877

    PubMed  CAS  Google Scholar 

  • Varani K, Rizzi A, Calò G, Bigoni R, Toth G, Guerrini R, Gessi S, Salvadori S, Borea PA, Regoli D (2000) Pharmacology of [Tyr1]nociceptin analogs: receptor binding and bioassay studies. Naunyn-Schmiedeberg's Arch Pharmacol 360:270–277

    Google Scholar 

  • Xu X-J, Hao J-X, Wiesenfeld-Hallin Z (1996) Nociceptin or antinociceptin: potent spinal antincciceptive effect of orphanin FQ/nociceptin in the rat. NeuroReport 7:2092–2094

    PubMed  CAS  Google Scholar 

References

  • Bhargava HN, Zhao GM (1996) Effects of competitive and noncompetitive antagonists of the N-methyl-D-aspartate receptor on the analgesic action of δ1 and δ2 opioid receptors in mice. Br J Pharmacol 119:1586–1590

    CAS  Google Scholar 

  • Calò G, Rizzi A, Bodin M, Neugebauer W, Salvadori S, Guerrini R, Bianchi C, Regoli D (1997) Pharmacological characterization of nociceptin receptor: an in vitro study. Can J Physiol Pharmacol 75:713–718

    PubMed  Google Scholar 

  • Hamon M (1998) The new approach to opioid receptors. Naunyn-Schmiedeberg's Arch Pharmacol 358 (Suppl 2):SA 5.3

    Google Scholar 

  • Meunier JC (1997) Nociceptin/orphanin FQ and the opioid receptor-like ORL1 receptor. Eur J Pharmacol 340:1–15

    PubMed  CAS  Google Scholar 

  • Mouledous L, Topham CM, Moisand C, Mollereau C, Meunier JC (2000) Functional investigation of the nociceptin receptor by alanine substitution of glutamine 286 at the C terminus of the transmembrane segment VI: Evidence from a site-directed mutagenesis study of the ORL1 receptor transmembrane binding domain. Mol Pharmacol 57:495–502

    PubMed  CAS  Google Scholar 

  • Munson PJ, Rodbard D (1980) LIGAND; a versatile computerized approach for the characterization of ligand binding systems. Anal Biochem 107:220–239

    PubMed  CAS  Google Scholar 

  • Seki T, Awamura S, Kimura C, Ide S, Sakano K, Minami M, Nagase H, Satoh M (1999) Pharmacological properties of TRK-820 on cloned μ-, δ-and κ-opioid receptors and nociceptin receptor. Eur J Pharmacol 376:159–167

    PubMed  CAS  Google Scholar 

  • Varani K, Calò G, Rizzi A, Merighi S, Toth G, Guerrini R, Salvadori S, Borea PA, Regoli D (1998) Nociceptin receptor binding in mice forebrain membranes: thermodynamic characteristics and structure-activity relationships. Br J Pharmacol 125:1485–1490

    PubMed  CAS  Google Scholar 

  • Varani K, Rizzi A, Calò G, Bigoni R, Toth G, Guerrini R, Gessi S, Salvadori S, Borea PA, Regoli D (1999) Pharmacology of [Tyr1]nociceptin analogs: receptor binding and bioassay studies. Naunyn-Schmiedeberg's Arch Pharmacol 360:270–277

    CAS  Google Scholar 

References

  • Bertorelli R, Corradini L, Rafiq K, Tupper J, Calò G, Ongini E (1999) Nociceptin and the ORL1 ligand [Phe1Ψ(CH2-NH) Gly2]nociceptin(1-13)NH2 exert anti-opioid effects in the Freund's adjuvant-induced arthritic rat model of chronic pain. Br J Pharmacol 128:1252–1258

    PubMed  CAS  Google Scholar 

  • Bigoni R, Giuliani S, Calò G, Rizzi A, Guerrini R, Salvadori S, Regoli D, Maggi CA (1999) Characterization of nociceptin receptors in the periphery: in vitro and in vivo studies. Naunyn-Schmiedeberg's Arch Pharmacol 359:160–167

    CAS  Google Scholar 

  • Calò G, Guerrini R, Bigoni R, Rizzi A, Marzola G, Okawa H, Bianchi C, Lambert DG, Salvadori S, Regoli D (2000) Characterization of [Nph1]nociceptin(1–13)NH2, a new selective nociceptin receptor antagonist. Br J Pharmacol 129:1183–1193

    PubMed  Google Scholar 

  • Giuliani S, Maggi CA (1996) Inhibition of tachykinin release from peripheral endings of sensory nerves by nociceptin, a novel opioid peptide. Br J Pharmacol 118:1567–1569

    PubMed  CAS  Google Scholar 

  • Guerrini R, Calò G, Rizzi A, Bigoni R, Bianchi C Salvadori S, Regoli D (1998) A new selective antagonist of the nociceptin receptor. Br J Pharmacol 123:163–165

    PubMed  CAS  Google Scholar 

  • Hughes J, Kosterlitz HW, Leslie FM (1974) Assessment of the agonistic and antagonistic activities of narcotic analgesic drugs by means of the mouse vas deferens. Br J Pharmacol 51:139P–140P

    PubMed  CAS  Google Scholar 

  • Kolesnikov YA, Pasternak GW (1999) Peripheral orphanin FQ/nociceptin analgesia in the mouse. Life Sci 64:2021–2028

    PubMed  CAS  Google Scholar 

  • Menzies JRW, Glen T, Davies MRP, Paterson SJ, Corbett AD (1999) In vitro agonist effects of nociceptin and [Phe1Ψ(CH2-NH) Gly2]nociceptin(1–13)NH2 in the mouse and rat colon and the mouse vas deferens. Eur J Pharmacol 385:217–223

    PubMed  CAS  Google Scholar 

  • Oka T, Negishi K, Suda M, Matsumiya T, Inazu T, Ueki M (1980) Rabbits vas deferens: a specific bioassay for opioid κ-receptor agonists. Eur J Pharmacol 73:235–236

    Google Scholar 

  • Paton WDM (1957) The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Br J Pharmacol 12:119–127

    CAS  Google Scholar 

  • Rizzi A, Bigoni R, Calò G, Guerrini R, Salvadori S, Regoli D (1999) [Nphe1]nociceptin(1–13)NH2 antagonizes nociceptin effects in the mouse colon. Eur J Pharmacol 385:2–3

    Google Scholar 

  • Yamamoto T, Sakashita Y (1999) Effect of nocistatin and its interaction with nociceptin/orphanin FQ on the rat formalin test. Neurosci Lett 262:179–182

    PubMed  CAS  Google Scholar 

References

  • Buscail L, Gourlet P, Cauvin A, de Neef P, Gossen D, Arimura A, Miyata A, Coy DH (1990) Presence of highly selective receptors for PACAP (pituitary adenylate cyclase activating peptide) in membranes from the rat pancreatic acinar cell line AR 4-J. FEBS Lett 262:77–81

    PubMed  CAS  Google Scholar 

  • Calvo JR, Montilla ML, Guerrero JM, Segura JJ (1994) Expression of VIP receptors in mouse peritoneal macrophages: Functional and molecular characterization. J Neuroimmunol 50:85–93

    PubMed  CAS  Google Scholar 

  • Ciccarelli E, Vilardaga JP, de Neef P, di Paolo E, Warelbroeck M, Bollen A, Robberecht P (1994) Properties of the VIP-PACAP type II receptor stably expressed in CHO cells. Regul Pept 54:397–407

    PubMed  CAS  Google Scholar 

  • Ciccarelli E, Svoboda M, de Neef P, di Paolo E, Bollen A, Dubeaux C, Vilardage JP, Waelbroeck M, Robberecht P (1995) Pharmacological properties of two recombinant splice variants of the PACAP type I receptor transferred and stably expressed in CHO cells. Eur J Pharmacol 288:259–267

    PubMed  CAS  Google Scholar 

  • Couvineau A, Rousset M, Laburthe M (1985) Molecular identification and structural requirement of vasoactive intestinal peptide (VIP) receptors in the human colon adenocarcinoma cell line, HT-29. Biochem J 213:139–143

    Google Scholar 

  • Dickinson T, Fleetwood-Walker SM (1999) VIP and PACAP: very important in pain? Trends Pharmacol Sci 20:324–329

    PubMed  CAS  Google Scholar 

  • Fahrenkrug J (1979) Vasoactive intestinal peptide: Measurement, distribution and putative neurotransmitter function. Digestion 19:149–169

    PubMed  CAS  Google Scholar 

  • Felley CP, Qian J,M, Mantey S, Pradhan T, Jensen RT (1992) Chief cells possess a receptor with high affinity for PACAP and VIP that stimulates pepsinogen release. Am J Physiol 263 (Gastrointest Liver Physiol 26):G901–G907

    PubMed  CAS  Google Scholar 

  • Filipsson K, Pacine G, Scheurink AJW, Ahren B (1998) PACAP stimulates insulin secretion but inhibits insulin sensitivity in mice. Am J Physiol 274; Endocrinol Metab 37: E834–E842

    PubMed  CAS  Google Scholar 

  • Gafvelin (1990) Isolation and primary structure of VIP from sheep brain. Peptides 11:703–706

    PubMed  CAS  Google Scholar 

  • Gourlet P, Vertongen P, Vandermeers A, Vandermeers-Piret MC, Rathe J, de Neef P, Waelbroeck M, Robberecht P (1997) The long-acting vasoactive intestinal polypeptide agonist RO 25-1553 ins highly selective of the VIP2 receptor subclass. Peptides 18:403–408

    PubMed  CAS  Google Scholar 

  • Gourlet P, Vandermeers A, Vertongen P, Rathe J, de Neef, P, Cnudde J, Waelbroeck M, Robberecht P (1997b) Development of high affinity selective VIP1 receptor agonists. Peptides 18:1539–1545

    PubMed  CAS  Google Scholar 

  • Gourlet P, de Neef P, Cnudde J, Waelbroeck M, Robberecht P (1997c) In vitro properties of a high affinity selective antagonist of the VIP1 receptor. Peptides 18:1555–1560

    PubMed  CAS  Google Scholar 

  • Gozes I, McCune SK, Jacobson L, Warren D, Moody TW, Fridkin M, Brenneman DE (1991) An antagonist to vasoactive intestinal peptide affects cellular functions in the central nervous system. J Pharmacol Exp Ther 257:959–966

    PubMed  CAS  Google Scholar 

  • Guijarro LG, Rodriguez-Pena MS, Prieto JC (1991) Characterization of vasoactive intestinal peptide receptors in rat seminal vesicle. Am J Physiol 260 (Endocrinol Metab 23):E286–E291

    PubMed  CAS  Google Scholar 

  • Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, Rawlings SR, Robberecht P, Said SI, Sreedharan SP, Wank SA, Wascheck JA (1998) International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 50:265–270

    PubMed  CAS  Google Scholar 

  • Ishihara T, Nakamura S, Kaziro Y, Takahashi T, Takahashi K, Nagata S (1991) Molecular cloning and expression of a cDNA encoding the secretion receptor. EMBO J 10:1635–1641

    PubMed  CAS  Google Scholar 

  • Ito O, Naruse S, Kitagawa M, Ishiguro H, Ko S, Nakajima M, Hayakawa t (1998) The effect of VIP/PACAP family of peptides on pancreatic blood flow and secretion in conscious dogs. Regul Pept 78:105–112

    PubMed  CAS  Google Scholar 

  • Linden A, Cardell LO, Yoshihara S, Stjarne P, Nadel JA (1998) PACAP 1–38 as an inhaled bronchodilator in guinea pigs in vivo. Peptides 19:93–98

    PubMed  CAS  Google Scholar 

  • Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, Minamino N, Arimura A (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase-activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170:643–648

    PubMed  CAS  Google Scholar 

  • Mizuno Y, Kondo K, Terashima Y, Arima H, Murase T, Oiso Y (1998) Anorectic effect of pituitary adenylate cyclase activating polypeptide (PACAP) in rats: Lack of evidence for involvement of hypothalamic neuropeptide gene expression. J Neuroendocrinol 10:611–616

    PubMed  CAS  Google Scholar 

  • Motomura Y, Chijiiwa Y, Iwakiri Y, Ochiai T, Nawata H (1998) Interactive mechanisms among pituitary adenylate cyclase-activating peptide, vasoactive intestinal peptide, and parathyroid receptors in guinea pig cecal circular smooth muscle cells. Endocrinology 139:2869–2878

    PubMed  CAS  Google Scholar 

  • Nakajima T, Tanimura T, Pisano JJ (1970) Isolation and structure of a new vasoactive peptide Fed Proc 29:282

    Google Scholar 

  • Okazawa A, Cui Z H, Lotvall J, Yoshihara S, Skoogh BE, Kashimoto K, Linden A (1998) Effect of a novel PACAP-27 analogue on muscarinic airway responsiveness in guinea pigs in vivo. Eur Respir J 12:1062–1066

    PubMed  CAS  Google Scholar 

  • Onaga T, Okamoto K, Harada Y, Mineo H, Kato S (1997) PACAP stimulates pancreatic exocrine secretion via the vagal cholinergic nerves in sheep. Regul Pept 72:1147–153

    Google Scholar 

  • Onaga T, Harada Y, Okamoto K (1998) Pituitary adenylate cyclase-activating polypeptide (PACAP) induces duodenal phasic contractions via the vagal cholinergic nerves in sheep. Regul Pept 77:69–76

    PubMed  CAS  Google Scholar 

  • Robberecht P, Vertongen P, Perret J, van Rampelbergh J, Juarranz MG, Waelbroeck M (1999) Receptors for VIP and PACAP. Trends Pharmacol Sci; Receptor and Ion Channel Nomenclature Supplement

    Google Scholar 

  • Schmidt WE, Seebeck J, Höcker M, Schwarzhoff R, Schäfer H, Fornefeld H, Morys-Wortmann C, Fölsch UR, Creutzfeldt W (1993) PAPAC and VIP stimulate enzyme secretion in rat pancreatic acini via interaction with VIP/PACAP-2 receptors: additive augmentation of CCK/carbachol-induced enzyme release. Pancreas 8:476–487

    PubMed  CAS  Google Scholar 

  • Shigyo M, Aizawa H, Inoue H, Matsumoto K, Takada S, Hara N (1998) Pituitary adenylate cyclase activating peptide regulates neurally mediated airway responses. Eur Resp J 12:64–70

    CAS  Google Scholar 

  • Soo Tek Lee, Kae Yol Lee, Li P, Coy D, Chang TM, Chey WY (1998) Pituitary adenylate cyclase-activating peptide stimulates rat pancreatic secretion via secretin and cholecystokinin releases. Gastroenterology 114:1054–1060

    Google Scholar 

  • Sreedharan SP, Patel DR, Huang j-X, Goetzl EJ (1993) Cloning and functional expression of a human neuroendocrine vasoactive intestinal peptide receptor. Biochem Biophys Res Commun 193:546–553

    PubMed  CAS  Google Scholar 

  • Takeuchi K, Yagi K, Sugamoto S, Furukawa O, Kawauchi S, (1998) Involvement of PACAP in acid-induced HCO 3 response in rat duodenum. Pharmacol Res 38:475–480

    PubMed  CAS  Google Scholar 

  • Van Rampelbergh J, Gourlet P, de Neef P, Robberecht P, Waelbrouck M (1996) Properties of the pituitary adenylate cyclase-activating polypeptide I and II receptors, vasoactive intestinal peptide1, and chimeric amino-terminal pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide1 receptors: Evidence for multiple receptor states. Mol Pharmacol 50:1596–1604

    PubMed  Google Scholar 

  • Yada T, Sakurada M, Ishihara A, Nakata M, Shioda S, Yaekura K, Hamakawa N, Yanagida K, Kikuchi M, Oka Y (1997) Pituitary adenylate cyclase-activating polypeptide (PACAP) is an islet substance serving as an intra-islet amplifier of glucose-induced insulin secretion in rats. J Physiol 505:319–328

    PubMed  CAS  Google Scholar 

  • Zhang Y, Danielson N, Sundler F, Mulder H (1998) Pituitary adenylate cyclase-activating peptide in upregulated in sensory neurons by inflammation. NeuroReport 9:2833–2836

    PubMed  CAS  Google Scholar 

References

  • Achiron A, Miron S, Lavie V, Margali R, Biegon A (2000) Dexanabinol (HU-211) effect on experimental autoimmune encephalomyelitis. J Neuroimmunol 102:26–31

    PubMed  CAS  Google Scholar 

  • Ameri A, Simmet T (2000) Effects of 2-arachidonylglycerol, an endogenous cannabinoid, on neuronal activity in rat hippocampal slices. Naunyn-Schmiedeberg's Arch Pharmacol 361:265–272

    CAS  Google Scholar 

  • Baker D, O'Neill JK, Gschmeissner SE, Wilcox CE, Butter C, Turk JL (1990) Induction of chronic relapsing experimental allergic encephalomyelitis in Biozzi mice. J Neuroimmunol 28:261–270

    PubMed  CAS  Google Scholar 

  • Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Huffman HW, Layward L (2000) Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 202:84–87

    Google Scholar 

  • Barth F, Rinaldi-Carmona M (1999) The development of cannabinoid antagonists. Curr Med Chem 6:745–755

    PubMed  CAS  Google Scholar 

  • Block RI, Farinpour R; Schlechte JA (1991) Effects of chronic marijuana use on testosterone, luteinizing hormone, follicle stimulating hormone, prolactin and cortisol in men and women. Drug Alcohol Depend 28:121–128

    PubMed  CAS  Google Scholar 

  • Buxbaum DM (1972) Analgesic activity of δ9-tetrahydrocannabinol in the rat and mouse. Psychopharmacology 25:275–280

    CAS  Google Scholar 

  • Cadas H, Gaillet S, Beltramo M, Venance L, Piomelli D (1996) Biosynthesis of an endogenous cannabinoid precursor in neurons and its control by calcium and cAMP. J Neurosci 16:3934–3942

    PubMed  CAS  Google Scholar 

  • Compton DR, Johnson MR, Melvin LS, Martin BR (1992) Pharmacological evaluation of a series of bicyclic cannabinoid analogs: Classification as cannabimimetic agents. J Pharmacol Exp Ther 260:201–209

    PubMed  CAS  Google Scholar 

  • Coutts AA, Brewster M, Ingram T, Razdan RK, Pertwee RG (2000) Comparison of novel cannabinoid partial agonist and SR 141716A in the guinea pig small intestine. Br J Pharmacol 129:645–652

    PubMed  CAS  Google Scholar 

  • D'Ambra TE, Estep KG, Bell MR, Eissenstat MA, Josef KA, Ward SJ, Haycock DA, Baizman ER, Casiano FM, Beglin NC, Chippari SM, Grego JD, Kullnig RK, Daley GT (1992) Conformationally restrained analogues of pravadoline: nanomolar potent, enatioselective, (aminoalkyl)indole agonists on the cannabinoid receptor. J Med Chem 35:124–135

    PubMed  Google Scholar 

  • Devane WA, Dysarz FAI, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613

    PubMed  CAS  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    PubMed  CAS  Google Scholar 

  • Dewey WL (1986) Cannabinoid pharmacology. Pharmacol Rev 38:151–178

    PubMed  CAS  Google Scholar 

  • Facci L, Dal Torso R, Romanello S, Buriani A, Skaper SD, Leon A (1995) Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoyletholamine. Proc Natl Acad Sci USA 92:3376–3380

    PubMed  CAS  Google Scholar 

  • Giuliani D, Ottani A, Ferrari F (2000) Effects of the cannabinoid receptor agonist, HU 210, on ingestive behavior and body weight in rats. Eur J Pharmacol 391:275–279

    PubMed  CAS  Google Scholar 

  • Hanu L, Gopher A, Almog S, Mechoulam R (1993) Two new unsaturated fatty acid ethanolamines in brain bind to the cannabinoid receptor. J Med Chem 36:3032–3034

    Google Scholar 

  • Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 87:1932–1936

    PubMed  CAS  Google Scholar 

  • Hillard CJ, Manna S, Greenberg MJ, DiCamelli R, Ross RA, Stevenson LA, Murphy V, Pertwee RG, Campbell WB (1999) Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J Pharmacol Exp Ther 289:1427–1433

    PubMed  CAS  Google Scholar 

  • Hollister LE (1986) Health aspects of cannabis. Pharmacol Rev 38:1–20

    PubMed  CAS  Google Scholar 

  • Howlett AC (1995) Pharmacology of cannabinoid receptors. Annu Rev Pharmacol Toxicol 35:607–634

    PubMed  CAS  Google Scholar 

  • Izzo AA, Mascolo N, Capasso R, Germano MP, DePasquale R, Capasso F (1999a) Inhibitory effects of cannabinoid agonists on gastric emptying in rats. Naunyn-Schmiedeberg's Arch Pharmacol 360:221–223

    CAS  Google Scholar 

  • Izzo AA, Mascolo N, Pinto N, Capasso R, Capasso F (1999b) The role of cannabinoid receptors in intestinal motility, defaecation and diarrhoea in rats. Eur J Pharmacol 384:37–42

    PubMed  CAS  Google Scholar 

  • Izzo AA, Mascolo N, Capasso F (2000a) Marijuana in the new millenium: perspectives for cannabinoid research. Trends Pharmacol Sci 21:281–282

    PubMed  CAS  Google Scholar 

  • Izzo AA, Mascolo N, Tonini M, Capasso F (2000b) Modulation of peristalsis by cannabinoid CB-1 ligands in the isolated guinea pig ileum. Br J Pharmacol 129:984–990

    PubMed  CAS  Google Scholar 

  • Kaminski NE, Abood ME, Kessler FK, Martin BR, Schatz AR (1992) Identification of a functionally relevant cannabinoid receptor on mouse spleen cells that is involved in cannabinoid-mediated immune modulation. Mol Pharmacol 42:736–742

    PubMed  CAS  Google Scholar 

  • Liu J, Gao B, Mirshahi F, Sanyal AJ, Khanolkar AD, Makriyanniss A, Kumos G (2000) Functional CB1 cannabinoid receptors in human endothelial cells. Biochem J 346:835–840

    PubMed  CAS  Google Scholar 

  • Lynn AB, Herkenham M (1994) Localization of cannabinoid receptors and nonsaturable high-density cannabinoid receptor sites in peripheral tissues of the rat: implications for receptor-mediated immune modulation by cannabinoids. J Pharmacol Exp Ther 268:1612–1623

    PubMed  CAS  Google Scholar 

  • Manzanares J, Corchero J, Romero J, Fernández-Ruiz JJ, Ramos JA, Fuentes JA (2000) Pharmacological and biochemical interactions between opioids and cannabinoids. Trends Pharmacol Sci 20:287–294

    Google Scholar 

  • Martin BR (1985) Characterization of the antinociceptive activity of intravenously administered Δ9-tetrahydrocannabinol in mice. In: Harvey DJ (ed) Marihuana '84. IRL Press, Oxford, pp 685–692

    Google Scholar 

  • Martin BR (1986) Cellular effects of cannabinoids. Pharmacol Rev 38:45–74

    PubMed  CAS  Google Scholar 

  • Martin Br, Compton DR, Thomas BF, Prescott WR, Little PJ, Razdan RK, Johnson MR, Melvin LS, Mechoulam R, Ward SJ (1991) Behavioral, biochemical, and molecular modeling evaluations of cannabinoid analogs. Pharmacol Biochem Behav 40:471–478

    PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature (Lond.) 346:561–564

    CAS  Google Scholar 

  • Mechoulam R, Shani A, Elderly H, Grunfeld Y (1970) Chemical basis of hashish activity. Science 169:611–612

    PubMed  CAS  Google Scholar 

  • Mechoulam R, Hanu L, Martin B (1994) Search for endogenous ligands of the cannabinoid receptor. Biochem Pharmacol 48:1537–1544

    PubMed  CAS  Google Scholar 

  • Melvin LS, Milne GM, Johnson MR, Subramaniam B, Wilken GH, Howlett AC (1993) Structure-activity relationships for cannabinoid receptor-binding and analgesic activity: studies of bicyclic cannabinoid analogs. Mol Pharmacol 44:1998–1015

    Google Scholar 

  • Meng ID, Manning BH, Martin MJ, Fields HL (1998) An analgesia circuit activated by cannabinoids. Nature 395:381–383

    PubMed  CAS  Google Scholar 

  • Niederhoffer N, Szabo B (1999) Effect of the cannabinoid receptor agonist WIN55212-2 on sympathetic cardiovascular regulation. Br J Pharmacol 126:457–466

    PubMed  CAS  Google Scholar 

  • Patra PB, Wadsworth RM (1990) Effect of the synthetic cannabinoid nabilone on spermatogenesis in mice. Experientia 46:852–854

    PubMed  CAS  Google Scholar 

  • Pertwee RG (2000) Neuropharmacology and therapeutic potential of cannabinoids. Addict Biol 5:37–46

    PubMed  CAS  Google Scholar 

  • Pertwee RG, Stevenson LA, Elrick DB, Mechoulam R, Corbett AD (1992) Inhibitory effects of certain enantiomeric canna-binoids in the mouse deferens and the myenteric plexus preparation of guinea pig small intestine. Br. J Pharmacol 105:980–984

    PubMed  CAS  Google Scholar 

  • Razdan RK (1986) Structure-activity relationships in cannabinoids. Pharmacol Rev 38:75–149

    PubMed  CAS  Google Scholar 

  • Reggio PH (1999) Cannabinoid receptors. Tocris Reviews No. 10

    Google Scholar 

  • Rosell A, Agurell S (1975) Effects of 7-hydroxy-Δ6-tetrahydro-cannabinol and some related cannabinoids on the guinea pig isolated ileum. Acta Physiol Scand 94:142–144

    PubMed  CAS  Google Scholar 

  • Sigiura T, Kondo S, Kishimoto S, Miyashita T, Nakane S, Kodaka T, Suhara Y, Takayama H, Waku K (2000) Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or amandamine is the physiological ligand for the cannabinoid CB2 receptor. Comparison of various cannabinoid receptor ligands in HL-60 cells. J Biol Chem 275:605–612

    Google Scholar 

  • Smith PB, Compton DR, Welch SP, Razdan RK, Mechoulam R, Martin BR (1994) The pharmacology of anandamide, a putative endogenous cannabinoid in mice. J Pharmacol Exp Ther 270:219–227

    PubMed  Google Scholar 

  • Stengel PW, Rippy MK, Cockerham SL; Devane WA, Silbaugh SA (1998) Pulmonary actions of anandamide, an endogenous cannabinoid receptor agonist, in guinea pigs. Eur J Pharmacol 355:57–66

    PubMed  CAS  Google Scholar 

  • Strangman NM, Patrick SL, Hohmann AG, Tsou K, Walker JM (1998) Evidence for a role of endogenous cannabinoids in the modulation of acute and tonic pain sensitivity. Brain Res 813:323–328

    PubMed  CAS  Google Scholar 

  • Ueda N, Kurahashi Y, Yamamoto S, Tokunaga T (1995) Partial purification and characterization of the porcine brain enzyme hydrolyzing and synthesizing anandamide. J Biol Chem 270:23823–23827

    PubMed  CAS  Google Scholar 

  • Welch SP, Huffman JW, Lowe J (1998) Differential blockade of the antinociceptive effects of centrally administered cannabinoids by SR141716A. J Pharmacol Exp Ther 286:1301–1308

    PubMed  CAS  Google Scholar 

  • Wenger T, Jamali KA, Juaneda C, Bacsy E, Tramu G (2000) The endogenous cannabinoid, anandamide, regulates anterior pituitary secretion in vitro. Addict Biol 5:59–64

    CAS  Google Scholar 

  • White R, Hiley CR (1998) The actions of some cannabinoid receptor ligands in the rat isolated mesenteric artery. Br. J Pharmacol 125:533–541

    PubMed  CAS  Google Scholar 

References

  • Bouaboula M, Rinaldi M, Carayon P, Carillon C, Delpech B, Shire D, Le Fur G, Casellas P (1993) Cannabinoid-receptor expression in human leukocytes. Eur J Biochem 214:173–180

    PubMed  CAS  Google Scholar 

  • Compton DR, Rice KC, de Costa BR, Razdan RK, Melvin LS, Johnson MR, Martin BR (1993) Cannabinoid structure-activity relationships: Correlation of receptor binding and in vivo activities. J Pharmacol Exp Ther 265:218–226

    PubMed  CAS  Google Scholar 

  • Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett CA (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613

    PubMed  CAS  Google Scholar 

  • Felder CC, Glass M (1998) Cannabinoid receptors and their endogenous agonists. Ann Rev Pharmacol Toxicol 38:179–200

    CAS  Google Scholar 

  • Gerard C, Mollereau C, Vassart G, Parmentier M (1990) Nucleotide sequence of a human cannabinoid receptor cDNA. Nucleic Acids Res 18:7142

    PubMed  CAS  Google Scholar 

  • Gerard CM, Mollereau C, Vassart G, Parmentier M (1991) Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J 279:129–134

    PubMed  CAS  Google Scholar 

  • Griffin G, Tao Q, Abood ME (2000) Cloning and pharmacological characterization of the rat CB2 cannabinoid receptor. J Pharmacol Exp Ther 292:886–894

    PubMed  CAS  Google Scholar 

  • Howlett AC (1995) Pharmacology of cannabinoid receptors. Annu Rev Pharmacol Toxicol 35:607–634

    PubMed  CAS  Google Scholar 

  • Howlett AC, Johnson MR, Melvin LS, Milne GM (1988) Non-classical cannabinoid analgesics inhibit adenylate cyclase: development of a cannabinoid receptor model. Mol Pharmacol 33:297–302

    PubMed  CAS  Google Scholar 

  • Howlett AC; Bidaut-Russell M, Devane WA, Melvin LS, Johnson MR, Herkenham M (1990) The cannabinoid receptor: biochemical, anatomical and behavioral characterization. Trends Neurosci 13:420–423

    PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA, Nature 346:561–564

    PubMed  CAS  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    PubMed  CAS  Google Scholar 

  • Pertwee RG (1993) The evidence of the existence of cannabinoid receptors. Gen Pharmac 24:811–824

    CAS  Google Scholar 

  • Pertwee RG (1999) Pharmacology of cannabinoid receptor ligands. Curr Med Chem 6:635–664

    PubMed  CAS  Google Scholar 

  • Pertwee RG (2001) Cannabinoid receptors and pain. Progr Neurobiol 63:569–611

    CAS  Google Scholar 

  • Rinaldi-Carmora M, Barth F, Millan J, Derocq JM, Casellas P, Congy C, Oustric D, Sarran M, Bouaboula M, Calandra B, Portier M, Shire D, Brelière JC, Le Fur G (1998) SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J Pharmacol Exp Ther 284:644–650

    Google Scholar 

  • Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA 96:5780–5785

    PubMed  CAS  Google Scholar 

References

  • Ács G, Palkovits M, Blumberg PM (1994) [3H]resiniferatoxin binding by the human vanilloid (capsaicin) receptor. Brain Res Mol Brain Res 23:185–190

    PubMed  Google Scholar 

  • Ács G, Lee J, Marquez VE, Wang S, Milne GW, Du L, Lewin NE, Blumberg PM (1995) Resiniferatoxin-amide and analogues as ligands for protein kinase C and vanilloid receptors and determination of their biological activities as vanilloids. J Neurochem 65:301–318

    PubMed  Google Scholar 

  • Bevan S, Hothi S, Hughes G, James IF, Rang HP, Shah K, Walpole CJS, Yeats JC (1992) Capsazepine: A competitive antagonist of the sensory neuron excitant capsaicin. Br J Pharmacol 107:544–552

    PubMed  CAS  Google Scholar 

  • Bíró T, Ács G, Ács P, Modarres S, Bluber PM (1997) Recent advances in understanding of vanilloid receptors: a therapeutic target for treatment of pain and inflammation in skin. J Invest Dermatol Symp Proc 2:56–60

    Google Scholar 

  • Bíró T, Maurer M, Modarres S, Lewin NE, Brodie C, Ács G, Ács P, Paus R, Blumberg PM (1998) Characterization of functional vanilloid receptors expressed by mast cells. Blood 91:1332–1340

    PubMed  Google Scholar 

  • Caterina MJ, Julius D (2001) The vanilloid receptor: A molecular gateway to the pain pathway. Ann Rev Neurosci 24:487–517

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Rosen TA, Tomigaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    PubMed  CAS  Google Scholar 

  • Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rances K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187

    PubMed  CAS  Google Scholar 

  • Delany NS, Hurle M, Facer P, Alnadaf T, Plumpton C, Kinghorn I, See C-G, Costinan M, Anand P, Woolf CJ, Crowther D, Sanseau P, Tate SN (2001) Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2. Physiol Genomics 4:165–174

    PubMed  CAS  Google Scholar 

  • De Petrocellis L, Bisogno T, Maccarrone M, Davis JB, Finazzi-Agrò A, di Marczo V (2001) The activity of anandamide at vanilloid VR1 receptors requires facilitated transport across the cell membrane and is limited by intracellular metabolism. J Biol Chem

    Google Scholar 

  • Hayes P, Meadows HJ, Gunthorpe MJ, Harries MH, Duckworth DM, Cairns W, Harrison DC, Clarke CA, Ellington K, Prinja RK, Barton AJL, Medhurst AD, Smith GD, Topp S, Murdock P, Sanger GJ, Terrett J, Jenkins O, Benham CD, Randall AD, Gloger IS, Davis BJ (2000) Cloning and functional expression of a human orthologue of rat vanilloid receptor-1. Pain 88:205–215

    PubMed  CAS  Google Scholar 

  • Hergenhahn M, Adolf W, Hecker E (1975) Resiniferatoxin and other esters of novel polyfunctional diterpenes from Euphorbia resinifera and unispina. Tetrahedron Lett 19:1595–1598

    Google Scholar 

  • Holzer P (1991) Capsaicin: Cellular targets, mechanism of action, and selectivity for thin sensory neurons. Pharmacol Rev 43: mechanism for action, and selectivity of thin sensory neurons. Pharmacol Rev 43:143–201

    PubMed  CAS  Google Scholar 

  • Hwang SW, Cho H, Kwak J, Lee S-Y, Kang C-J, Jung J, Cho S, Min KH, Suh Y-G, Kim D, Oh U (2000) Direct activation of capsaicin receptors by products of lipogenases: Endogenous capsaicin-like substances. Proc Natl Acad Sci USA 97:6155–6159

    PubMed  CAS  Google Scholar 

  • Ichikawa H, Sugimoto T (2001) VR1-immunoreactive primary sensory neurons in the rat trigeminal ganglion. Brain Res 890:184–188

    PubMed  CAS  Google Scholar 

  • Janscó G, Király E, Janscó-Gábor A (1977) Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature 270:741–743

    Google Scholar 

  • Jonassohn M; Sterner O (1997) Terpenoid unsaturated 1,4-dialdehydes, occurrence and biological activities. Trends Org Chem 6:23–43

    CAS  Google Scholar 

  • Lee J, Kim J, Kim SY, Chun MW, Cho H, Hwang SW, Oh U, Park YH, Marquez VE, Behesthi M, Szabo T, Blumberg PM (2001) N-(3-acyloxy-2-benzylpropyl)-N'-(4-hydroxy-3-methoxybenzyl)-thiourea derivatives as potent vanilloid receptor agonists and analgesics. Bioorg Med Chem 9:19–32

    PubMed  CAS  Google Scholar 

  • Lembeck F (1987) Columbus, capsicum and capsaicin. Past, present and future. Acta Physiol Hung 69:265–273

    PubMed  CAS  Google Scholar 

  • Liu L, Lo Y-C, Chen I-J, Simon SA (1997) Responses of rat trigeminal ganglion neurons to capsaicin and two nonpungent vanilloid receptor agonists, olvanil and glyceryl nonamide. J Neurosci 17:41001–4111

    Google Scholar 

  • Maccarrone M, Lorenzon T, Bari M, Melino G, Finazzi-Agrò A (2000) Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptors. J Biol Chem 275:31938–31945

    PubMed  CAS  Google Scholar 

  • McIntyre P, McLatchie LM, Chambers A, Phillips E, Clarke M, Savidge J, Toms C, Peacocl M, Shah K, Winter J, Weerasakera N, Webb M, Rang HP, Bevan S, James IF (2001) Pharmacological differences between the human and rat vanilloid receptor 1 (VR1). Br J Pharmacol 132:1084–1094

    PubMed  CAS  Google Scholar 

  • Mendes GL, Santos ARS, Malheiros A, Filho AC, Yunes RA, Calixto JB (2000) Assessment of mechanisms involved in anti-nociception caused by sesquiterpene polygodial. J Pharmacol Exp Ther 292:164–172

    PubMed  CAS  Google Scholar 

  • Mezey E, Tóth ZE, Cortright DN, Arzubi MK, Krause JE, Elde R, Guo A, Blumberg PM, Szallasi A (2000) Distribution of mRNA for vanilloid subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci USA 97:3655–3660

    PubMed  CAS  Google Scholar 

  • Michael GJ, Priestley JV (1999) Differential expression of the mRNA for the vanilloid receptor subtype 1 in cells of the adult rat dorsal root and nodose ganglia and its downregulation by axotomy. J Neurosci 19:1844–1854

    PubMed  CAS  Google Scholar 

  • Nagy JI, van der Kooy D (1983) Effect of neonatal capsaicin treatment on nociceptive thresholds in the rat. J Neurosci 3:1145–1150

    PubMed  CAS  Google Scholar 

  • Nelson EK (1919) The constitution of capsaicin — the pungent principle of capsicum. J Am Chem Soc 41:1115–1117

    CAS  Google Scholar 

  • Piomelli D (2001) The ligand that came from within. Trends Pharmacol Sci 22:17–19

    PubMed  CAS  Google Scholar 

  • Prekumar LS, Ahern GP (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408:985–900

    Google Scholar 

  • Smart D, Gunthorpe MJ, Jerman JC, Nasir S, Gray J, Muir AI, Chambers JK, Randall AD, Davis JB (2000) The endogenous lipid anadamide is a full agonist at the human vanilloid receptor (jVR1). Br J Pharmacol 129:227–230

    PubMed  CAS  Google Scholar 

  • Sterner O, Szallasi A (1999) Novel natural vanilloid receptor agonists: new therapeutic targets for drug development. Trends Pharmacol Sci 20:459–465

    PubMed  CAS  Google Scholar 

  • Szallasi A (1995) Autoradiographic visualization and pharmacological characterization of vanilloid (capsaicin) receptors in several species, including man. Acta Physiol Scand Suppl 629:1–68

    PubMed  CAS  Google Scholar 

  • Szallasi A, Blumberg PM (1990) Specific binding of resiniferatoxin, an ultrapotent capsaicin analog, by dorsal root membranes. Brain Res 524:106–111

    PubMed  CAS  Google Scholar 

  • Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212

    PubMed  CAS  Google Scholar 

  • Szallasi A, Nilsson S, Farkas-Szallasi T, Blumberg PM, Höckfelt T, Lundberg M (1995) Vanilloid (capsaicin) receptors in the rat: distribution, regional differences in the spinal cord, axonal transport to the periphery, and depletion by systemic vanilloid treatment. Brain Res 703:175–183

    PubMed  CAS  Google Scholar 

  • Szolcsanyi J Szallasi A, Szallasi Z, Joo F, Blumberg PM (1990) Resiniferatoxin: an ultrapotent selective modulator of capsaicin-sensitive afferent neurons. J Pharmacol Exp Ther 255:923–928

    PubMed  CAS  Google Scholar 

  • Thresh LT (1846) Isolation of capsaicin. Pharm J 6:941

    Google Scholar 

  • Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    PubMed  CAS  Google Scholar 

  • Wahl P, Foged C, Tullin S, Thomsen C (2001) Iodo-resiniferatoxin, a new potent vanilloid receptor antagonist. Mol Pharmacol 59:9–15

    PubMed  CAS  Google Scholar 

  • Walpole CS, Bevan S, Boverman G, Boelsterli JJ, Breckenridge R, Davies JW, Hughes GA, James I, Oberer L, Winter J (1994) The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J Med Chem 37:1942–1954

    PubMed  CAS  Google Scholar 

  • Welch JM, Simon SA, Reinhart PH (2000) The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc Natl Acad Sci 97:13889–13894

    PubMed  CAS  Google Scholar 

  • Zygmunt PM, Petersson J, Andersson DA, Chuang H-H, Sørgård M, DiMarzo V, Julius D, Högestätt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anadamide. Nature 400:452–457

    PubMed  CAS  Google Scholar 

References

  • Ács G, Palkovits M, Blumberg PM (1994) [3H]resiniferatoxin binding by the human vanilloid (capsaicin) receptor. Brain Res Mol Brain Res 23:185–190

    PubMed  Google Scholar 

  • Hayes P, Meadows HJ, Gunthorpe MJ, Harries MH, Duckworth DM, Cairns W, Harrison DC, Clarke CE, Ellington K, Prinja RK, Barton AGL, Medhurst AD, Smith GD, Topp S, Murdock P, Sanger GJ, Terrett J, Jenkins O, Benham CD, Randall AD, Gloger IS, Davis JB (2000) Cloning and functional expression of a human orthologue of rat vanilloid receptor-1. Pain 88:205–215

    PubMed  CAS  Google Scholar 

  • Jerman JC, Brough SJ, Prinjha R, Harries MH, Davis JB, Smart D (2000) Characterization using FLIPR of rat vanilloid receptor (rVR1) pharmacology. Br J Pharmacol 130:916–922

    PubMed  CAS  Google Scholar 

  • Ross RA, Gibson TM, Brockie HC, Leslie M, Pashmi G, Craib SJ, DiMarzo V, Pertwee RC (2001) Structure-activity relationship for the endogenous cannabinoid, anadamide, and certain of its analogues at vanilloid receptors in transfected cells and vas deferens. Br J Pharmacol 132:631–640

    PubMed  CAS  Google Scholar 

  • Szallasi A (1994) The vanilloid (capsaicin) receptor: receptor types and species differences. Gen Pharmacol 25:223–243

    PubMed  CAS  Google Scholar 

  • Szallasi A, Blumberg PM (1996) Vanilloid receptors: new insights enhance potential as a therapeutic target. Pain 68:195–208

    PubMed  CAS  Google Scholar 

  • Wardle KA, Ranson J, Sanger GJ (1997) Pharmacological characterization of the vanilloid receptor in the rat dorsal spinal cord. Br J Pharmacol 121:1012–1016

    PubMed  CAS  Google Scholar 

References

  • Baumann TK, Martenson ME (2000) Extracellular protons both increase the activity and reduce the conductance of capsaicin-gated channels. J Neurosci 20: RC80 (1–5)

    Google Scholar 

  • Bevan S, Yeats JC (1991) Protons activate a cation conductance in a subpopulation of rat dorsal root ganglion neurons. J Physiol (Lon.) 433:145–161

    PubMed  CAS  Google Scholar 

  • Bevan S, Hothi S, Hughes G, James IF, Rang HP, Shah K, Walpole CJS, Yeats JC (1992) Capsazepine: A competitive antagonist of the sensory neuron excitant capsaicin. Br J Pharmacol 107:544–552

    PubMed  CAS  Google Scholar 

  • Jung J, Hwang SW, Kwak J, Lee S-Y, Kang C-J, Kim W-B, Kim D, Oh U (1999) Capsaicin binds to the intracellular domain of the capsaicin-activated ion channel. J Neurosci 19:529–538

    PubMed  CAS  Google Scholar 

  • Kirschstein T, Greefrath W, Büsselberg D, Treede RD (1999) Inhibition of rapid heat responses in nociceptive primary sensory neurons of rats by vanilloid receptor antagonists. J Neurophysiol 82:2853–2860

    PubMed  CAS  Google Scholar 

  • Liu L, Lo Y-C, Chen I-J, Simon SA (1997) The response or rat trigeminal ganglion neurons to capsaicin and two nonpungent vanilloid receptor agonists, olvanil and glyceryl nonamide. J Neurosci 17:4101–4111

    PubMed  CAS  Google Scholar 

  • Liu L, Oortgiesen M, Li L, Simon SA (2001) Capsaicin inhibits activation of voltage-gated sodium currents in capsaicin-sensitive trigeminal ganglion nerves. J Neurophysiol 85:745–758

    PubMed  CAS  Google Scholar 

  • Lopshire JC, Nicol GD (1998) The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin elicited current in rat sensory neurons: whole-cell and single-channel studies. J Neurosci 18:6081–6092

    PubMed  CAS  Google Scholar 

  • Nagy I, Humphrey PR (1999) Similarities and differences between the responses of rat sensory neurons to noxious heat and capsaicin. J Neurosci 19:10647–10655

    PubMed  CAS  Google Scholar 

  • Nagy JI, Iversen LL, Goedert M, Chapman D, Hunt SP (1983) Dose-dependent effects of capsaicin on primary sensory neurons in the neonatal rat. J Neurosci 3:399–406

    PubMed  CAS  Google Scholar 

  • Walpole CS, Bevan S, Boverman G, Boelsterli JJ, Breckenridge R, Davies JW, Hughes GA, James I, Oberer L, Winter J (1994) The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J Med Chem 37:1942–1954

    PubMed  CAS  Google Scholar 

References

  • Von Voigtlander PF (1982) Pharmacological alteration of pain: The discovery and evaluation of analgesics in animals. In: Lednicer D (ed) Central Analgesics. John Wiley & Sons, New York, pp 51–79

    Google Scholar 

References

  • Arndt JO, Mikat M, Parasher C (1984) Fentanyl's analgesic, respiratory, and cardiovascular actions in relation to dose and plasma concentrations in unanesthetized dogs. J Anesth 61:355–361

    CAS  Google Scholar 

  • Bartoszyk GD, Wild A (1989) B-vitamins potentiate the antinociceptive effect of diclofenac in carrageenin-induced hyperalgesia in the rat tail pressure test. Neurosci Lett 101:95–100

    PubMed  CAS  Google Scholar 

  • Bianchi C, Franceschini J (1954) Experimental observations on Haffner's method for testing analgesic drugs. Br J Pharmacol 9:280–284

    CAS  Google Scholar 

  • Collier HOJ (1965) Multiple toe-pinch test for potential analgesic drugs. In: Keele, Smith (eds) Assessment of Pain in Man and Animals. Livingston, London, pp 262–270

    Google Scholar 

  • Fleisch A, Dolivo M (1953) Auswertung der Analgetica im Tierversuch. Helv Physiol Acta 11:305–322

    CAS  Google Scholar 

  • Haffner F (1929) Experimentelle Prüfung schmerzstillender Mittel. Dtsch Med Wschr 55:731–733

    Google Scholar 

  • Koch JKE, Bodnar RJ (1993) Involvement of mu1 and mu2 opioid receptor subtypes in tail-pinch feeding in rats. Physiol Behav 53:603–605

    PubMed  CAS  Google Scholar 

  • Ossipov MH, Suarez LJ, Spaulding TC (1988) A comparison of the antinociceptive and behavioral effects of intrathecally administered opiates, α2-adrenergic agonists, and local anesthetics in mice and rats. Anesth Analg 67:616–624

    PubMed  CAS  Google Scholar 

  • Person DL, Kissin I, Brown PT, Xavier AV, Vinik HR, Bradley EL (1985) Morphine-caffeine analgesic interaction in rats. Anesth Analg 64:851–856

    PubMed  CAS  Google Scholar 

  • Takagi H, Inukai T, Nakam M (1966) A modification of Haffner's method for testing analgesics. Jpn J Pharmacol 16:287–295

    PubMed  CAS  Google Scholar 

  • Vanderwende C, Spoerlein M (1972) Antagonism by DOPA of morphine analgesia. A hypothesis for morphine tolerance. Res Comm Chem Pathol Pharmacol 3:37–45

    CAS  Google Scholar 

  • Yanagisawa M, Murakoshi T, Tamai S, Otsuka M (1984) Tailpinch method in vitro and the effects of some antinociceptive compounds. Eur J Pharmacol 106:231–239

    PubMed  CAS  Google Scholar 

References

  • Carmon A, Frostig R (1981) Noxious stimulation of animals by brief laser induced heat: advantages to pharmacological testing of analgesics. Life Sci 29:11–16

    PubMed  CAS  Google Scholar 

  • Costello AH, Hargreaves KM (1989) Suppression of carrageenan-induced hyperalgesia, hyperthermia and edema by a bradykinin antagonist. Eur J Pharmacol 171:259–263

    PubMed  CAS  Google Scholar 

  • D'Armour FE, Smith DL (1941) A method for determining loss of pain sensation. J Pharmacol Exp Ther 72:74–79

    Google Scholar 

  • Davies OL, Raventós J, Walpole AL (1946) A method for the evaluation of analgesic activity using rats. Br J Pharmacol 1:255–264

    CAS  Google Scholar 

  • Dewey WL, Harris LS, Howes JF, Nuite JA (1970) The effect of various neurohumoral modulators on the activity of morphine and the narcotic antagonists in the tail-flick and the phenylquinone tests. J Pharmacol Exp Ther 175:435–442

    PubMed  CAS  Google Scholar 

  • Geller I, Axelrod LR (1968) Methods for evaluating analgesics in laboratory animals. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Acad Press, London New York, pp 153–163

    Google Scholar 

  • Goldstein FJ, Malseed RT (1979) Evaluation of narcotic analgesic activity using a cat tail-flick procedure. J Pharmacol Meth 2:333–338

    CAS  Google Scholar 

  • Gray WD, Osterberg A, Scuto TJ (1970) Measurement of the analgesic efficacy and potency of pentazocine by the D'Armour and Smith method. J Pharmacol Exp Ther 172:154–162

    PubMed  CAS  Google Scholar 

  • Green AF, Young PA (1951) A comparison of heat and pressure analgesiometric methods in rats. Br J Pharmacol 6:572–585

    CAS  Google Scholar 

  • Hargreaves KM, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–82

    PubMed  CAS  Google Scholar 

  • Harris DP, Burton R, Sinclair G (1988) A simple microcomputer interface for tail-flick determination. J Pharmacol Meth 20:103–108

    CAS  Google Scholar 

  • Harris LS, Pierson AK (1964) Some narcotic antagonists in the benzomorphan series. J Pharmacol Exp Ther 143:141–148

    PubMed  CAS  Google Scholar 

  • Howes JF, Harris LS, Dewey WL, Voyda CA (1969) Brain acetylcholine levels and inhibition of the tail-flick reflex in mice. J Pharmacol Exp Ther 169:23–28

    PubMed  CAS  Google Scholar 

  • Hylden JLK, Thomas DA, Iadarola MJ, Nahin RL, Dubner R (1991) Spinal opioid analgesic effects are enhanced in a model of unilateral inflammation/hyperalgesia: possible involvement of noradrenergic mechanisms. Eur J Pharmacol 194:135–143

    PubMed  CAS  Google Scholar 

  • Isabel G, Wright DM, Henry JL (1981) Design of an inexpensive unit for measuring tail flick latencies. J Pharmacol Meth 5:241–247

    CAS  Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method for evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99

    PubMed  CAS  Google Scholar 

  • Lutz MW, Morgan OH, James MK, Feldman OL, Brackeen MF, Lahey AP, James SV, Bilotta JM, Pressley JC (1994) A pharmacodynamic model to investigate the structure-activity profile of a series of novel opioid analgesics. J Pharmacol Exp Ther 271:795–803

    PubMed  CAS  Google Scholar 

  • McCallister LW, Lipton JM, Giesecke AH Jr., Clark WG (1986) The rabbit ear-withdrawal test: A new analgesiometric procedure. Pharmacol Biochem Behav 25:481–482

    PubMed  CAS  Google Scholar 

  • Mohrland JS, Johnson EE, von Voigtlander PF (1983) An ultrasound-induced tail-flick procedure: evaluation of nonsteroidal antiinflammatory analgesics. J Pharmacol Meth 9:297–282

    Google Scholar 

  • Owen JA, Milne B, Jhamandas K, Nakatsu K (1981) Assembly of an inexpensive tail flick analgesia meter. J Pharmacol Meth 6:33–37

    CAS  Google Scholar 

  • Perkins MN, Kelly D (1993) Induction of bradykinin B1 receptors in vivo in a model of ultra-violet irradiation-induced thermal hyperalgesia in the rat. Br J Pharmacol 110:1441–1444

    PubMed  CAS  Google Scholar 

  • Perkins MN, Campell E, Dray A (1993) Antinociceptive activity of the bradykinin B1 and B2 receptor antagonists, des-Arg9,[Leu8]-BK and Hoe 140, in two models of persistent hyperalgesia in rats. Pain 53:191–197

    PubMed  CAS  Google Scholar 

  • Schuligoi R, Donnerer J, Amann R (1994) Bradykinin-induced sensitization of afferent neurons in the rat. Neurosci 59:211–215

    CAS  Google Scholar 

  • Schumacher GA, Goodell H, Hardy JD, Wolff HG (1940) Uniformity of the pain threshold in man. Science 92:110–112

    PubMed  CAS  Google Scholar 

  • Taylor BK, Peterson MA, Basbaum AI (1997) Early nociceptive events influence the temporal profile, but not the magnitude, of the tonic response to subcutaneous formalin: effects with remifentanil. J Pharmacol Exp Ther 280:876–883

    PubMed  CAS  Google Scholar 

  • Ther L, Lindner E, Vogel G (1963) Zur pharmakodynamischen Wirkung der optischen Isomeren des Methadons. Dtsch Apoth Ztg 103:514–520

    CAS  Google Scholar 

  • Tulunay FC, Takemori AE (1974) The increased efficacy of narcotic antagonists induced by various narcotic analgesics. J Pharmacol Exp Ther 190:395–400

    PubMed  CAS  Google Scholar 

  • Walker JM, Dixon WC (1983) A solid state device for measuring sensitivity to thermal pain. Physiol Behav 30:481–483

    PubMed  CAS  Google Scholar 

  • Winter CA, Orahovats PD, Flataker L, Lehman EG, Lehman JT (1954) Studies on the pharmacology of N-allylnormorphine. J Pharmacol Exp Ther 112:152–160

    Google Scholar 

  • Wolff HG, Hardy JD, Goodell H (1940) Studies on pain. Measurement of the effect of morphine, codeine, and other opiates on the pain threshold and an analysis of their relation to the pain experience. J Clin Invest 19:659–680

    PubMed  CAS  Google Scholar 

  • Yoburn BC, Morales R, Kelly DD, Inturrisi CE (1984) Constrains on the tail flick assay: morphine analgesia and tolerance are dependent upon locus of tail stimulation. Life Sci 34:1755–1762

    PubMed  CAS  Google Scholar 

References

  • Eddy NB, Leimbach D (1953) Synthetic analgesics: II. Dithienylbutenyl-and dithienylbutylamines. J Pharmacol Exp Ther 107:385–393

    PubMed  CAS  Google Scholar 

  • Jacob J, Blozovski M (1961) Action des divers analgésiques sur le comportement de souris exposées a un stimulus thermoalgésique. Arch Int Pharmacodyn 138:296–309

    Google Scholar 

  • Jacob J, Loiseau G, Echinard-Garin P, Barthelemy C, Lafille C (1964) Caractérisation et détection pharmacologiques des substances hallucinogènes. II.-antagonismes vis-a-vis de la morphine chez la souris. Arch Int Pharmacodyn 148:14–30

    CAS  Google Scholar 

  • Kitchen I, Crowder M (1985) Assessment of the hot-plate antinociceptive test in mice. A new method for the statistical treatment of graded data. J Pharmacol Meth 13:1–7

    CAS  Google Scholar 

  • Knoll J (1967) Screening and grouping of psychopharmacological agents. In: Siegler PE, Moyer HJ (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Yearbook Med Publ. Inc., Chicago, pp 305–321

    Google Scholar 

  • O'Neill KA, Courtney C, Rankin R, Weissman A (1983) An automated, high-capacity method for measuring jump latencies on a hot plate. J Pharmacol Meth 10:13–18

    Google Scholar 

  • O'Callaghan JP, Holtzman SG (1975) Quantification of the analgesic activity of the narcotic antagonists by a modified hot plate procedure. J Pharm Exp Ther 192:497–505

    Google Scholar 

  • Plummer JL, Cmielewski PL, Gourlay GK, Owen H, Cousins MJ (1991) Assessment of antinociceptive drug effects in the presence of impaired motor performance. J Pharmacol Meth 26:79–87

    CAS  Google Scholar 

  • Tjølsen A, Rosland JH, Berge OG, Hole K (1991) The increasing temperature hot-plate test: an improved test of nociception in mice and rats. J Pharmacol Meth 25:241–250

    Google Scholar 

  • Witkin LB, Heubner CF, Galgi F, O'Keefe E, Spitaletta P, Plummer AJ (1961) Pharmacology of 2-aminino-indane hydrochloride (SU 8629): a potent non-narcotic analgesic. J Pharmacol Exp Ther 133:400–408

    PubMed  CAS  Google Scholar 

  • Woolfe G, Mac Donald AD (1944) The evaluation of the analgesic action of pethidine hydrochloride (DEMEROL) J Pharmacol Exper Ther 80:300–307

    CAS  Google Scholar 

  • Zimer PO, Wynn RL, Ford RD, Rudo FG (1986) Effect of hot plate temperature on the antinociceptive activity of mixed opioid agonist antagonist compounds. Drug Dev Res 7:277–280

    Google Scholar 

References

  • Abbott FV, Melzack R (1982) Brainstem lesions dissociate neural mechanisms of morphine analgesia in different kinds of pain. Brain Res 251:149–155

    PubMed  CAS  Google Scholar 

  • Abbott FV, Franklin KBJ (1986) Noncompetitive antagonism of morphine analgesia by diazepam in the formalin test. Pharmacol Biochem Behav 24:319–321

    PubMed  CAS  Google Scholar 

  • Ben-Bassat J, Peretz E, Sulman FG (1959) Analgesimetry and ranking of analgesic drugs by the receptacle method. Arch Int Pharmacodyn 122:434–447

    PubMed  CAS  Google Scholar 

  • Cowan A (1990) Recent approaches in the testing of analgesics in animals. In: Modern Methods in Pharmacology, Vol. 6, Testing and Evaluation of Drugs of Abuse, pp 33–42, Wiley-Liss Inc

    Google Scholar 

  • Dykstra LA, Woods JH (1986) A tail withdrawal procedure for assessing analgesic activity in Rhesus monkeys. J Pharmacol Meth 15:263–269

    CAS  Google Scholar 

  • Dykstra LA, Gmerek DE, Winger G, Woods JH (1987) Kappa opioids in rhesus monkeys. Diuresis, sedation, analgesia and discriminative stimulus effects. J Pharm Exp Ther 242:413–420

    CAS  Google Scholar 

  • Evangelista S, Pirisino R, Perretti F, Fantozzi R, Brunelleschi S, Malmberg-Aiello P, Bartolini A (1987) The pharmacological properties of 1,4-dihydro-1-ethyl-7-phenylpyrrol-(1,2-a)-pyrimidine-4-one, a new antipyretic and analgesic drug. Drugs Exp Clin Res 13:501–510

    PubMed  CAS  Google Scholar 

  • Grotto M, Sulman FG (1967) Modified receptacle method for animal analgesimetry. Arch Int Pharmacodyn 165:152–159

    PubMed  CAS  Google Scholar 

  • Janssen P, Niemegeers CJE, Dony JGH (1963) The inhibitory effect of Fentanyl and other morphine-like analgesics on the warm water induced tail withdrawal reflex in rats. Arzneim-Forsch 13:502–507

    Google Scholar 

  • Kelly SJ, Franklin KBJ (1984) Evidence that stress augments morphine analgesia by increasing brain tryptophan. Neurosci Lett 44:305–310

    PubMed  CAS  Google Scholar 

  • Ko M-C, Butelman ER, Woods JH (1999) Activation of peripheral κ opioid receptors inhibits capsaicin-induced nociception in Rhesus monkeys. J Pharmacol Exp Ther 287:378–385

    Google Scholar 

  • Luttinger D (1985) Determination of antinociceptive activity of drugs in mice using different water temperatures in a tail-immersion test. J Pharmacol Meth 13:351–357

    CAS  Google Scholar 

  • Ono M, Satoh T (1988) Pharmacological studies of Lappaconitine. Analgesic studies. Arzneim Forsch/Drug Res 38:892–895

    CAS  Google Scholar 

  • Pizziketti RJ, Pressman NS, Geller EB, Cowan A, Adler MW (1985) Rat cold water tail-flick: A novel analgesic test that distinguishes opioid agonists from mixed agonists-antagonists. Eur J Pharmacol 119:23–29

    PubMed  CAS  Google Scholar 

  • Ramabadran K, Bansinath M, Turndorf H, Puig MM (1989) Tail immersion test for the evaluation of a nociceptive reaction in mice. J Pharmacol Meth 21:21–31

    CAS  Google Scholar 

  • Rothman RB, France CP, Bykov V, de Costa BR, Jacobson AE, Woods JH, Rice KC (1989) Pharmacological activities of optically pure enantiomers of the κ opioid agonist, U50,488, and its cis diastereomer: evidence for three κ receptor subtypes. Eur J Pharmacol 167:345–353

    PubMed  CAS  Google Scholar 

  • Sewell RDE, Spencer PSJ (1976) Antinociceptive activity of narcotic agonist and partial agonist analgesics and other agents in the tail-immersion test in mice and rats. Neuropharmacol 15:683–688

    CAS  Google Scholar 

  • Tiseo PJ, Geller EB, Adler MW (1988) Antinociceptive action of intracerebroventricularly administered dynorphin and other opioid peptides in the rat. J Pharm Exp Ther 246:449–453

    CAS  Google Scholar 

References

  • Burn JH, Finney DJ, Goodwin LG (1950) Chapter XIV: Antipyretics and analgesics. In: Biological Standardization. Oxford University Press, London, New York, pp 312–319

    Google Scholar 

  • Carroll MN, Lim RKS (1960) Observations on the neuropharmacology of morphine and morphinelike analgesia. Arch Int Pharmacodyn 125:383–403

    PubMed  CAS  Google Scholar 

  • Charpentier J (1968) Analysis and measurement of pain in animals. A new conception of pain. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Acad Press, London New York, pp 171–200

    Google Scholar 

  • Hoffmeister F (1968) Tierexperimentelle Untersuchungen über den Schmerz und seine pharmakologische Beeinflussung. Arzneim Forsch 16. Beiheft:5–116

    Google Scholar 

  • Kakunaga T, Kaneto H, Hano K (1966) Pharmacological studies on analgesics. VII. Significance of the calcium ion in morphine analgesia. J Pharm Exp Ther 153:134–141

    CAS  Google Scholar 

  • Ludbrook G, Grant C, Upton R, Penhall C (1995) A method for frequent measurement of sedation and analgesia in sheep using the response to a ramped electrical stimulus. J Pharmacol Toxicol Meth 33:17–22

    CAS  Google Scholar 

  • Nilsen PL (1961) Studies on algesimetry by electrical stimulation of the mouse tail. Acta Pharmacol Toxicol 18:10–22

    CAS  Google Scholar 

  • Paalzow G, Paalzow L (1973) The effect of caffeine and theophylline on nociceptive stimulation in the rat. Acta Pharmacol Toxicol 32:22–32

    CAS  Google Scholar 

  • Vidal C, Girault JM, Jacob J (1982) The effect of pituitary removal on pain reaction in the rat. Brain Res. 233:53–64

    PubMed  CAS  Google Scholar 

  • Yanaura S, Yamatake Y, Ouchi T (1976) A new analgesic testing method using ultrasonic stimulation. Effects of narcotic and non-narcotic analgesics. Jpn J Pharmacol 26:301–308

    PubMed  CAS  Google Scholar 

References

  • Banzinger R (1964) Animal techniques for evaluating narcotic and non-narcotic analgesics. In: Nodine JH and Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publ, Inc., pp 392–396

    Google Scholar 

  • Blake L, Graeme ML, Sigg EB (1963) Grid shock test for analgesic assay in mice. Med exp 9:146–150

    PubMed  CAS  Google Scholar 

  • Bonnet KA, Peterson KE (1975) A modification of the jump-flinch technique for measuring pain sensitivity in rats. Pharmacol Biochem Behav 3:47–55

    PubMed  CAS  Google Scholar 

  • Charlier R, Prost M, Binon F, Deltour G (1961) Étude pharmacologique d'un antitussif, le fumarate acide de phénéthyl-1 (propyne-2 yl)-4-propionoxy-4 pipéridine. Arch Int Pharmacodyn 134:306–327

    PubMed  CAS  Google Scholar 

  • Eschalier A, Montastruc JL, Devoice JL, Rigal F, Gaillard-Plaza G, Péchadre JC (1981) Influence of naloxone and methysergide on the analgesic effect of clomipramine in rats. Eur J Pharmacol 74:1–7

    PubMed  CAS  Google Scholar 

  • Eschalier A, Marty H, Trolese JF, Moncharmont L, Fialip J (1988) An automated method to analyze vocalization of unrestrained rats submitted to noxious stimuli. J Pharmacol Meth 19:175–184

    CAS  Google Scholar 

  • Evans WO (1961) A new technique for the investigation of some analgesic drugs on a reflexive behavior in the rat. Psychopharmacologia 2:318–325

    CAS  Google Scholar 

  • Evans WO (1962) A comparison of the analgesic potency of some analgesics as measured by the “Flinch-jump” procedure. Psychopharmacol 3:51–54

    Google Scholar 

  • Evans WO, Bergner DP (1964) A comparison of the analgesic potencies of morphine, pentazocine, and a mixture of methamphetamine and pentazocine in the rat. J New Drugs 4:82–85

    Google Scholar 

  • Jokovlev V, Sofia RD, Achterrath-Tuckermann U, von Schlichtegroll A, Thiemer K (1985) Untersuchungen zur pharmakologischen Wirkung von Flupirtin, einem strukturell neuartigen Analgeticum. Arzneim Forsch/Drug Res. 35:30–43

    Google Scholar 

  • Weiss B, Laties VG (1961) Changes in pain tolerance and other behavior produced by salicylates. J Pharm Exp Ther 131:120

    CAS  Google Scholar 

References

  • Chau TT (1989) Analgesic testing in animal models. In: Pharmacological Methods in the Control of Inflammation. Alan R Liss, Inc. pp 196–212

    Google Scholar 

  • Chin JH, Domino EF (1961) Effects of morphine on brain potentials evoked by stimulation of the tooth pulp of the dog. J Pharmacol Exp Ther 132:74–86

    PubMed  CAS  Google Scholar 

  • Fleisch A, Dolivo M (1953) Auswertung der Analgetica im Tierversuch. Helv Physiol Acta 11:305–322

    CAS  Google Scholar 

  • Foong FW, Satoh M, Takagi H (1982) A newly devised reliable method for evaluating analgesic potencies of drugs on trigeminal pain. J Pharmacol Meth 7:271–278

    CAS  Google Scholar 

  • Hertle F, Schanne O, Staib I (1957) Zur Methodik der Prüfung der Analgesie am Kaninchen. Arzneim Forsch 7:311–314

    CAS  Google Scholar 

  • Hoffmeister F (1962) Über cerebrale polysynaptische Reflexe des Kaninchens und ihre Beeinflussbarkeit durch Pharmaka. Arch Int Pharmacodyn 139:512–527

    PubMed  CAS  Google Scholar 

  • Hoffmeister F (1968) Tierexperimentelle Untersuchungen über den Schmerz und seine pharmakologische Beeinflussung. Arzneim Forsch 16. Beiheft:5–116

    Google Scholar 

  • Kidder GW, Wynn RL (1983) An automatic electronic apparatus for generating and recording a ramp stimulus for analgesia testing. J Pharmacol Meth 10:137–142

    Google Scholar 

  • Koll W, Fleischmann G (1941) Messungen der analgetischen Wirksamkeit einiger Antipyretica am Hund. Naunyn-Schmiedeberg's Arch Exp Path Pharmakol 198:390–406

    CAS  Google Scholar 

  • Koll W, Reffert H (1938) Eine neue Methode zur Messung analgetischer Wirkungen im Tierversuch. Versuche mit Morphin und einigen Morphinderivaten am Hund. Arch exp Path Pharmakol 190:67–87

    Google Scholar 

  • Matthews B, Searle BN (1976) Electrical stimulation of teeth. Pain 2:245–251

    PubMed  CAS  Google Scholar 

  • Mitchell CL (1964) A comparison of drug effects upon the jaw jerk response to electrical stimulation of the tooth pulp in dogs and cats. J Pharmacol Exp Ther 146:1–6

    PubMed  CAS  Google Scholar 

  • Piercey MF, Schroeder LA (1980) A quantitative analgesic assay in the rabbit based on response to tooth pulp stimulation. Arch Int Pharmacodyn Ther 248:294–304

    PubMed  CAS  Google Scholar 

  • Ruckstuhl K (1939) Beitrag zur pharmakodynamischen Prüfung der Analgetica. Inaug.-Dissertation, Bern

    Google Scholar 

  • Shigena Y, Marao S, Okada K, Sakai A (1973) The effects of tooth pulp stimulation in the thalamus and hypothalamus of the rat. Brain Res 63:402–407

    Google Scholar 

  • Shyu KW, Lin MT, Wu TC (1984) Possible role of central serotoninergic neurons in the development of dental pain and aspirin-induced analgesia in the monkey. Exp Neurol 84:179–187

    PubMed  CAS  Google Scholar 

  • Skingle M, Tyers MB (1979) Evaluation of antinociceptive activity using electrical stimulation of the tooth pulp in the conscious dog. J Pharmacol Meth 2:71–80

    CAS  Google Scholar 

  • Steinfels GF, Cook L (1986) Antinociceptive profiles of μ and κ opioid agonists in a rat tooth pulp stimulation procedure. J Pharm Exp Ther 236:111–117

    CAS  Google Scholar 

  • Thut PD, Turner, MD, Cordes CT, Wynn RL (1995) A rabbit tooth-pulp assay to quantify efficacy and duration of antinociception by local anesthetics infiltrated into maxillary tissues. J Pharmacol Toxicol Meth 33:231–236

    CAS  Google Scholar 

  • Wilhelmi G (1949) Über die pharmakologischen Eigenschaften von Irgapyrin, einem neuen Präparat aus der Pyrazolonreihe. Schweiz Med Wschr 25:577–582

    Google Scholar 

  • Wirth W, Hoffmeister F (1967) Zur Wirkung von Kombinationen aus Phenothiazin-Derivaten mit Analgetika-Antipyretika. Wien Med Wschr 117:973–978

    PubMed  CAS  Google Scholar 

  • Wynn RL, El'Baghdady YM, Ford RD, Thut PD, Rudo FG (1984) A rabbit tooth-pulp assay to determine ED 50 values and duration of action of analgesics. J Pharmacol Meth 11:109–117

    CAS  Google Scholar 

  • Wynn RL, Ford RD, McCourt PJ, Ramkumar V, Bergman SA, Rudo FG (1986) Rabbit tooth pulp compared to 55°C mouse hot plate assay for detection of antinociceptive activity of opiate and nonopiate central analgesics. Drug Dev Res 9:233–239

    CAS  Google Scholar 

  • Yim GKW, Keasling HH, Gross EG, Mitchell CW (1955) Simultaneous respiratory minute volume and tooth pulp threshold changes following levorphan, morphine and levorphan-levallorphan mixtures in rabbits. J Pharmacol Exp Ther 115:96–105

    PubMed  CAS  Google Scholar 

References

  • Bloss JL, Hammond DL (1985) Shock titration in the rhesus monkey: effects of opiate and nonopiate analgesics. J Pharmacol Exp Ther 235:423–430

    PubMed  CAS  Google Scholar 

  • Campell ND, Geller I (1968) Comparison of analgesic effects of O-(4-methoxy phenyl carbamoyl)-3-diethylaminopropiophenone oxime HCl (USVP E-142), pentazocine and morphine in cynomolgus monkeys. Fed Proc FASEB 27:653 (2465)

    Google Scholar 

  • Dykstra LA (1979) Effects of morphine, pentazocine and cyclazocine alone and in combination with naloxone on electric shock titration in the squirrel monkey. J Pharm Exp Ther 211:722–732

    CAS  Google Scholar 

  • Dykstra LA (1980) Nalorphine's effect under several schedules of electric shock titration. Psychopharmacology 70:69–72

    PubMed  CAS  Google Scholar 

  • Dykstra LA, Macmillan DE (1977) Electric shock titration: Effects of morphine, methadone, pentazocine, nalorphine, naloxone, diazepam and amphetamine. J. Pharm Exp Ther 202:660–669

    CAS  Google Scholar 

  • Römer D (1968) A sensitive method for measuring analgesic effects in the monkey. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Acad Press London, New York, pp 165–170

    Google Scholar 

  • Weiss B, Laties VG (1964) Analgesic effects in monkeys of morphine, nalorphine, and a benzomorphan narcotic antagonist. J Pharm Exp Ther 143:169–173

    CAS  Google Scholar 

References

  • Abbadie C, Taylor BK, Peterson MA, Basbaum AI (1997) Differential contribution of the two phases of the formalin test to the pattern of c-fos expression in the rat spinal cord: studies with remifentanile and lidocaine. Pain 69:101–110

    PubMed  CAS  Google Scholar 

  • Abbott FV, Franklin KBJ, Ludwick RJ, Melzack R (1981) Apparent lack of tolerance in the Formalin test suggests different mechanisms for morphine analgesia in different types of pain. Pharmacol Biochem Behav 15:637–640

    PubMed  CAS  Google Scholar 

  • Abbott FV, Melzack R, Samuel C (1982) Morphine analgesia in the tail-flick and Formalin pain tests is mediated by different neural systems. Exp Neurol 75:644–651

    PubMed  CAS  Google Scholar 

  • Abbott FV, Franklin KBJ, Westbrook RF (1995) The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain 60:91–102

    PubMed  CAS  Google Scholar 

  • Alreja M, Mutalik P, Nayar U, Machanda SK (1984) The formalin test: a tonic pain model in the primate. Pain 20:97–105

    PubMed  CAS  Google Scholar 

  • Chau TT (1989) Analgesic testing in animal models. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 195–212

    Google Scholar 

  • Clavelou P, Pajot J, Dallel R, Raboisson P (1989) Application of the formalin test to the study of orofacial pain in the rat. Neurosci Lett 103:349–353

    PubMed  CAS  Google Scholar 

  • Corrêa CR, Calixto JB (1993) Evidence for participation of B1 and B2 kinin receptors in formalin-induced nociceptive response in the mouse. Br J Pharmacol 110:193–198

    PubMed  Google Scholar 

  • Cowan A (1990) Recent approaches in the testing of analgesics in animals. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc. pp 33–42

    Google Scholar 

  • Dallel R, Raboisson P, Clavelou P, Saade M, Woda A (1995) Evidence for a peripheral origin of the tonic nociceptive response to subcutaneous formalin. Pain 61:11–16

    PubMed  CAS  Google Scholar 

  • Dubuisson D, Dennis SG (1977) The Formalin test: A quantitative study of the analgesic effects of morphine, meperidine and brain stem stimulation in rats and cats. Pain 4:161–174

    PubMed  CAS  Google Scholar 

  • Dumas J, Liégeois JF, Bourdon V (1997) Involvement of 5-hydroxytryptamine and bradykinin in the hyperalgesia induced in rats by collagenase from clostridium histolyticum. Naunyn-Schmiedeberg's Arch Pharmacol 355:566–570

    Google Scholar 

  • Herman ZS, Felinska W (1979) Rapid test for screening of narcotic analgesics in mice. Pol J Pharmacol Pharm 31:605–608

    PubMed  CAS  Google Scholar 

  • Hunskaar S, Berge OG, Hole K (1986) Dissociation between antinociceptive and anti-inflammatory effects of acetylsalicylic acid and indomethacin in the formalin test. Pain 25:125–132

    PubMed  CAS  Google Scholar 

  • Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–114

    PubMed  CAS  Google Scholar 

  • Legat FJ, Griesbacher T, Lembeck F (1994) Mediation of bradykinin of the rat paw oedema induced by collagenase from Clostridium histolyticum. Br J Pharmacol 112:453–460

    PubMed  CAS  Google Scholar 

  • Malmberg AB, Yaksh TL (1992) Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J Pharm Exp Ther 263:136–146

    CAS  Google Scholar 

  • Murray CW, Porreca F, Cowan A (1988) Methodological refinements to the mouse paw formalin test. J Pharmacol Meth 20:175–186

    CAS  Google Scholar 

  • North MA (1977) Naloxone reversal of morphine analgesia but failure to alter reactivity to pain in the formalin test. Life Sci 22:295–302

    Google Scholar 

  • Shibata M, Ohkubo T, Takahashi H, Inoki R (1989) Modified formalin test: characteristic biphasic pain response. Pain 38:347–352

    PubMed  CAS  Google Scholar 

  • Theobald W (1955) Vergleichende Untersuchung anti-inflammatorischer Wirkstoffe am Formalinoedem. Arch Int Pharmacodyn 103:17–26

    PubMed  CAS  Google Scholar 

  • Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K (1992) The formalin test: an evaluation of the method. Pain 51:5–17

    PubMed  Google Scholar 

  • Wheeler H, Porreca F, Cowan A (1989) Formalin is unique among potential noxious agents for the intensity of its behavioral response in rats. FASEB J 3:A278 (310)

    Google Scholar 

References

  • Bennett GJ (1993) An animal model of neuropathic pain: a review. Muscle Nerve 16:1040–1048

    PubMed  CAS  Google Scholar 

  • Bennet GJ, Xie YK (1988) A peripheral neuropathy in the rat that produces disorders of pain sensation like those seen in man. Pain 33:87–108

    Google Scholar 

  • Davar G, Hama A, Deykin A, Vos B, Maciewicz R (1991) MK-801 blocks the development of thermal hyperalgesia in a rat model of experimental painful neuropathy. Brain Res 553:327–330

    PubMed  CAS  Google Scholar 

  • DeLeo JA, Coombs DW, Willenbring S, Colburn RW, Fromm C, Wagner R, Twitchell BB (1994) Characterization of a neuropathic pain model: sciatic cryoneurolysis in the rat. Pain 56:9–16

    PubMed  CAS  Google Scholar 

  • Gregg JM (1973) A surgical approach to the ophthalmic-maxillary nerve trunks in the rat. J Dent Res 52:392–395

    PubMed  CAS  Google Scholar 

  • Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    PubMed  CAS  Google Scholar 

  • Idänpään-Heikkilä JJ, Guilbaud G (1999) Pharmacological studies on a rat model of trigeminal neuropathic pain: baclofen, but not carbamazepine, morphine or tricyclic antidepressants, attenuates the allodynia-like behaviour. Pain 79:281–290

    PubMed  Google Scholar 

  • Jacquin MF, Zeigler HP (1983) Trigeminal orosensation and ingestive behavior in the rat. Behav Neurosci 97:62–97

    PubMed  CAS  Google Scholar 

  • Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    PubMed  CAS  Google Scholar 

  • Malmberg AB, Yaksh TL (1992) Hyperalgesia mediated by spinal glutamate or substance P receptor is blocked by spinal cyclooxygenase inhibition. Science 257:1276–1279

    PubMed  CAS  Google Scholar 

  • Malmberg AB, Chen C, Tonegawa S, Basbaum AI (1997) Preserved acute pain and reduced neuropathic pain in mice lacking PKCγ. Science 278:279–283

    PubMed  CAS  Google Scholar 

  • Mao J, Price DD, Mayer DJ, Lu J, Hayes RL (1992) Intrathecal MK-801 and local anesthesia synergistically reduce nociceptive behaviors in rats with experimental peripheral neuropathy. Brain Res 576:254–262

    PubMed  CAS  Google Scholar 

  • Munger BL, Bennett GJ, Kajander KC (1992) An experimental painful peripheral neuropathy due to nerve constriction. Exper Neurol 118:204–214

    CAS  Google Scholar 

  • Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218

    PubMed  CAS  Google Scholar 

  • Sotgiu ML, Biella G, Lacerenza M (1996) Injured nerve block alters adjacent nerves spinal interaction in neuropathic rats. NeuroReport 7:1385–1388

    PubMed  CAS  Google Scholar 

  • Storer RJ, Goadsby PJ (1997) Microiontophoretic application of serotonin (5-HT)1B/1D agonists inhibits trigeminal cell firing in the cat. Brain 120:2171–2177

    PubMed  Google Scholar 

  • Tal M, Bennet GJ (1993) Dextrorphan relieves neuropathic heatevoked hyperalgesia in the rat. Neurosci Lett 151:107–110

    PubMed  CAS  Google Scholar 

  • Vos B, Maciewicz R (1991) Behavioral changes following ligation of the infraorbital nerve in rat: an animal model of trigeminal neuropathic pain. In: JM Besso, Giulbaud G (eds) Lesions of primary afferent fibers as a tool for the study of clinical pain. Elsevier Science Publ., Amsterdam pp 147–158

    Google Scholar 

  • Vos BP, Strassman AM (1995) Fos expression in the medullary dorsal horn of the rat after chronic constriction injury to the infraorbital nerve. J Compar Neurol 357:362–375

    CAS  Google Scholar 

  • Vos BP, Strassman AM, Maciewicz RJ (1994) Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat's infraorbital nerve. J Neurosci 14:2708–2723

    PubMed  CAS  Google Scholar 

  • Wall PD, Devor M, Inbal R, Scadding JW, Schonfeld D, Seltzer Z, Tomkiewicz MM (1979a) Autotomy following peripheral nerve lesions: experimental anesthesia dolorosa. Pain 7:103–113

    PubMed  CAS  Google Scholar 

  • Wall PD, Scadding JW, Tomkiewicz MM (1979b) The production and prevention of experimental anesthesia dolorosa. Pain 6:175–182

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Yaksh TL (1992) Spinal pharmacology of thermal hyperesthesia induced by constriction injury of sciatic nerve. Excitatory amino acid antagonists. Pain 49:121–128

    PubMed  CAS  Google Scholar 

  • Zochodne DW, Murray M, Nag S, Riopelle RJ (1994) A segmental chronic pain syndrome in rats associated with intrathecal infusion of NMDA: evidence for selective action in the dorsal horn. Can J Neurol Sci 21:24–28

    PubMed  CAS  Google Scholar 

References

  • Pasternak GW (1987) Opioid receptors. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press New York, pp 281–288

    Google Scholar 

  • Ling GSF, Spiegel K, Nishimura S, Pasternack GW (1983) Dissociation of morphine's analgesic and respiratory depressant actions. Eur. J. Pharmacol. 86:478–488

    Google Scholar 

  • Ling GSF, Spiegel K, Lockhart SH, Pasternack GW (1985) Separation of opioid analgesia from respiratory depression: Evidence for different receptor mechanisms J Pharmacol Exp Ther 232:149–155

    PubMed  CAS  Google Scholar 

  • Nelson RB, Elliott HW (1967) A comparison of some central effects of morphine, morphinone and thebaine on rats and mice. J Pharmacol Exp Ther 155:516–520

    PubMed  CAS  Google Scholar 

  • Ther L, Lindner E, Vogel G (1963) Zur pharmakodynamischen Wirkung der optischen Isomeren des Methadons. Dtsch Apoth Ztg 103:514–520

    CAS  Google Scholar 

References

  • Geller EB, Adler MW (1990) Drugs of abuse and body temperature. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse, Wiley-Liss, Inc., pp 101–109

    Google Scholar 

References

  • Glassman JM (1971) Agents with analgesic activity and dependence liability. In: Turner RA and Hebborn P (eds) Screening Methods in Pharmacology. Vol. II, Acad. Press, New York and London., pp 227–248

    Google Scholar 

  • Kalant H, Khanna JM (1990) Methods for the study of tolerance. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp 43–66

    Google Scholar 

  • Khanna JM, Mayer JM, Lê AD, Kalant H (1984) Differential response to ethanol, pentobarbital and morphine in mice specially bred for ethanol sensitivity. Alcohol 1:447–451

    PubMed  Google Scholar 

  • Langerman L, Zakowski MI, Piskoun B, Grant GJ (1995) Hot plate versus tail flick: evaluation of acute tolerance to continuous morphine infusion in the rat model. J Pharmacol Toxicol Meth 34:23–27

    CAS  Google Scholar 

References

  • Aceto MD (1990) Assessment of physical dependence techniques for the evaluation of abused drugs. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp 67–79

    Google Scholar 

  • Buckett WR (1964) A new test for morphine-like physical dependence (addiction liability) in rats. Psychopharmacologia 6:410–416

    PubMed  CAS  Google Scholar 

  • Deneau GA, Seevers MH (1964) Drug Dependence. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York. pp 167–179

    Google Scholar 

  • Collier HOJ, Cuthbert NJ, Francis DL (1979) Effects of time and drug concentration on the induction of responsiveness to naloxone in guinea pig ileum exposed to normorphine in vitro. Br J Pharmacol 332P–333P

    Google Scholar 

  • Cruz SL, Salazar LA, Villarreal JE (1991) A methodological basis for improving the reliability of measurements of opiate abstinence responses in the guinea pig ileum made dependent in vitro. J Pharmacol Meth 25:329–342

    CAS  Google Scholar 

  • Pierce TL, Raper C (1995) The effects of laboratory handling procedures on naloxone-precipitated withdrawal behavior in morphine-dependent rats. J Pharmacol Toxicol Meth 34:149–155

    CAS  Google Scholar 

  • Pierce TL, Hope W, Raper C (1996) The induction and quantitation of methadone dependence in the rat. J Pharmacol Toxicol Meth 36:137–146

    CAS  Google Scholar 

  • Rodríguez R, Luján M, Campos AE, Chorné R (1978) Morphine-dependence in the isolated guinea pig ileum and its modification by p-chlorophenylalanine. Life Sci 23:913–920

    PubMed  Google Scholar 

  • Saelens JK, Granat FR, Sawyer WK (1971) The mouse jumping test: a simple screening method to estimate the physical dependence capacity of analgesics. Arch Int Pharmacodyn 190:213–218

    PubMed  CAS  Google Scholar 

  • Seevers MH (1936) Opiate addiction in the monkey. I. Methods of study. J Pharm Exp Ther 56:147–156

    CAS  Google Scholar 

  • Seevers MH, Deneau GA (1963) In: Root WS and Hoffman FG (eds) Physiological Pharmacology. Vol. I, pp 565, Acad. Press New York and London

    Google Scholar 

  • Villarreal JE, Martinez JN, Castro A (1977) Validation of a new procedure to study narcotic dependence in the isolated guinea pig ileum. Bull Problems of Drug Dependence, pp 305–314

    Google Scholar 

  • Von Voigtlander PF, Lewis RA (1983) A withdrawal hyperalgesia test for physical dependence: evaluation of μ and mixed-partial opioid agonists. J Pharm Meth 10:277–282

    Google Scholar 

  • Way EL (1993) Opioid tolerance and physical dependence and their relationship. In: Herz A, Akil H, Simon EJ (eds) Handbook of Experimental Pharmacology, Vol 104/ Opioids II, chapter 53, pp 573–596, Springer Berlin Heidelberg New York

    Google Scholar 

  • Way EL, Loh HH, Shen FH (1969) Simultaneous quantitative assessment of morphine tolerance and physical dependence. J Pharm Exp Ther 167:1–8

    CAS  Google Scholar 

  • Woods JH, France CP, Winger G, Bertamio AJ, Schwarz-Stevens K (1993) Opioid abuse liability assessment in rhesus monkeys. In: Herz A, Akil H, Simon EJ (eds) Handbook of Experimental Pharmacology, Vol 104/ Opioids II, chapter 55, pp 609–632, Springer Berlin Heidelberg New York

    Google Scholar 

  • Yoshimura K, Horiuchi M, Konishi M, Yamamoto KI (1993) Physical dependence on morphine induced in dogs via the use of miniosmotic pumps. J Pharm Toxicol Meth 30:85–95

    CAS  Google Scholar 

References

  • Balster RL, Prescott WR (1990) Δ9-Tetrahydrocannabinol discrimination in rats as a model for cannabis intoxication. Neurosci Behav Rev 16:55–62

    Google Scholar 

  • Bertalmio AJ, Woods JH (1987) Differentiation between μ and κ receptor mediated effects in opioid drug discrimination: apparent pA2 analysis. J Pharmacol Exp Ther 243:591–598

    PubMed  CAS  Google Scholar 

  • Bertalmio AJ, Herling S, Hampton RY, Winger G, Woods JH (1982) A procedure for rapid evaluation of the discriminative stimulus effects of drugs. J Pharmacol Meth 7:289–299

    CAS  Google Scholar 

  • Bozarth MA (1987) Intracranial self-administration procedures for the assessment of drug reinforcement. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer-Verlag, New York, Berlin, Heidelberg, pp 178–187

    Google Scholar 

  • Brady JV, Griffiths RR, Hienz RD, Ator NA, Lukas SE, Lamb RJ (1987) Assessing drugs for abuse liability and dependence potential in laboratory primates. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer-Verlag, New York, Berlin, Heidelberg, pp 45–85

    Google Scholar 

  • Carboni E, Acquas E; Leone P, di Chiara G (1989) 5-HT3 receptor antagonists block morphine-and nicotine-but not amphetamine-induced award. Psychopharmacology 97:175–178

    PubMed  CAS  Google Scholar 

  • Colpaert FC (1987) Drug discrimination: methods of manipulation, measurement, and analysis. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer-Verlag, New York, Berlin, Heidelberg, pp 341–372

    Google Scholar 

  • Colpaert FC, Janssen PAJ (1984) Agonist and antagonist effects of prototype opiate drugs in rats discrimination fentanyl from saline: Characteristics of partial generalization. J Pharm Exp Ther 220:193–199

    Google Scholar 

  • Cruz SL, Salazar LA, Villarreal JE (1991) A methodological basis for improving the reliability of measurements of opiate abstinence responses in the guinea pig ileum made dependent in vitro. J Pharm Meth 25:329–342

    CAS  Google Scholar 

  • Deneau G, Yanagita T, Seevers MH (1969) Self-administration of psychoactive substances by the monkey. Psychopharmacologia 16:30–48

    PubMed  CAS  Google Scholar 

  • Deneau GA (1964) Pharmacological techniques for evaluating addiction liability of drugs. In: Nodine JH and Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publ, Inc., Chicago, pp 406–410

    Google Scholar 

  • Dyksta LA, Gmerek DE, Winger G, Woods JH (1987) Kappa opioids in rhesus monkeys. I. Diuresis, sedation, analgesia and discriminative stimulus effects. J Pharmacol Exp Ther 242:413–420

    Google Scholar 

  • Dykstra LA, Bertalmio AJ, Woods JH (1988) Discriminative and analgesic effects of mu and kappa opioids: in vivo pA2 analysis. In. Colpaert FC, Balster RL (eds) Transduction mechanisms of drug stimuli. Springer, Berlin Heidelberg New York, pp 107–121 (Psychopharmacology series 4)

    Google Scholar 

  • Garcia J, Kimmeldorf DJ, Koelling RA (1955) Conditioned taste aversion to saccharin resulting from exposure to gamma irradiation. Science 122:157–158

    PubMed  CAS  Google Scholar 

  • Hein DW, Young AM, Herling S, Woods JH (1981) Pharmacological analysis of the discriminative stimulus characteristics of ethylketazocine in the rhesus monkey. J Pharmacol Exp Ther 218:7–15

    PubMed  CAS  Google Scholar 

  • Herling S, Woods JH (1981) Discriminative stimulus effects of narcotics: evidence for multiple receptor-mediated actions. Life Sci 28:1571–1584

    PubMed  CAS  Google Scholar 

  • Hoffmeister F (1979) Preclinical evaluation of reinforcing and aversive properties of analgesics. In: Beers RF, Bassett EG (eds) Mechanics of Pain and Analgesic Compounds. Raven Press New York, pp 447–466

    Google Scholar 

  • Hoffmeister F (1988) A comparison of the stimulus effects of codeine in rhesus monkeys under the contingencies of a two lever discrimination task and a cross self-administration paradigm: tests of generalization to pentazocine, buprenorphine, tilidine, and different doses of codeine. Psychopharmacology 94:315–320

    PubMed  CAS  Google Scholar 

  • Holtzman SG (1983) Discriminative stimulus properties of opioid agonists and antagonists. In: S.J. Cooper (ed) Theory in Psychopharmacology, Vol. 2, pp 145 Academic Press, London

    Google Scholar 

  • Holtzman SG (1990) Discriminative stimulus effects of drugs: Relationship to potential for abuse. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp 193–210

    Google Scholar 

  • Iwamoto ET, Martin WR (1988) A critique of drug self-administration as a method for predicting abuse potential of drugs. In: Harris LS (ed) Proceedings of the committee on the problems of drug dependence, 1987. NIDA Res Monogr 81:457–465

    Google Scholar 

  • Kornetsky C, Bain B (1990) Brain-stimulation reward: A model for drug-induced euphoria. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp 211–231

    Google Scholar 

  • Lal H, Sherman GT (1980) Interceptive discriminative stimuli in the development of CNS drugs and a case of an animal model of anxiety. Annu Rep Med Chem 15:51–58

    CAS  Google Scholar 

  • Littmann K, Heredia JM, Hoffmeister F (1979) Eine neue Methode zur enteralen Verabreichung von psychotrop wirksamen Substanzen beim Rhesusaffen. Arzneim Forsch/Drug Res 29:1888–1890

    CAS  Google Scholar 

  • Locke KW, Gorney B, Cornfeldt M, Fielding S (1991) Comparison of the stimulus effects of ethylketocyclazocine in Fischer and Sprague-Dawley rats. Drug Dev Res 23:65–73

    CAS  Google Scholar 

  • Marcus R, Kornetsky C (1974) Negative and positive intracranial thresholds: Effects of morphine. Psychopharmacologia 38:1–13

    CAS  Google Scholar 

  • Meert TF, Janssen PAJ (1989) Psychopharmacology of ritanserin: comparison with chlordiazepoxide. Drug Dev Res 18:119–144

    CAS  Google Scholar 

  • Meert TF, de Haes P, Janssen PAJ (1989) Risperidone (R 64 766), a potent and complete LSD antagonist in drug discrimination by rats. Psychopharmacology 97:206–212

    PubMed  CAS  Google Scholar 

  • Meert TF, de Haes LAJ, Vermote PCM, Janssen PAJ (1990) Pharmacological validation of ritanserin and risperidone in the drug discrimination procedure in the rat. Drug Dev Res 19:353–373

    CAS  Google Scholar 

  • Meisch RA, Carroll ME (1987) Oral drug self-administration: Drugs as reinforcers. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer-Verlag, New York, Berlin, Heidelberg, pp 143–160

    Google Scholar 

  • Olds J (1979) Drives and reinforcements: Behavioral studies of hypothalamic functions. Raven Press New York

    Google Scholar 

  • Olds J, Killam KF, Bach-y-Rita P (1956) Self-stimulation of the brain used as screening method for tranquilizing drugs. Science 124:265–266

    PubMed  CAS  Google Scholar 

  • Overton DA (1987) Applications and limitations of the drug discrimination method for the study of drug abuse. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer-Verlag, New York, Berlin, Heidelberg, pp 291–340

    Google Scholar 

  • Shannon HE, Holtzmann SG (1976) Evaluation of the discriminative effects of morphine in the rat. J Pharm Exp Ther 198:64–65

    Google Scholar 

  • Shannon HE, Holtzmann SG (1986) Blockade of the discriminative effects of morphine by naltrexone and naloxone. Psychopharmacologia 50:119–124

    Google Scholar 

  • Sherman G, Lal H (1979) Discriminative stimulus properties of pentylenetetrazol and begrimide: some generalization and antagonism tests. Psychopharmacology 64:315–319

    Google Scholar 

  • Sherman GT, Lal H (1980) Generalization and antagonism studies with convulsants, GABAergic and anticonvulsant drugs in rats trained to discriminate pentylenetetrazol from saline. Neuropharmacol 19:473–479

    Google Scholar 

  • Sherman GT, Miksic S, Lal H (1979) Lack of tolerance development to benzodiazepines in antagonism of the pentylenetetrazol discriminative stimulus. Pharmacol Biochem Behav 10:795–797

    Google Scholar 

  • van Heest A, Hijzen TH, Slangen JL, Oliver B (1992) Assessment of the stimulus properties of anxiolytic drugs by means of the conditioned taste aversion procedure. Pharmacol Biochem Behav 42:487–495

    Google Scholar 

  • Weeks JR, Collins RJ (1987) Screening for drug reinforcement using intravenous self-administration in the rat. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer-Verlag, New York, Berlin, Heidelberg, pp 35–43

    Google Scholar 

  • Woods JH, France CP, Winger G, Bertamio AJ, Schwarz-Stevens K (1993) Opioid abuse liability assessment in rhesus monkeys. In: Herz A, Akil H, Simon EJ (eds) Handbook of Experimental Pharmacology, Vol 104/ Opioids II, chapter 55, pp 609–632, Springer Berlin Heidelberg New York

    Google Scholar 

  • Woolverton WL, Nader MA (1990) Experimental evaluation of the reinforcing effects of drugs. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp 165–192

    Google Scholar 

  • Woolverton WL, Schuster CL (1983) Intragastric selfadministration in rhesus monkeys under limited access conditions: Methodological studies. J Pharmacol Meth 10:93–106

    CAS  Google Scholar 

  • Yokel RA (1987) Intravenous self-administration: response rates, the effects of pharmacological challenges, and drug preference. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer-Verlag, New York, Berlin, Heidelberg, pp 1–33

    Google Scholar 

References

  • Acquas E, Di Chiara G (1994) D1 receptor blockade stereospecifically impairs the acquisition of drug-conditioned place preference and place aversion. Behav Pharmacol 5:555–560

    PubMed  CAS  Google Scholar 

  • Acquas E, Carboni E, Garau L, Di Chiara G (1990) Blockade of acquisition of drug-conditioned place aversion by 5-HT3 antagonists. Psychopharmacology 100:459–463

    PubMed  CAS  Google Scholar 

  • Amalric M, Cline EJ, Martinez JL Jr., Bloom FE, Koob GF (1987) Rewarding properties of β-endorphin as measured by conditioned place preference. Psychopharmacology 91:14–19

    PubMed  CAS  Google Scholar 

  • Bals-Kubik R, Herz A, Shippenberg TS (1988) β-endorphin-(1–27) is a naturally occurring antagonist of the reinforcing effects of opioids. Naunyn-Schmiedeberg's Arch Pharmacol 338:392–396

    CAS  Google Scholar 

  • Bals-Kubik R, Shippenberg TS, Herz A (1990) Involvement of central μ and δ opioid receptors in mediating the reinforcing effects of β-endorphin in the rat. Eur J Pharmacol 175:63–69

    PubMed  CAS  Google Scholar 

  • Bechara A, Van der Kooy D (1987) Kappa receptors mediate the peripheral aversive effects of opiates. Pharmacol Biochem Behav 28:227–233

    PubMed  CAS  Google Scholar 

  • Brockwell NT, Beninger RJ (1996) The differential role of A1 and A2 adenosine subtypes in locomotor activity and place conditioning in rats. Behav Pharmacol 7:373–383

    PubMed  CAS  Google Scholar 

  • Brockwell NT, Eikelboom R, Beninger RJ (1991) Caffeine-induced place and taste conditioning: production of dose-dependent preference and aversion. Pharmacol Biochem Behav 38:513–517

    PubMed  CAS  Google Scholar 

  • Brockwell NT, Ferguson DS, Beninger RJ (1996) A computerized system for the simultaneous monitoring of place conditioning and locomotor activity in rats. J Neurosci Meth 64:227–232

    CAS  Google Scholar 

  • Calcagnetti DJ, Quatrella LA, Schechter MD (1996) Olfactory bulbectomy disrupts the expression of cocaine-induced conditioned place preference. Physiol Behav 59:597–604

    PubMed  CAS  Google Scholar 

  • Chaperon F, Thiébot MH (1996) Effects of dopaminergic D3-receptor-preferring ligands on the acquisition of place conditioning in rats. Behav Pharmacol 7:105–109

    PubMed  CAS  Google Scholar 

  • Contarino A, Zanotti A, Drago F, Natolino F, Lipartiti M, Giusti P (1997) Conditioned place preference: no tolerance to the rewarding properties of morphine. Naunyn-Schmiedeberg's Arch Pharmacol 355:589–594

    CAS  Google Scholar 

  • Davies AM, Parker LA (1993) Fenfluramine-induced place aversion in a three-choice apparatus. Pharmacol Biochem Behav 44:595–600

    PubMed  CAS  Google Scholar 

  • Del Poso E, Barrios M, Baeyens JM (1996) The NMDA receptor antagonist dizocilpine (MK-801) stereoselectively inhibits morphine-induced place preference in mice. Psychopharmacology 125:209–213

    Google Scholar 

  • Frisch C, Hasenöhrl RU, Mattern CM, Häcker R, Huston JP (1995) Blockade of lithium chloride-induced conditioned place aversion as a test for antiemetic agents: comparison of metoclopramide with combined extracts of Zingiber officinale and Ginkgo biloba. Pharmacol Biochem Behav 52:321–327

    PubMed  CAS  Google Scholar 

  • Gaiardi M, Bartoletti M, Bacchi A, Gubellini C, Babbibi M (1997) Motivational properties of buprenorphine as assessed by place and taste conditioning in rats. Psychopharmacology 130:104–108

    PubMed  CAS  Google Scholar 

  • Gatley SJ, Meehan SM, Chen R, Pan D-F, Schechter MD, Dewey SL (1996) Place preference and microdialysis studies with two derivatives of methylphenidate. Life Sci 58: PL 345–352

    CAS  Google Scholar 

  • Higgins GA, Joharchi N, Sellers EM (1993) Behavioral effects of the 5-hydroxytryptamine3 receptor agonists 1-phenylbiguanide and m-chlorophenylbiguanide in rats. J Pharmacol Exp Ther 264:1440–1449

    PubMed  CAS  Google Scholar 

  • Hoffman DC (1998) The use of place conditioning in studying the neuropharmacology of drug reinforcement. Brain Res Bull 23:373–387

    Google Scholar 

  • Hoffman DC, Donovan H (1995) Effects of typical, atypical, and novel antipsychotic drugs on amphetamine-induced place conditioning in rats. Drug Dev Res 36:193–198

    CAS  Google Scholar 

  • Iwamoto ET (1988) Dynorphin A [1–17] induces ‘reward’ in rats in the place conditioning paradigm. Life Sci 43:503–508

    PubMed  CAS  Google Scholar 

  • Khroyan TV, Baker DA, Neisewander JL (1995) Dose-dependent effects of the D3-preferring agonist 7-OH-DPAT on motor behaviors and place conditioning. Psychopharmacology 122:351–357

    PubMed  CAS  Google Scholar 

  • Khroyan TV, Fuchs RA, Baker DA, Neisewander JL (1997) Effects of D3-preferring agonists 7-OH-PIPAT and PD-128,907 on motor behaviors and place conditioning. Behav Pharmacol 8:65–74

    PubMed  CAS  Google Scholar 

  • Kitaichi K, Noda Y, Haegawa T, Furukawa H, Nabeshima T (1996) Acute phencyclidine induces aversion, but repeated phencyclidine induces preference in the place conditioning test in rats. Eur J Pharmacol 318:7–9

    PubMed  CAS  Google Scholar 

  • Kosten TA (1994) Clonidine attenuates conditioned aversion produced by naloxone-precipitated opiate withdrawal. Eur J Pharmacol 254:59–63

    PubMed  CAS  Google Scholar 

  • Lepore M, Vorel SR, Lowinson J, Gardner EL (1995) Conditioned place preference induced by δ9-tetrahydrocannabinol: comparison with cocaine, morphine, and food award. Life Sci 56:2073–2080

    PubMed  CAS  Google Scholar 

  • Mamoon AM, Barnes AM, Ho IK, Hoskins B (1995) Comparative rewarding properties of morphine and butorphanol. Brain Res Bull 38:507–511

    PubMed  CAS  Google Scholar 

  • Martellotta MC, Fattore L, Cossu G, Fratta W (1997) Rewarding properties of gamma-hydroxybutyric acid: an evaluation through place preference paradigm. Psychopharmacology 132:1–5

    PubMed  CAS  Google Scholar 

  • Martin-Iverson MT, Reimer AR (1996) Classically conditioned motor effects do not occur with cocaine in an unbiased conditioned place preferences procedure. Behav Pharmacol 7:303–314

    PubMed  CAS  Google Scholar 

  • Martin-Iverson MT, Reimer AR, Sharma S (1997) Unbiased cocaine conditioned place preferences (CPP) obscures conditioned locomotion, and nimodipine blockade of cocaine CPP is due to conditioned place aversions. Psychopharmacology 130:327–333

    PubMed  CAS  Google Scholar 

  • Mucha RF, Herz A (1985) Motivational properties of kappa and mu-opioid agonists studied with place and taste preference conditioning procedures. Psychopharmacol 82:241–245

    Google Scholar 

  • Mucha RF, Iversen SD (1984) Reinforcing properties of morphine and naloxone revealed by conditioned place preferences: a procedural examination. Psychopharmacology 82:241–247

    PubMed  CAS  Google Scholar 

  • Pain L, Oberling P, Sandner G, Di Scala G (1997) Effect of midazolam on propofol-induced positive affective state assessed by place conditioning in rats. Anesthesiol 87:935–943

    CAS  Google Scholar 

  • Papp M, Moryl E, Maccechini ML (1996) Differential effects of agents acting at various sites of the NMDA receptor complex in a place preference conditioning model. Eur J Pharmacol 317:191–196

    PubMed  CAS  Google Scholar 

  • Parker LA (1996) LSD produces place preference and flavor avoidance but does not produce flavor aversion in rats. Behav Neurosci 110:503–508

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1982) The rat in stereotaxic coordinates. Academic Press, Sidney

    Google Scholar 

  • Perks SM, Clifton PG (1997) Reinforcer revaluation and conditioned place preference. Physiol Behav 61:1–5

    PubMed  CAS  Google Scholar 

  • Sañudo-Peña CM, Tsou K, Delay ER, Hohman AG, Force M, Walker JM (1997) Endogenous cannabinoids as an aversive or counter-rewarding system in the rat. Neurosci Lett 223:125–128

    PubMed  Google Scholar 

  • Schechter MD, Meehan SM (1994) Conditioned place aversion produced by dopamine release inhibition. Eur J Pharmacol 260:133–137

    PubMed  CAS  Google Scholar 

  • Self DW, Stein L (1992) Receptor subtypes in opioid and stimulation reward. Pharmacol Toxicol 70:87–94

    PubMed  CAS  Google Scholar 

  • Shippenberg TS, Herz A (1987) Place preference conditioning reveals the involvement of D1-dopamine receptors in the motivational properties of μ-and κ-opioid agonists. Brain Res 436:169–172

    PubMed  CAS  Google Scholar 

  • Shippenberg TS, Bals-Kubik R, Herz A (1987) Motivational properties of opioids: evidence that an activation of δ-receptors mediate reinforcement processes. Brain Res 436:234–239

    PubMed  CAS  Google Scholar 

  • Steinpreis RE, Kramer MA, Mix KS, Piwowarczyk MC (1995) The effects of MK801 on place conditioning. Neurosci Res 22:427–430

    PubMed  CAS  Google Scholar 

  • Steinpreis RE, Rutell AL, Parrett FA (1996) Methadone produces conditioned place preference in the rat. Pharmacol Biochem Behav 54:339–431

    PubMed  CAS  Google Scholar 

  • Sufka KJ (1994) Conditioned place preference paradigm: a novel approach for analgesic drug assessment against chronic pain. Pain 58:355–366

    PubMed  CAS  Google Scholar 

  • Suzuki T, Misawa M (1995) Sertindole antagonizes morphine-, cocaine-, and methamphetamine-induced place preference in the rat. Life Sci 57:1277–1284

    PubMed  CAS  Google Scholar 

  • Suzuki T, Funada M, Narita M, Misawa M, Nagase H (1991) Pertussis toxin abolishes μ and δ opioid agonist-induced place preference. Eur J Pharmacol 205:85–88

    PubMed  CAS  Google Scholar 

  • Suzuki T, Funada M, Narita M, Misawa M, Nagase H (1993) Morphine-induced place preference in the CXBK mouse: characteristics of μ opioid receptor subtypes. Brain Res 602:45–52

    PubMed  CAS  Google Scholar 

  • Tsuji M, Nakagawa Y, Ishibashi Y, Yoshii T, Takashima T, Shimada M, Suzuki T (1996) Activation of ventral tegmental GABAB receptors inhibits morphine-induced place preference in rats. Eur J Pharmacol 313:169–173

    PubMed  CAS  Google Scholar 

  • Turenne SD, Miles C, Parker LA, Siegel S (1996) Individual differences in reactivity to the rewarding/aversive properties of drugs: assessment by taste and place conditioning. Pharmacol Biochem Behav 53:511–516

    PubMed  CAS  Google Scholar 

  • Tzschenke M (1998) Measuring reward with the conditioned place preference paradigm: A comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–6672

    Google Scholar 

  • Van der Kooy D (1987) Place conditioning: a simple and effective method for assessing the motivational properties of drugs. In: Bozarth MA (ed) Methods of Assessing the Reinforcing Properties of Abused Drugs. Springer-Verlag, New York Berlin Heidelberg, pp 229–240

    Google Scholar 

References

  • Adachi KI (1994) A device for automatic measurement of writhing and its application to the assessment of analgesic agents. J Pharmacol Toxicol Meth 32:79–84

    CAS  Google Scholar 

  • Amanuma F, Wakaumi C, Tanaka M, Muramatsu M, Aihara H (1984) The analgesic effects of non-steroidal anti-inflammatory drugs on acetylcholine-induced writhing in mice. Folia Pharmacol Japon 84:543–551

    CAS  Google Scholar 

  • Bhalla TN, Bhargava KP (1980) Aconitine-induced writhing as a method for assessing Aspirin-like analgesic activity. J Pharmacol Meth 3:9–14

    CAS  Google Scholar 

  • Björkman RL, Hedner T, Hallman KM, Henning M, Hedner J (1992) Localization of central antinociceptive effects of diclofenac in the rat. Brain Res 590:66–73

    PubMed  Google Scholar 

  • Blumberg H, Wolf PS, Dayton HB (1965) Use of writhing test for evaluating activity of narcotic antagonists. Proc Soc Exp Biol Med 118:763–766

    PubMed  CAS  Google Scholar 

  • Burns RBP, Alioto NJ, Hurley KE (1968) Modification of the bradykinin-induced writhing test for analgesia. Arch Int Pharmacodyn 175:41–55

    PubMed  CAS  Google Scholar 

  • Carey F, Haworth D, Edmonds AE, Forder RA (1988) Simple procedure for measuring the pharmacodynamics and analgesic potential of lipoxygenase inhibitors. J Pharmacol Meth 20:347–356

    CAS  Google Scholar 

  • Chernov HI, Wilson DE, Fowler F, Plummer AJ (1967) Non-specificity of the mouse writhing test. Arch Int Pharmacodyn 167:171–178

    PubMed  CAS  Google Scholar 

  • Collier HOJ, Dinneen LC, Johnson CA, Schneider C (1968) The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmac Chemother 32:295–310

    CAS  Google Scholar 

  • Eckhardt ET, Cheplovitz F, Lipo M, Govier WM (1958) Etiology of chemically induced writhing in mouse and rat. Proc Soc Exp Biol Med 98:186–188

    PubMed  CAS  Google Scholar 

  • Emele JF, Shanaman J (1963) Bradykinin writhing: A method for measuring analgesia. Proc Soc Exp Biol Med 114:680–682

    PubMed  CAS  Google Scholar 

  • Fukawa K, Kawano O, Hibi M, Misaki M, Ohba S, Hatanaka Y (1980) A method for evaluating analgesic agents in rats. J Pharmacol Meth 4:251–259

    CAS  Google Scholar 

  • Heapy CG, Shaw JS, Farmer SC (1993) Differential sensitivity of antinociceptive assays to the bradykinin antagonist Hoe 140. Br J Pharmacol 108:209–213

    PubMed  CAS  Google Scholar 

  • Hendershot LC, Forsaith J (1959) Antagonism of the frequency of phenylquinone-induced writhing in the mouse by weak analgesics and non-analgesics. J Pharmacol Exp Ther 125:237–240

    PubMed  CAS  Google Scholar 

  • Kokka N, Fairhurst AS (1977) Naloxone enhancement of acetic acid-induced writhing in rats. Life Sci 21:975–980

    PubMed  CAS  Google Scholar 

  • Koster R, Anderson M, de Beer EJ (1959) Acetic acid for analgesic screening. Fed Proc 18:412

    Google Scholar 

  • Loux JJ, Smith S, Salem H (1978) Comparative analgesic testing of various compounds in mice using writhing techniques. Arzneim Forsch/Drug Res 28:1644–1677

    CAS  Google Scholar 

  • Nakamura H, Shimoda A, Ishii K, Kadokawa T (1986) Central and peripheral analgesic action of non-acidic non-steroidal anti-inflammatory drugs in mice and rats. Arch Int Pharmacodyn 282:16–25

    PubMed  CAS  Google Scholar 

  • Nolan JC, Osman MA, Cheng LK, Sancilio LF (1990) Bromfenac, a new nonsteroidal anti-inflammatory drug: Relationship between the anti-inflammatory and analgesic activity and plasma drug levels in rodents. J Pharm Exp Ther 254:104–108

    CAS  Google Scholar 

  • Okun R, Liddon SC, Lasagna L (1963) The effects of aggregation, electric shock, and adrenergic blocking drugs on inhibition of the “writhing syndrome”. J Pharm Exp Ther 139:107–109

    CAS  Google Scholar 

  • Rae GA, Souza RLN, Takahashi RN (1986) Methylnalorphinium fails to reverse naloxone-sensitive stress-induced analgesia in mice. Pharmacol Biochem Behav 24:829–832

    PubMed  CAS  Google Scholar 

  • Sancillo LF, Nolan JC, Wagner LE, Ward JW (1987) The analgesic and antiinflammatory activity and pharmacologic properties of Bromfenac. Arzneim Forsch/Drug Res 37:513–519

    Google Scholar 

  • Schweizer A, Brom R, Scherrer H (1988) Combined automatic writhing/motility test for testing analgesics. Agents Actions 23:29–31

    PubMed  CAS  Google Scholar 

  • Siegmund E, Cadmus R, Lu G (1957) A method for evaluating both non-narcotic and narcotic analgesics. Proc Soc Exp Biol Med 95:729

    PubMed  CAS  Google Scholar 

  • Taber RI, Greenhouse DD, Rendell JK, Irwin S (1969) Agonist and antagonist interactions of opioids on acetic acid-induced abdominal stretching in mice. J Pharm Exp Ther 169:29–38

    CAS  Google Scholar 

  • VonVoigtlander PF, Lewis RA (1982) Air-induced writhing: a rapid broad spectrum assay for analgesics. Drug Dev Res 2:577–581

    Google Scholar 

  • VonVoigtlander PF, Lewis RA (1983) A withdrawal hyperalgesia test for physical dependence: evaluation of μ and mixed partial opioid agonists. J Pharmacol Meth 10:277–282

    CAS  Google Scholar 

  • Whittle BA (1964) The use of changes in capillary permeability in mice to distinguish between narcotic and non narcotic analgesics. Br J Pharmacol 22:246–253

    CAS  Google Scholar 

References

  • Amann R, Schuligoi R, Herzeg G, Donnerer J (1955) Intraplantar injection of nerve growth factor into the rat hind paw: local edema and effects on thermal nociceptive threshold. Pain 64:323–329

    Google Scholar 

  • Amann R, Schuligoi R, Lanz I, Peskar BA (1996) Effect of a 5-lipoxygenase inhibitor on nerve growth factor-induced thermal hyperalgesia in the rat. Eur J Pharmacol 306:89–91

    PubMed  CAS  Google Scholar 

  • Chipkin RE, Latranyi MB, Iorio LC, Barnett A (1983) Determination of analgesic drug efficacies by modification of the Randall and Selitto rat yeast paw test. J Pharmacol Meth 10:223–229

    CAS  Google Scholar 

  • Courteix C, Bardin M, Chantelauze C, Lavarenne L, Eschalier A (1994) Study of the sensitivity of the diabetes-induced pain model in rats to a range of analgesics. Pain 57:153–160

    PubMed  CAS  Google Scholar 

  • Davis AJ, Perkins MN (1996) Substance P and capsaicin-induced mechanical hyperalgesia in the rat knee joint; the involvement of bradykinin B1 and B2 receptors. Br J Pharmacol 118:2206–2212

    PubMed  CAS  Google Scholar 

  • Dubinsky B, Gebre-Mariam S, Capetola RJ, Rosenthale ME (1987) The analgesic drugs: Human therapeutic correlates of their potency in laboratory animals of hyperalgesia. Agents Actions 20:50–60

    PubMed  CAS  Google Scholar 

  • Ferreira SH, Nakamura M, DeAbreu Castro MS (1978a) The hyperalgesic effects of prostacyclin and prostaglandin E2. Prostaglandins 16:31–37

    PubMed  CAS  Google Scholar 

  • Ferreira SH, Lorenzetti BB, Corrêa FMA (1978b) Central and peripheral antialgesic action of aspirin-like drugs. Eur J Pharmacol 53:39–48

    PubMed  CAS  Google Scholar 

  • Ferreira SH, Lorenzetti BB, Poole S (1993a) Bradykinin initiates cytokine-mediated inflammatory hyperalgesia. Br J Pharmacol 110:1227–1231

    PubMed  CAS  Google Scholar 

  • Ferreira SH, Lorenzetti BB, Cunha FQ, Poole S (1993b) Bradykinin release of TNF-α plays a key role in the development of inflammatory hyperalgesia. Agents Actions 38:C7–C9

    PubMed  CAS  Google Scholar 

  • Greindl MG, Preat S (1976) A new model of active avoidance conditioning adequate for pharmacological studies. Arch Int Pharmacodyn 223:168–170

    PubMed  CAS  Google Scholar 

  • Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    PubMed  CAS  Google Scholar 

  • Kitchen I (1984) Modification of an analgesy meter for paw-pressure antinociceptive testing in neonatal rats. J Pharmacol Meth 12:255–258

    CAS  Google Scholar 

  • Perkins MN, Campell E, Dray A (1993) Antinociceptive activity of the bradykinin B1 and B2 receptor antagonists, des-Arg9, [Leu8]-BK and Hoe 140, in two models of persistent hyperalgesia in rats. Pain 53:191–197

    PubMed  CAS  Google Scholar 

  • Randall LO, Selitto JJ (1957) A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn 111:409–419

    PubMed  CAS  Google Scholar 

  • Rios L, Jacob JJC (1982) Inhibition of inflammatory pain by naloxone and its N-methyl quaternary analogue. Life Sci 31:1209–1212

    PubMed  CAS  Google Scholar 

  • Romer D (1980) Pharmacological evaluation of mild analgesics. Br J Clin Pharmacol 10:247S–251S

    PubMed  Google Scholar 

  • Takesue EI, Schaefer W, Jukniewicz E (1969) Modification of the Randall-Selitto analgesic apparatus. J Pharm Pharmacol 21:788–789

    PubMed  CAS  Google Scholar 

  • Tanaka K, Shimotori T, Makino S, Aikawa Y, Inaba T, Yoshida C, Takano S (1992) Pharmacological studies of the new antiinflammatory agent 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-1-benzopyran-4-one. 1st Communication: antiinflammatory, analgesic and other related properties. Arzneim Forsch/Drug Res 42:935–944

    CAS  Google Scholar 

  • Vinegar R, Truax JF, Selph JL, Johnston PR (1989) Pharmacologic characterization of the algesic response to the subplantar injection of serotonin in the rat. Eur J Pharmacol 164:497–505

    PubMed  CAS  Google Scholar 

  • Vinegar R, Truax JF, Selph JL, Johnston PR (1990) New analgesic assay utilizing trypsin-induced hyperalgesia in the hind limb of the rat. J Pharmacol Meth 23:51–61

    CAS  Google Scholar 

  • Winter CA, Flakater L (1965) Reaction thresholds to pressure in edematous hindpaws of rats and response to analgesic drugs. J Pharm Exp Ther 150:165–171

    CAS  Google Scholar 

  • Winter CW, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    PubMed  CAS  Google Scholar 

  • Zhou S, Bonasera L, Carlton SM (1996) Peripheral administration of NMDA, AMPA, or KA results in pain behaviors of rats. NeuroReport 7:895–900

    PubMed  CAS  Google Scholar 

References

  • Brasch H, Zetler G (1982) Caerulein and morphine in a model of visceral pain. Effects on the hypotensive response to renal pelvis distension in the rat. Naunyn-Schmiedeberg's Arch Pharmacol 319:161–167

    CAS  Google Scholar 

  • Colburn RW, Coombs DW, Degnan CC, Rogers LL (1989) Mechanical visceral pain model: chronic intermittent intestinal distension in the rat. Physiol Behav 45:191–197

    PubMed  CAS  Google Scholar 

  • deLeo JA, Colburn RW, Coombs DW, Ellis MA (1989) The differentiation of NSAIDs and prostaglandin action using a mechanical visceral pain model in the rat. Pharmacol Biochem Behav 33:253–255

    PubMed  CAS  Google Scholar 

  • Moss HE, Sanger GJ (1990) Effects of granisetron, ICS 205–930 and ondansetron on the visceral pain reflex induced by duodenal extension. Br J Pharmacol 100:497–501

    PubMed  CAS  Google Scholar 

  • Ness TJ, Gebhart FG (1988) colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudoaffective reflexes in the rat. Brain Res 450:153–169

    PubMed  CAS  Google Scholar 

References

  • Adachi KI, Ishii Y (1979) Vocalization response to close-arterial injection of bradykinin and other algesic agents in guinea pigs and its application to quantitative assessment of analgesic agents. J Pharm Exp Ther 209:117–124

    CAS  Google Scholar 

  • Ahluwalia A, Maggi CA, Santicioli P, Lecci A, Giuliani S (1994) Characterization of the capsaicin-sensitive component of cyclophosphamide-induced inflammation in the rat urinary bladder. Br J Pharmacol 111:1017–1022

    PubMed  CAS  Google Scholar 

  • Beck PW, Handwerker HO (1974) Bradykinin and serotonin effects on various types of cutaneous nerve fibres. Pflügers Arch 347:209–222

    PubMed  CAS  Google Scholar 

  • Blane GF (1968) A new laboratory model for evaluating analgesic and analgesic-antagonist drugs. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Academic Press, London, New York, pp 218–222

    Google Scholar 

  • Collier HOJ, Lee IR (1963) Nociceptive responses of guineapigs to intradermal injections of bradykinin and kallidin-10. Br J Pharmacol 21:155–164

    CAS  Google Scholar 

  • Davis AJ, Perkins MN (1994a) Induction of B1 receptors in vivo in a model of persistent mechanical hyperalgesia in the rat. Neuropharm 33:127–133

    CAS  Google Scholar 

  • Davis AJ, Perkins MN (1994b) Involvement of bradykinin B1 and B2 receptor mechanisms in cytokine-induced mechanical hyperalgesia in rats. Br J Pharmacol 113:63–68

    PubMed  CAS  Google Scholar 

  • Deffenu G, Pegrasso L, Lumachi B (1966) The use of bradykinin-induced effects in rats as an assay for analgesic drugs. J Pharm Pharmac 18:135

    CAS  Google Scholar 

  • Griesbacher T, Lembeck F (1987) Effect of bradykinin antagonists on bradykinin-induced plasma extravasation, venoconstriction, prostaglandin E2 release, nociceptor stimulation and contraction of the iris sphincter muscle in the rabbit. Br J Pharmacol 92:333–340

    PubMed  CAS  Google Scholar 

  • Guzman F, Braun C, Lim RKS (1962) Visceral pain and the pseudoaffective response to intra-arterial injection of bradykinin and other algesic agents. Arch Int Pharmacodyn 136:353–384

    PubMed  CAS  Google Scholar 

  • Heapy CG, Shaw JS, Farmer SC (1993) Differential sensitivity of antinociceptive assays to the bradykinin antagonist Hoe 140. Br J Pharmacol 108:209–213

    PubMed  CAS  Google Scholar 

  • Haubrich DR, Ward SJ, Baizman E, Bell MR, Bradford J, Ferrari R, Miller M, Perrone M, Pierson AK, Saelens JK, Luttinger D (1990) Pharmacology of pravodoline: a new analgesic agent. J Pharmacol Exp Ther 255:511–521

    PubMed  CAS  Google Scholar 

  • Lecci A, Giuliani S, Meine S, Maggi CA (1995) Pharmacological analysis of the local and reflex responses to bradykinin on rat urinary bladder motility in vivo. Br J Pharmacol 114:708–714

    PubMed  CAS  Google Scholar 

  • Lembeck F, Griesbacher T, Eckhardt M, Henke S, Breipohl G, Knolle J (1991) New, long acting, potent bradykinin antagonists. Br J Pharmacol 102:297–304

    PubMed  CAS  Google Scholar 

  • Lim RKS (1970) Pain. Annu Rev Physiol 32:269–288

    PubMed  CAS  Google Scholar 

  • Lim RKS, Guzman F (1968) Manifestations of pain in analgesic evaluation in animals and man. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Academic Press, London, New York, pp 119–152

    Google Scholar 

  • Lim RKS, Guzman F, Rodgers DW, Goto K, Braun C, Dickerson GD, Engle RJ (1964) Site of action of narcotic and non-narcotic analgesics determined by blocking bradykinin-evoked visceral pain. Arch Int Pharmacodyn 152:25–58

    PubMed  CAS  Google Scholar 

  • Satoh M, Kawajiri SI, Yamamoto M, Makino H, Takagi H (1979) Reversal by naloxone of adaptation of rats to noxious stimuli. Life Sci 24:685–690

    PubMed  CAS  Google Scholar 

  • Teixeira MM, Doenhoff MJ, McNeice C, Williams TJ, Hellewell PG (1993) Mechanisms of the inflammatory response induced by extracts of Schistosoma mansoni larvae in guinea pig skin. J Immunol 151:5525–5534

    PubMed  CAS  Google Scholar 

  • Vargaftig B (1966) Effet des Analgésiques non narcotiques sur l'hypotension due à la Bradykinine. Experientia 22:182–183

    PubMed  CAS  Google Scholar 

References

  • Aanonsen LM, Wilcox GL (1987) Nociceptive action of excitatory amino acids in the mouse: effects of spinally administered opioids, phencyclidine and sigma agonists. J Pharmacol Exp Ther 243:9–19

    PubMed  CAS  Google Scholar 

  • Aanonsen LM, Lei S, Wilcox GL (1990) Excitatory amino acid receptors and nociceptive neurotransmission in rat spinal cord. Pain 41:309–321

    PubMed  CAS  Google Scholar 

  • Bahar M, Nunn JF, Rosen M, Flecknell P (1984) Differential sensory and motor blockade after spinal cocaine in the rat and marmoset. Eur J Anaesthesiol 1:31–36

    PubMed  CAS  Google Scholar 

  • Brambilla A, Prudentio A, Grippa N, Borsini F (1996) Pharmacological characterization of AMPA-induced biting behavior in mice. Eur J Pharmacol 305:115–117

    PubMed  CAS  Google Scholar 

  • Carlsson KH, Helmreich J, Jurna I (1986) Comparison of central antinociceptive and analgesic effects of the pyrazolone derivatives, metamizol (Dipyrone) and aminophenzone (“Pyramidon”). Schmerz — Pain — Douleur 3:93–100

    Google Scholar 

  • Carlsson KH, Monzel W, Jurna I (1988) Depression of morphine and the non-opioid analgesic agents, metamizol (dipyrone), lysine acetyl salicylate, and paracetamol, of activity in rat thalamus neurons evoked by electrical stimulation of nociceptive afferents. Pain 32:313–326

    PubMed  CAS  Google Scholar 

  • Chapman V, Dickenson AH (1992) The spinal and peripheral roles of bradykinin and prostaglandins in nociceptive processing in the rat. Eur J Pharmacol 219:427–433

    PubMed  CAS  Google Scholar 

  • Chizh BA, Cumberbatch MJ, Headley PM (1994) A comparison of intravenous NBQX and GYKI 53655 as AMPA antagonists in the rat spinal cord. Br J Pharmacol 112:843–846

    PubMed  CAS  Google Scholar 

  • Cumberbatch MJ, Chizh BA, Headley PM (1994) AMPA receptors have an equal role in spinal nociceptive and non-nociceptive transmission. NeuroReport 5:877–880

    PubMed  CAS  Google Scholar 

  • Dray A, Patel IA, Perkin MN, Rueff A (1992) Bradykinin-induced activation of nociceptors: receptor and mechanistic studies on the neonatal rat spinal cord-tail preparation in vitro. Br J Pharmacol 107:1129–1134

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Fukuda N (1990) New spinal cord injury model produced by spinal cord compression in the rat. J Pharmacol Meth 23:203–212

    CAS  Google Scholar 

  • He X, Neugebauer V, Schaible HG, Schmidt RF (1990a) Effects of antipyretic analgesics on pain-related neurons of the spinal cord. In: Brune K, Santoso B (eds) Antipyretic Analgesics: New Insights. Birkhäuser Verlag, Basel, pp 13–23

    Google Scholar 

  • He X, Neugebauer V, Schaible HG, Schmidt RF (1990b) New aspects of the mode of action of dipyrone. In: Brune K (ed) New Pharmacological and Epidemiological Data in Analgesics Research. Birkhäuser Verlag, Basel, pp 9–18

    Google Scholar 

  • Hylden JLK, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67:313–316

    PubMed  CAS  Google Scholar 

  • Jurna I, Brune K (1990) Central effect of the non-steroid anti-inflammatory agents, indomethacin, ibuprofen, and diclofenac, determined in C fibre-evoked activity in single neurons of rat thalamus. Pain 41:71–80

    PubMed  CAS  Google Scholar 

  • Malmberg AB, Yaksh TL (1992) Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science 257:1276–1279

    PubMed  CAS  Google Scholar 

  • McQueen DS, Iggo A, Birrell GJ, Grubb BD (1991) Effects of paracetamol and aspirin on neural activity of joint mechanociceptors in adjuvant arthritis. Br J Pharmacol 104:178–182

    PubMed  CAS  Google Scholar 

  • Mestre C, Pélissier T, Fialip J, Wilcox G, Eschalier A (1994) A method to perform direct transcutaneous intrathecal injections in rats. J Pharmacol Toxicol Meth 32:197–200

    CAS  Google Scholar 

  • Mjellem N, Lund A, Hole K (1993) Different functions of spinal 5-HT1A and 5-HT2 receptor subtypes in modulating behaviour induced by excitatory amino acid receptor agonists in mice. Brain Res 626:78–82

    PubMed  CAS  Google Scholar 

  • Neugebauer V, Schaible HG (1990) Evidence for a central component in the sensitization of spinal neurons with joint input during development of acute arthritis in cat's knee. J Neurophysiol 64:299–311

    PubMed  CAS  Google Scholar 

  • Neugebauer V, Schaible HG, He X, Lücke T, Gündlich P, Schmidt RF (1994) Electrophysiological evidence for a spinal antinociceptive action of dipyrone. Agents Actions 41:62–70

    PubMed  CAS  Google Scholar 

  • Schaible HG, Schmidt RF (1983a) Responses of fine medial articular nerve afferents to passive movements of knee joint. J Neurophysiol 49:1118–1126

    PubMed  CAS  Google Scholar 

  • Schaible HG, Schmidt RF (1983b) Activation of groups III and IV sensory units in medial articular nerve by local mechanical stimulation of knee joint. J Neurophysiol 49:35–44

    PubMed  CAS  Google Scholar 

  • Schaible HG, Schmidt RF (1985) Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 54:1109–1122

    PubMed  CAS  Google Scholar 

  • Schaible HG, Schmidt RF (1988) Time course of mechanosensitivity changes in articular afferents during a developing experimental arthritis. J Neurophysiol 60:2180–2195

    PubMed  CAS  Google Scholar 

  • Schaible HG, Schmidt RF, Willis WD (1987) Enhancement of the responses of ascending tract cells in the cat spinal cord by acute inflammation of the knee joint. Exp Brain Res 66:489–499

    PubMed  CAS  Google Scholar 

  • Szolcsányi J (1996) Capsaicin-sensitive sensory nerve terminals with local and systemic efferent functions: facts and scopes of an unorthodox neuroregulatory mechanism. Progr Brain Res 113:343–359

    Google Scholar 

  • Watkins LR, Wiertelak EP, Furness LE, Maier SF (1994) Illness-induced hyperalgesia is mediated by spinal neuropeptides and excitatory amino acids. Brain Res 664:17–24

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Yaksh TL (1992) Spinal pharmacology of thermal hyperesthesia induced by constriction injury of sciatic nerve Excitatory amino acid antagonists. Pain 49:121–128

    PubMed  CAS  Google Scholar 

References

  • Alla SA, Buschko J, Quitterer U, Maidhof A, Haasemann M, Breipohl G, Knolle J, Müller-Esterl W (1993) Structural features of human bradykinin B2 receptor probed by agonists, antagonists, and anti-idiotypic antibodies. J Biol Chem 268:17277–17285

    PubMed  CAS  Google Scholar 

  • Bascands JL, Pecher C, Rounaud S, Emond C, Tack JL, Bastie MJ, Burch R, Regoli D, Girolami JP (1993) Evidence for existence of two distinct bradykinin receptors on rat mesangial cells. Am J Physiol 264:F548–F556

    PubMed  CAS  Google Scholar 

  • Brenner NJ, Stonesifer GY, Schneck KA, Burns HD, Ransom RW (1993) [125I]PIP HOE 140, a high affinity radioligand for bradykinin B2 receptors. Life Sci 53:1879–1886

    PubMed  CAS  Google Scholar 

  • Burch RM, Kyle DJ (1992) Minireview: Recent developments in the understanding of bradykinin receptors. Life Sci 50:829–838

    PubMed  CAS  Google Scholar 

  • Burch RM, Farmer SG, Steranka LR (1990) Bradykinin receptor antagonists. Medicin Res Rev 10:237–239

    CAS  Google Scholar 

  • Burch RM, Kyle DJ, Stormann TM (1993) Molecular Biology and Pharmacology of Bradykinin Receptors: The Pharmacological Classification of Kinins. RG Landes Comp., Austin, pp 6–18

    Google Scholar 

  • Butt SK, Dawson LG, Hall JM (1995) Bradykinin B1 receptors in the rabbit urinary bladder: induction of responses, smooth muscle contraction, and phopshatidylinositol hydrolysis. Br J Pharmacol 114:612–617

    PubMed  CAS  Google Scholar 

  • Campos MM, Souza GEP, Calixto JB (1996) Upregulation of B1 receptor mediating des-Arg9-BK-induced rat paw edema by systemic treatment with bacterial endotoxin. Br J Pharmacol 117:793–798

    PubMed  CAS  Google Scholar 

  • Drummond GR, Cocks TM (1995) Endothelium-dependent relaxations mediated by inducible B1 and constitutive B2 kinin receptors in the bovine coronary artery. Br J Pharmacol 116:2473–2481

    PubMed  CAS  Google Scholar 

  • Eggerickx D, Raspe E, Bertrand D, Vassart G, Parmentier M (1992) Molecular cloning, functional expression and pharmacological characterization of a human bradykinin B2 receptor gene. Biochem Biophys Res Commun 187:1306–1313

    PubMed  CAS  Google Scholar 

  • Emond C, Bascands JL, Pecher C, Cabos-Boutot G, Pradelles P, Regoli D, Girolami JP (1990) Characterization of a B2-bradykinin receptor in rat mesangial cells. Eur J Pharmacol 190:381–392

    PubMed  CAS  Google Scholar 

  • Falcone RC, Hubbs SJ, Vanderloo JD, Prosser JC, Little J, Gomes B, Aharony D, Krell RD (1993) Characterization of bradykinin receptors in guinea pig gall bladder. J Pharm Exp Ther 266:1291–1299

    CAS  Google Scholar 

  • Farmer SG, Burch RM, Meeker SA, Wilkins DE (1989) Evidence for a pulmonary B3 bradykinin receptor. Mol Pharmacol 36:1–8

    PubMed  CAS  Google Scholar 

  • Félétou M, Germain M, Thurieau C, Fauchère JL, Canet E (1994) Agonistic and antagonistic properties of the bradykinin B2 receptor antagonist, Hoe 140, in isolated blood vessels from different species. Br J Pharmacol 112:683–689

    PubMed  Google Scholar 

  • Feres T, Paiva ACM, Paiva TB (1992) BK1 and BK2 bradykinin receptors in the rat duodenum smooth muscle. Br J Pharmacol 107:991–995

    PubMed  CAS  Google Scholar 

  • Field JL, Hall JM, Morton IKM (1992) Putative novel bradykinin B3 receptors in the smooth muscle of the guinea-pig taenia caeci and trachea. Recent Progress on Kinins, Birkhäuser Basel, pp 540–545

    Google Scholar 

  • Field JL, Butt SK, Morton IKM, Hall JM (1994) Bradykinin B2 receptors and coupling mechanisms in the smooth muscle of guinea-pig taenia caeci. Br J Pharmacol 113:607–613

    PubMed  CAS  Google Scholar 

  • Galizzi JP, Bodinier MC, Chapelain B, Ly SM, Coussy L, Giraud S, Neliat G, Jean T (1994) Up-regulation of [3H]-des-arg10-kallidin binding to the bradykinin B1 receptor by interleukin-1β in isolated smooth muscle cells: correlation with B1 agonist-induced PGI2 production. Br J Pharmacol 113:389–394

    PubMed  CAS  Google Scholar 

  • Gobeil F, Regoli D (1994) Characterization of kinin receptors by bioassays. Braz J Med Biol Res 27:1781–1791

    PubMed  CAS  Google Scholar 

  • Graneß A, Liebmann C (1994) Affinity cross-linking of bradykinin B2 receptors in guinea pig ileum membranes. Eur J Pharmacol 268:271–274

    PubMed  Google Scholar 

  • Hess JKF, Borkowski JA, Young GS, Strader CD, Ramson RW (1992) Cloning and pharmacological characterization of a human bradykinin (BK-2) receptor. Biochem Biophys Res Commun 184:260–268

    PubMed  CAS  Google Scholar 

  • Hock FJ, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102:769–773

    PubMed  CAS  Google Scholar 

  • Innis RB, Manning DC, Stewart JM, Snyder SH (1981) [3H]Bradykinin receptor binding in mammalian tissue membranes. Proc Natl Acad Sci USA., 78:2630–2634

    PubMed  CAS  Google Scholar 

  • Kachur JF, Allbee W, Danjo W, Gaginella TS (1987) Bradykinin receptors: functional similarities in guinea pig gut muscle and mucosa. Regul Peptides 17:63–70

    CAS  Google Scholar 

  • Liebmann C, Bossé R, Escher E (1994b) Discrimination between putative bradykinin B2 receptor subtypes in guinea pig ileum smooth muscle membranes with a selective, iodinatable, bradykinin analogue. Molec Pharmacol 46:949–956

    CAS  Google Scholar 

  • Liebmann C, Mammery K, Graneß A (1994a) Bradykinin inhibits adenylate cyclase activity in guinea pig membranes via a separate high-affinity bradykinin B2 receptor. Eur J Pharmacol 288:35–43

    PubMed  CAS  Google Scholar 

  • Manning DC, Vavrek R, Stewart JM, Snyder SH (1986) Two bradykinin binding sites with picomolar affinities. J Pharmacol Exp Ther 237:504–512

    PubMed  CAS  Google Scholar 

  • McEachern AE, Shelton ER, Bhakta S, Obernolte R, Bach C, Zuppan P, Fujisaki J, Aldrich RW, Jarnagin K (1991) Proc Natl Acad Sci USA 88:7724–7728

    PubMed  CAS  Google Scholar 

  • McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14:213–228

    CAS  Google Scholar 

  • Pruneau D, Bélichard P (1993) Induction of bradykinin B1 receptor-mediated relaxation in the isolated rabbit carotid artery. Eur J Pharmacol 239:63–67

    PubMed  CAS  Google Scholar 

  • Regoli D, Gobeil F, Nguyen QT, Jukic D, Seoane PR, Salvino JM, Sawutz DG (1994) Bradykinin receptor types and B2 subtypes. Life Sci 55:735–749

    PubMed  CAS  Google Scholar 

  • Rhaleb NE, Carretero OA (1994) The role of B1 and B2 receptors and of nitric oxide in bradykinin-induced relaxation and contraction of isolated rat duodenum. Life Sci 55:1351–1363

    PubMed  CAS  Google Scholar 

  • Rhaleb NE, Rouissi N, Jukic D, Regoli D, Henke S, Breipohl G, Knolle J (1992) Pharmacological characterization of a new highly potent B2 receptor antagonist (HOE 140: D-arg[hyp3,thi5,D-tic7,oic8]bradykinin. Eur J Pharmacol 210:115–120

    PubMed  CAS  Google Scholar 

  • Schneck KA, Hess JF, Stonisifer GY, Ransom RW (1994) Bradykinin B1 receptors in rabbit aorta smooth muscle in culture. Eur J Pharmacol, Mol Pharmacol Sect 266:277–282

    CAS  Google Scholar 

  • Seguin L, Widdowson PS (1993) Effects of nucleotides on [3H]bradykinin binding in guinea pig: further evidence for multiple B2 receptor subtypes. J Neurochem 60:652–757

    Google Scholar 

  • Seguin L, Widdowson PS, Giesen-Crouse E (1992) Existence of three subtypes of bradykinin B2 receptors in guinea pig. J Neurochem 59:2125–2133

    PubMed  CAS  Google Scholar 

  • Simpson PB, Woollacott AJ, Hill RG, Seabrook GR (2000) Functional characterization of bradykinin analogues on recombinant human bradykinin B1 and B2 receptors. Eur J Pharmacol 392:1–9

    PubMed  CAS  Google Scholar 

  • Tropea MM, Gummelt D, Herzig MS, Leeb-Lundberg LMF (1994) B1 and B2 kinin receptors on cultured rabbit superior mesenteric artery smooth muscle cells: receptor specific stimulation of inositol phosphate formation and arachidonic acid release by des-arg9-bradykinin and bradykinin. J Pharmacol Exp Ther 264:930–937

    Google Scholar 

  • Wiemer G, Wirth K (1992) Production of cyclic GMP via activation of B1 and B2 kinin receptors in cultured bovine aortic endothelial cells. J Pharm Exp Ther 262:729–733

    CAS  Google Scholar 

  • Wirth K, Breipohl G, Stechl J, Knolle J, Henke S, Schölkens B (1991) DesArg9-D-Arg[Hyp3,Thi5,D-Tic7,Oic8]bradykinin (desArg10-[Hoe140]) is a potent bradykinin B1 receptor antagonist. Eur J Pharmacol 205:217–218

    PubMed  CAS  Google Scholar 

  • Wirth KJ, Schölkens BA, Wiemer G (1994) The bradykinin B2 receptor antagonist WIN 64338 inhibits the effect of des-arg9-bradykinin in endothelial cells. Eur J Pharmacol 288:R1–R2

    PubMed  CAS  Google Scholar 

  • Wirth KJ, Wiemer G, Schölkens BA (1992) Des-Arg10[HOE 140] is a potent B1 bradykinin antagonist. Recent Progress on Kinins. Birkhäuser, Basel, pp 406–413

    Google Scholar 

  • Yang CM, Luo SF, Hsia HC (1995) Pharmacological characterization of bradykinin receptors in canine cultured tracheal smooth muscle cells. Br J Pharmacol 144:67–72

    Google Scholar 

References

  • Beaujouan JC, Saffroy M, Torrens Y, Glowinski J (1997) Potency and selectivity of the tachykinin NK3 receptor antagonist SR 14801. Eur J Pharmacol 319:307–316

    PubMed  CAS  Google Scholar 

  • Beresford IJM, Sheldrick RLG, Ball DI, Turpin MP, Walsh DM, Hawcock AB, Coleman RA, Hagan RM, Tyers MB (1995) GR159897, a potent non-peptide antagonist at tachykinin NK2 receptors. Eur J Pharmacol 272:241–248

    PubMed  CAS  Google Scholar 

  • Bonnet J, Kucharczyk N, Robineau P Lonchampt M, Dacquet C, Regoli D, Fauchère JL, Canet E (1996) A water soluble, stable dipeptide NK1 receptor-selective neurokinin receptor antagonist with potent in vivo pharmacological effects: S18523. Eur J Pharmacol 310:37–46

    PubMed  CAS  Google Scholar 

  • Bristow LJ, Young L (1994) Chromodacryorrhea and repetitive hind paw tapping. Models of peripheral and central tachykinin NK1 receptor activation in gerbils. Eur J Pharmacol 253:245–252

    PubMed  CAS  Google Scholar 

  • Cascieri MA, Ber E, Fong TM, Sadowski S, Bansal A, Swain C, Seward E, Frances B, Burns D, Strader CD (1992) Characterization of the binding of a potent, selective, radioiodinated antagonist to the human neurokinin-1 receptor. Mol Pharmacol 42:458–463

    PubMed  CAS  Google Scholar 

  • Chang MM, Leeman SE, Niahl HD (1971) Amino acid sequence of substance P. Nature 232:86–88

    CAS  Google Scholar 

  • Chapman V, Buritova J, Honoré P, Besson JM (1996) Physiological contribution of neurokinin 1 receptor activation, and interactions with NMDA receptors, to inflammatory-evoked spinal c-Fos expression. J Neurophysiol 76:1817–1827

    PubMed  CAS  Google Scholar 

  • Emonds-Alt X, Doutremepuich JD, Heaulme M, Neliat G, Santucci V, Steinberg R, Vilain P, Bichon D, Ducoux JP, Proietto V, van Broeck D, Soubrié P, le Fur G, Brelière JC (1993) In vitro and in vivo biological activities of SR140333, a novel potent non-peptide tachykinin NK1 receptor antagonist. Eur J Pharmacol 250:403–413

    PubMed  CAS  Google Scholar 

  • Edmonds-Alt X, Bichon D, Ducoux JP, Heaulme M, Miloux B, Poncelet M, Proietto V, van Broeck D, Vilain P, Soubrié P, le Fur G, Brelière JC (1995) SR 142801, the first potent nonpeptide antagonist of the tachykinin NK3 receptor. Life Sci 56:PL 27–32

    Google Scholar 

  • Guard S, Watson S, Maggio JE, Too HP, Waitling KJ (1990) Pharmacological analysis of [3H]-senktide binding to NK3 tachykinin receptors in guinea-pig ileum longitudinal muscle-myenteric plexus and cerebral cortex membranes. Br J Pharmacol 99:767–773

    PubMed  CAS  Google Scholar 

  • Hagan RM, Ireland SJ, Jordan CC, Beresford IJM, Deal MJ, Ward P (1991) Receptor-selective, peptidase resistant agonists at neurokinin NK-1 and NK-2 receptors: new tools for investigating neurokinin function. Neuropeptides 19:127–135

    PubMed  CAS  Google Scholar 

  • Hagan RM, Beresford IJM, Stables J, Dupere J, Stubbs CM, Elliott PJ, Sheldrick RLG, Chollet A, Kawashima E, McElroy AB, Ward P (1993) Characterization, CNS distribution and function of NK2 receptors studied using potent NK2 receptor antagonists. Regul Pept 46:9–19

    PubMed  CAS  Google Scholar 

  • Henry JL (1987) Discussion of nomenclature for tachykinins and tachykinin receptors. In: Henry JL et al. (eds) Substance P and Neurokinins. Springer-Verlag, Heidelberg, p XVII

    Google Scholar 

  • Herbert JM, Bernat A (1996) Effect of SR 140333, a selective NK1 antagonist, on antigen-induced oedema formation in rat skin. J Lipid Mediat Cell Signal 13:223–232

    PubMed  CAS  Google Scholar 

  • Hökfelt T, Kellerth JO, Nilsson G, Pernow B (1975) Substance P: Localization in the central nervous system and in some primary sensory neurons. Science 190:889–890

    PubMed  Google Scholar 

  • Jung M, Calassi R, Maruani J, Barnouin MC, Souilhac J, Poncelet M, Gueudet C, Edmonds-Alt X, Soubriè P, Brelière JC, le Fur G (1994) Neuropharmacological characterization of SR 140333, a non peptide antagonist of NK1 receptors. Neuropharmacol 33:167–179

    CAS  Google Scholar 

  • Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Lui G, Snavely D, Wyatt-Knowles E, Hale JJ, Mills SG, MacCoss M, Swain CJ, Harrison T, Hill RG, Hefti F, Scolnik EM, Cascieri MA, Chicchi GG; Sadowski S, Williams AR, Hewson L, Smith D, Carlson EJ, Hargreaves J, Rupniak NMJ (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281:1640–1645

    PubMed  CAS  Google Scholar 

  • Kudlacz EM, Knippenberg RW, Shatzer SA, Kehne JH, McCloskey TC, Burkholder TP (1997) The peripheral NK-1/NK-2 receptor antagonist MDL 105,172A inhibits tachykinin-mediated respiratory effects in guinea-pigs. J Autonom Pharmacol 17:109–119

    CAS  Google Scholar 

  • Lecci A, Giulani S, Tramontana M, Criscuoli M, Maggi CA (1997) MEN 11,420, a peptide tachykinin NK2 receptor antagonist, reduces motor responses induced by intravesical administration of capsaicin in vivo. Naunyn Schmiedeberg's Arch Pharmacol 356:182–188

    CAS  Google Scholar 

  • Lembeck F (1953) Zur Frage der zentralen Übertragung afferenter Impulse. III. Mitteilung. Das Vorkommen und die Bedeutung der Substanz P in den dorsalen Wurzeln des Rückenmarks. Arch Exp Path Pharmakol 219:197–213

    CAS  Google Scholar 

  • Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn Schmiedeberg's Arch Pharmacol 310:175–183

    CAS  Google Scholar 

  • Longmore J, Swain CJ, Hill RG (1995) Neurokinin receptors. Drug News Perspect 8:5–12

    Google Scholar 

  • Maggi CA (2000) The troubled story of tachykinins and neurokinins. Trends Pharmacol Sci 21:173–175

    PubMed  CAS  Google Scholar 

  • Maggi CA, Patacchini R, Rovero P, Giachetti A (1993) Tachykinin receptors and tachykinin receptor antagonists. J Autonom Pharmacol 13:23–93

    CAS  Google Scholar 

  • Mussap CJ, Geraghty DP, Burcher E (1993) Tachykinin receptors. A radioligand binding perspective. J Neurochem 6:1987–2009

    Google Scholar 

  • Nguyen-Le XK, Nguyen QT, Gobeil F, Pheng LH, Emonds-Alt X, Brelière JC, Regoli D (1996) Pharmacological characterization of SR 142801: a new non-peptide antagonist of the neurokinin NK-3 receptor. Pharmacology 52:283–291

    PubMed  CAS  Google Scholar 

  • Palframan RT, Costa SKP, Wilsoncroft P, Antunes E, de Nucci G, Brain SD (1996) The effect of a tachykinin NK1 receptor antagonist, SR 14033, on oedema formation induced in rat skin by venom from the Phoneutria nigriventer spider. Br J Pharmacol 118:295–298

    PubMed  CAS  Google Scholar 

  • Patacchini R, Maggi CA (1995) Tachykinin receptors and receptor subtypes. Arch Int Pharmacodyn 329:161–184

    PubMed  CAS  Google Scholar 

  • Patacchini R, Barthò L, Holzer P, Maggi CA (1995) Activity of SR 142801 at peripheral tachykinin receptors. Eur J Pharmacol 278:17–25

    PubMed  CAS  Google Scholar 

  • Ren K, Iadarola MJ, Dubner R (1996) An isobolographic analysis of the effects of N-methyl-D-aspartate and tachykinin NK1 receptor antagonists on inflammatory hyperalgesia in rats. Br J Pharmacol 117:196–202

    PubMed  CAS  Google Scholar 

  • Robineau P, Lonchampt M, Kucharczyk N, Krause JE, Regoli D, Fauchère JL, Prost JF, Canet E (1995) In vitro and in vivo pharmacology of S 16474, a novel dual tachykinin NK1 and NK2 receptor antagonist. Eur J Pharmacol 294:677–684

    PubMed  CAS  Google Scholar 

  • Rupniak MNJ (1999) Use of substance P receptor antagonists as a research tool in psychopharmacology. Neurotransmission 15/3:3–11

    Google Scholar 

  • Rupniak NMJ, Kramer MS (1999) Discovery of the antidepressant and anti-emetic efficacy of substance P receptor (NK1) antagonists. Trends Pharmacol Sci 20:484–490

    Google Scholar 

  • Rupniak MNJ, Williams AR (1994) Differential inhibition of foot tapping and chromodacryorrhoea in gerbils by CNS penetrant and non-penetrant NK1 receptor antagonists. Eur J Pharmacol 265:179–183

    PubMed  CAS  Google Scholar 

  • Sakurada T, Katsumata K, Yogo H, Tan-No K, Sakurada S, Kisara K (1993) Antinociception induced by CP 96,345, a non-peptide NK-1 receptor antagonist, in the mouse formalin and capsaicin tests. Neurosci Lett 151:142–145

    PubMed  CAS  Google Scholar 

  • Sarau HM, Griswold DE, Potts W, Foley JJ, Schmidt DB, Webb EF, Martin LD, Brawner ME, Elshourbagy NA, Medhurst AD, Giardina GAM, Hay DWP (1997) Nonpeptide tachykinin receptor antagonists: I. Pharmacological and pharmacokinetic characterization of SB 223412, a novel, potent and selective neurokinin-3 receptor antagonist. J Pharmacol Exp Ther 281:1303–1311

    PubMed  CAS  Google Scholar 

  • Smith G, Harrison S, Bowers J, Wiseman J, Birch P (1994) Nonspecific effects of the tachykinin NK1 receptor antagonist, CP-99,994, in antinociceptive tests in rat, mouse and gerbil. Eur J Pharmacol 271:481–487

    PubMed  Google Scholar 

  • Snider RM, Constantine JW, Lowe JA III, Longo KP, Lebel WS, Woody HA, Drozda SE, Desai MC, Vinick FJ, Spencer RW, Hess HJ (1991) A potent nonpeptide antagonist of the substance P (NK1) receptor. Science 251:435–437

    PubMed  CAS  Google Scholar 

  • Vassout A, Schaub M, Gentsch C, Ofner S, Schilling W, Veenstra S (1994) P7/CGP 49823, a novel NK1 receptor antagonist: behavioural effects. Neuropeptides 26, Suppl 1:38

    Google Scholar 

  • Von Euler US, Gaddum JH (1931) An unidentified depressor substance in certain tissue extracts. J Physiol 72:74–89

    Google Scholar 

References

  • Iversen LL, Jessell T, Kanazawa I (1976) Release and metabolism of substance P in rat hypothalamus. Nature 264:81–83

    PubMed  CAS  Google Scholar 

  • Lee CM, Javitch JA, Snyder SH (1983) 3H-Substance P binding to salivary gland membranes. Mol Pharmacol 23:563–569

    PubMed  CAS  Google Scholar 

  • Liu YF, Quirion R (1991) Presence of various carbohydrate moieties including β-galactose and N-acetylglucosamine residues on solubilized porcine brain neurokinin-1/substance P receptors. J Neurochem 57:1944–1950

    PubMed  CAS  Google Scholar 

  • McLean S, Ganong AH, Seeger TF, Bryce DK, Pratt KG, Reynolds LS, Siok CJ, Lowe III JA, Heym J (1991) Activity of binding sites in brain of a nonpeptide substance P (NK1) receptor antagonist. Science 251:437–439

    PubMed  CAS  Google Scholar 

  • McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14:213–228

    CAS  Google Scholar 

  • Mizrahi J, D'Orléans-Juste P, Drapeau G, Escher E, Regoli D (1983) Partial agonists and antagonists for substance P. Eur J Pharmacol 91:139–140

    PubMed  CAS  Google Scholar 

  • Perrone MH Diehl RE, Haubrich DR (1983) Binding of [3H]substance P to putative substance P receptors in rat brain membranes. Eur J Pharmacol 95:131–133

    PubMed  CAS  Google Scholar 

References

  • Appell KC, Chung TDY, Solly KJ, Chelsky D (1998) Biological characterization of neurokinin antagonists discovered through screening of a combinatorial library. J Biomol Screening 3:19–27

    CAS  Google Scholar 

  • Beattie DT, Beresford IJM, Connor HE, Marshall FH, Hawcock AB, Hagen RM, Bowers J, Birch PJ, Ward P (1995) The pharmacology of GR203040, a novel, potent and selective tachykinin NK1 receptor antagonist. Br J Pharmacol 116:3149–3157

    PubMed  CAS  Google Scholar 

  • Beresford IJM, Ball DI, Sheldrick RGL, Turpin MP, Walsh DM, Hawcock AB, Coleman RM, Tyers MB (1995) GR 159897, a potent, non-peptide antagonist at NK2 receptors. Eur J Pharmacol 272:241–248

    PubMed  CAS  Google Scholar 

  • Bonnet J, Kucharczyk N, Robineau P Lonchampt M, Dacquet C, Regoli D, Fauchère JL, Canet E (1996) A water soluble, stable dipeptide NK1 receptor-selective neurokinin receptor antagonist with potent in vivo pharmacological effects: S18523. Eur J Pharmacol 310:37–46

    PubMed  CAS  Google Scholar 

  • Buell G, Schulz MF, Arkinstall SJ, Maury K, Missotten M, Adami N, Talabot F, Kawashima E (1992) Molecular characterization, expression and localization of human neurokinin-3 receptor. FEBS Lett 299:90–95

    PubMed  CAS  Google Scholar 

  • Cascieri MA, Ber E, Fong TM, Sadowski S, Bansal A, Swain C, Seward E, Frances B, Burns D, Strader CD (1992) Characterization of the binding of a potent, selective, radioiodinated antagonist to the human neurokinin-1 receptor. Mol Pharmacol 42:458–463

    PubMed  CAS  Google Scholar 

  • Cascieri MA, Fong TM, Strader CD (1995) Molecular characterization of a common binding site for small molecules within the transmembrane domain of G-protein coupled receptors. J Pharmacol Toxicol Meth 33:179–185

    CAS  Google Scholar 

  • Emonds-Alt X, Doutremepuich JD, Heaulme M, Neliat G, Santucci V, Steinberg R, Vilain P, Bichon D, Ducoux JP, Proietto V, Van Brock D, Soubrie P, Le Fur G, Breliere JC (1993) In vitro and in vivo biological activities of SR140333, a novel potent non-peptide tachykinin NK1 receptor antagonist. Eur J Pharmacol 250:403–413

    PubMed  CAS  Google Scholar 

  • Emonds-Alt X, Bichon D, Ducoux JP, Heaulme M, Miloux B, Poncelet M, Proietto V, Van Broeck D, Vilain P, Neliat G, Soubrié P, Le Fur G, Brelière JC (1995) SR 142801, the first potent non-peptide antagonist of the tachykinin NK3 receptor. Life Sci 56:27–32

    Google Scholar 

  • Guard S, Watson SP, Maggio JE, Phon Too H, Watling KJ (1990) Pharmacological analysis of [3H]-senktide binding to NK3 tachykinin receptors in guinea pig ileum longitudinal muscle-myenteric plexus and cerebral cortex membranes. Br J Pharmacol 99:767–773

    PubMed  CAS  Google Scholar 

  • Hagan RM, Beresford IJ, Stables J, Dupere J, Stubbs CM, Elliott PJ, Sheldrick RL, Chollet A, Kawashima E, McElroy AB, Ward P (1993) Characterization, CNS distribution and function of NK2 receptors studied using potent NK2 receptor antagonists. Regul Peptides 46:9–19

    CAS  Google Scholar 

  • Jordan RE, Smart D, Grimson P, Suman-Chauhan N, McKnight AT (1998) Activation of the cloned human NK3 receptor in Chinese hamster ovary cells characterized by the cellular acidification using the Cytosensor microphysiometer. Br J Pharmacol 125:761–766

    PubMed  CAS  Google Scholar 

  • Longmore J, Swain CJ, Hill RG (1995) Neurokinin receptors. Drug News Perspect 8:5–12

    Google Scholar 

  • Maggi CA, Patacchini R, Rovero P, Giachetti A (1993) Tachykinin receptors and tachykinin receptor antagonists. J Autonom Pharmacol 13:23–93

    CAS  Google Scholar 

  • Matuszek MA, Zeng XP, Strigas J, Burcher E (1998) An investigation of tachykinin NK2 receptor subtypes in the rat. Eur J Pharmacol 352:103–109

    PubMed  CAS  Google Scholar 

  • McLean S, Ganong A, Seymour PA, Bryce DK, Crawford RT, Morrone J, Reynolds LS, Schmidt AW, Zorn S, Watson J, Fossa A, DePasquale M, Rosen T, Nagahisa A, Tsuchiya M, Heym J (1996) Characterization of CP-122,721, a nonpeptide antagonist of the neurokinin NK-1 receptor. J Pharmacol Exp Ther 277:900–908

    PubMed  CAS  Google Scholar 

  • Mussap CJ, Geraghty DP, Burcher E (1993) Tachykinin receptors: a radioligand perspective. J Neurochem 60:1987–2009

    PubMed  CAS  Google Scholar 

  • Nakanishi S (1991) Mammalian tachykinin receptors. Annu Rev Neurosci 14:123–136

    PubMed  CAS  Google Scholar 

  • Otsuka M, Yoshioka K (1939) Neurotransmitter functions of mammalian tachykinins. Phys Rev 73:229–308

    Google Scholar 

  • Quartara L, Maggi CA (1998) The tachykinin receptor. Part II: Distribution and pathophysiological roles. Neuropeptides 32:1–49

    PubMed  CAS  Google Scholar 

  • Regoli D, Boudon A, Fachere JL (1994) Receptors and antagonists for substance P and related peptides. Pharmacol Rev 46:551–559

    PubMed  CAS  Google Scholar 

  • Renzetti AR, Catalioto RM, Criscuoli M, Cucchi P, Lippi AS, Guelfi M, Quartara L, Maggi CA (1998) Characterization of [3H]MEN 11420, a novel glycosylated peptide antagonist of the tachykinin NK2 receptor. Biochem Biophys Res Commun 248:78–82

    PubMed  CAS  Google Scholar 

  • Rupniak NMJ, Tattersall FD, Williams AR, Rycroft W, Carlson EJ, Cascieri MA, Sadowski S, Ber E, Hale JJ, Mills SG, McCoss M, Seward E, Huscroft I, Owen S, Swain CJ, Hill RG, Hargreaves RJ (1997) In vitro and in vitro predictors of the anti-emetic activity of tachykinin NK1 receptor antagonists. Eur J Pharmacol 326:201–209

    PubMed  CAS  Google Scholar 

  • Snider RM, Constantine SJW, Lowe JA III, Longo KP, Lebel WS, Woody HA, Drozda SE, Desai MC, Vinick FJ, Spencer RW, Hess HJ (1991) A potent nonpeptide antagonist of the substance P (NK1) receptor. Science 251:435–437

    PubMed  CAS  Google Scholar 

  • Watson JW, Gonsalves SF, Fossa AA, McLean S, Seeger T, Obach S, Andrews PLR (1995) The anti-emetic effects of CP-99,994 in the ferret and the dog: Role of the NK1 receptor. Br J Pharmacol 115:84–94

    PubMed  CAS  Google Scholar 

References

  • Alfieri A, Gardner C (1997) The NK-1 antagonist GR203040 inhibits cyclophosphamide-induced damage in the rat and ferret bladder. Gen Pharmacol 29:245–250

    PubMed  CAS  Google Scholar 

  • Alfieri A, Gardner C (1998) Effects of GR203940, an NK-1 antagonist, on radiation-and cisplatin-induced tissue damage in the ferret. Gen Pharmacol 31:741–746

    PubMed  CAS  Google Scholar 

  • Bonnet J, Kucharczyk N, Robineau P Lonchampt M, Dacquet C, Regoli D, Fauchère JL, Canet E (1996) A water soluble, stable dipeptide NK1 receptor-selective neurokinin receptor antagonist with potent in vivo pharmacological effects: S18523. Eur J Pharmacol 310:37–46

    PubMed  CAS  Google Scholar 

  • Bristow LJ, Young L (1994) Chromodacryorrhea and repetitive hind paw tapping: models of peripheral and central tachykinin NK1 receptor activation in gerbils. Eur J Pharmacol 253:245–252

    PubMed  CAS  Google Scholar 

  • Broccardo M, Improta G, Tabacco A (1999) Central tachykinin NK3 receptors in the inhibitory action on rat colonic propulsion of a new tachykinin, PG-KII. Eur J Pharmacol 376:67–71

    PubMed  CAS  Google Scholar 

  • Cirillo R, Astolfi M, Conte B, Lopez G, Parlani M, Terracciano R, Fincham CI, Manzini S (1998) Pharmacology of the peptidomimetic, MEN 11149, a new potent, selective and orally effective tachykinin NK1 receptor antagonist. Eur J Pharmacol 341:201–209

    PubMed  CAS  Google Scholar 

  • Croci T, Emonds-Alt X, Le Fur G, Manara L (1995) In vitro characterization of the non-peptide tachykinin NK-1 and NK-2-receptor antagonists, SR 140333 and SR 48968 in different rat and guinea-pig intestinal segments. Life Sci 56:267–275

    PubMed  CAS  Google Scholar 

  • Daoui S, Cognon C, Naline E, Emonds-Alt X, Advenier C (1998) Involvement of tachykinin NK3 receptors in citric-acid-induced cough and bronchial responses in guinea pigs. Am J Respir Crit Care Med 158:42–48

    PubMed  CAS  Google Scholar 

  • Dion S, D'Orléans-Juste P, Drapeau G, Rhaleb NE, Rouissi N, Tousignant C, Regoli D (1987) Characterization of neurokinin receptors in various isolated organs by use of selective agonists. Life Sci 14:2269–2278

    Google Scholar 

  • D'Orléans-Juste P, Dion S, Drapeau G, Regoli d (1986) Different receptors are involved in the endothelium-mediated relaxation and the smooth muscle contraction of rabbit pulmonary artery in response to substance P and related neurokines. Eur J Pharmacol 125:37–44

    PubMed  Google Scholar 

  • Emonds-Alt X, Doutremepuich JD, Heaulme M, Neliat G, Santucci V, Steinberg R, Vilain P, Bichon D, Ducoux JP, Proietto V, Van Brock D, Soubrie P, Le Fur G, Breliere JC (1993) In vitro and in vivo biological activities of SR140333, a novel potent non-peptide tachykinin NK1 receptor antagonist. Eur J Pharmacol 250:403–413

    PubMed  CAS  Google Scholar 

  • Emonds-Alt X, Bichon D, Ducoux JP, Heaulme M, Miloux B, Poncelet M, Proietto V, van Broeck D, Vilain P, Neliat G, Soubrié P, Le Fur G, Brelière JC (1995) SR 142801, the first potent non-peptide antagonist of the tachykinin NK3 receptor. Life Sci 56: PL 27–32

    Google Scholar 

  • Emonds-Alt X, Advenier C, Cognon C, Croci T, Daoul S, Ducoux JP, Landl M, Maline E, Nellat G, Poncelet M, Proletto V, Von Broeck D, Vilain P, Soubrié P, Le Fur G, Maffrand JP, Brelière JC (1997) Biochemical and pharmacological activities of SR 144190, a new potent non-peptide tachykinin NK2 receptor antagonist. Neuropeptides 31:449–458

    PubMed  CAS  Google Scholar 

  • Gitter BD, Bruns RF, Howbert JJ, Waters DC, Threlkeld PG, Cox LM, Nixon JA, Lobb KL, Mason NR, Stengel PW, Cockerham SL, Silbaugh SA, Gehlert DL, Schober DA, Iyengar S, Calligaro DO, Regoli D, Hipskind PA (1995) Pharmacological characterization of LY303870: A novel, potent and selective nonpeptide substance P (neurokinin-1) receptor antagonist. J Pharmacol Exp Ther 275:737–744

    PubMed  CAS  Google Scholar 

  • Graham EA, Turpin MP, Stubbs CM (1993) P100 characterization of the tachykinin-induced hindlimb thumping response in gerbils. Neuropeptides 4:228–229

    Google Scholar 

  • Herbert JM, Bernat A (1996) Effect of SR 140333, a selective NK1 antagonist, on antigen-induced oedema formation in rat skin. J Lipid Mediat Cell Signal 13:223–232

    PubMed  CAS  Google Scholar 

  • Hill R (2000a) NK1 (substance P) receptor antagonists — why are they not analgesic in humans? Trends Pharmacol Sci 21:244–246

    PubMed  CAS  Google Scholar 

  • Hill R (2000b) Reply: will changing the testing paradigms show that NK1 receptor antagonists are analgesic in humans? Trends Pharmacol Sci 21:265

    Google Scholar 

  • Hosoki R, Yanagisawa M, Onishi Y, Yoshioka K, Otska M (1998) Pharmacological profiles of new orally active nonpeptide tachykinin NK1 receptor antagonists. Eur J Pharmacol 341:235–241

    PubMed  CAS  Google Scholar 

  • Jung M, Calassi R, Maruani J, Barnouin MC, Souilhac J, Poncelet M, Gueudet C, Edmonds-Alt X, Soubriè P, Brelière JC, le Fur G (1994) Neuropharmacological characterization of SR 140333, a non peptide antagonist of NK1 receptors. Neuropharmacol 33:167–179

    CAS  Google Scholar 

  • Lecci A, Giulani S, Tramontana M, Criscuoli M, Maggi CA (1997) MEN 11,420, a peptide tachykinin NK2 receptor antagonist, reduces motor responses induced by intravesical administration of capsaicin in vivo. Naunyn Schmiedeberg's Arch Pharmacol 356:182–188

    CAS  Google Scholar 

  • Maggi CA, Patacchini R, Giulani S, Rovero P, Dion S, Regoli D, Giachetti A, Meli A (1990) Competitive antagonists discriminate between NK-2 tachykinin receptor subtypes. Br J Pharmacol 100:588–592

    CAS  Google Scholar 

  • Mastrangelo D, Mathison R, Huggel HJ, Dion S, D'Orléans-Juste P, Rhaleb NE, Drapeau G, Rovero P, Regoli D (1987) The rat isolated portal vein: A preparation sensitive to neurokinins, particularly to neurokinin B. Eur J Pharmacol 134:321–326

    PubMed  CAS  Google Scholar 

  • Medhurst AD, Parson AA, Roberts JC, Hay DWP (1997) Characterization of NK3 receptors in rabbit isolated iris sphincter muscle. Br J Pharmacol 120:93–101

    PubMed  CAS  Google Scholar 

  • Minami N, Endo T, Kikuchi K, Ihira E, Hirafuji M, Hamaue N, Monma Y, Sakurada T, Tanno K, Kisara K (1998) Antiemetic effects of sendide, a peptide tachykinin NK1 receptor antagonist, in the ferret. Eur J Pharmacol 363:49–55

    PubMed  CAS  Google Scholar 

  • Nantel F, Roussi N, Rhaleb D, Jukic D, Regoli D (1991) Pharmacological evaluation of the angiotensin, kinin and neurokinin receptors on the rabbit vena cava. J Cardiovasc Pharmacol 18:398–405

    PubMed  CAS  Google Scholar 

  • Nguyen-Le XK, Nguyen QT, Gobeil F, Pheng LH, Emonds-Alt X, Brelière JC, Regoli D (1996) Pharmacological characterization of SR 142801: a new non-peptide antagonist of the neurokinin NK-3 receptor. Pharmacology 52:283–291

    PubMed  CAS  Google Scholar 

  • Patacchini R, Barthò L, Holzer P, Maggi CA (1995) Activity of SR 142801 at peripheral tachykinin receptors. Eur J Pharmacol 278:17–25

    PubMed  CAS  Google Scholar 

  • Regoli D, Nguyen QT, Jukic D (1994) Neurokinin receptor subtypes characterized by biological assays. Life Sci 54:2035–2047

    PubMed  CAS  Google Scholar 

  • Rinder J, Lundberg JM (1996) Effects of hCGRP 8–37 and the NK1-receptor antagonist SR 140.333 on capsaicin-evoked vasodilation in the pig nasal mucosa in vivo. Acta Physiol Scand 156:115–122

    PubMed  CAS  Google Scholar 

  • Robineau P, Lonchampt M, Kucharczyk N, Krause JE, Regoli D, Fauchère JL, Prost JF, Canet E(1995) In vitro and in vivo pharmacology of S 16474, a novel dual tachykinin NK1 and NK2 receptor antagonist. Eur J Pharmacol 294:677–684

    PubMed  CAS  Google Scholar 

  • Rouissi N, Claing A, Nicolau M, Jukic D, D'Orléans-Juste P, Regoli D (1993) Substance P (NK-1 receptor) antagonists: In vivo and in vitro activities in rats and guinea pigs. Life Sci 52:1141–1147

    PubMed  CAS  Google Scholar 

  • Rubino A, Thomann H, Henlin JM, Schilling W, Criscione L (1992) Endothelium-dependent relaxant effect of neurokinins on rabbit aorta is mediated by the NK1 receptor. Eur J Pharmacol 212:237–243

    PubMed  CAS  Google Scholar 

  • Rupniak NMJ, Williams AR (1994) Differential inhibition of foot tapping and chromodacryorrhoea in gerbils by CNS penetrant and non penentrant tachykinin NK1 receptor antagonists. Eur J Pharmacol 265:179–183

    PubMed  CAS  Google Scholar 

  • Rupniak NMJ, Webb JK, Williams AR, Carlson E, Boyce S, Hill HG (1995) Antinociceptive activity of the tachykinin NK1 receptor antagonist, CP-99994, in conscious gerbils. Br J Pharmacol 116:1937–1943

    PubMed  CAS  Google Scholar 

  • Rupniak NMJ, Tattersall FD, Williams AR, Rycroft W, Carlson EJ, Cascieri MA, Sadowski S, Ber E, Hale JJ, Mills SG, MacCoss M, Seward E, Huscroft I, Owen S, Swain CJ, Hill RG, Hargreaves RJ (1997) In vitro and in vivo predictors of the anti-emetic activity of tachykinin NK1 receptor antagonists. Eur J Pharmacol 326:201–209

    PubMed  CAS  Google Scholar 

  • Sarau HM, Griswold DE, Potts W, Foley JJ, Schmidt DB, Webb EF, Martin LD, Brawner ME, Elshourbagy NA, Medhurst AD, Giardina GAM, Hay DWP (1997) Nonpeptide tachykinin receptor antagonists: I. Pharmacological and pharmacokinetic characterization of SB 223412, a novel, potent and selective neurokinin-3 receptor antagonist. J Pharmacol Exp Ther 281:1303–1311

    PubMed  CAS  Google Scholar 

  • Singh L, Field MJ, Hughes J, Kuo BS, Suman-Chauhan N, Tuladhar BR, Wright DS, Naylor RJ (1997) The tachykinin NK1 receptor antagonist PD 154075 blocks cisplatin-induced delayed emesis in the ferret. Eur J Pharmacol 321:209–216

    PubMed  CAS  Google Scholar 

  • Snider RM, Constantine JW, Lowe JA III, Longo KP, Lebel WS, Woody HA, Drozda SE, Desai MC, Vinick FJ, Spencer RW, Hess HJ (1991) A potent nonpeptide antagonist of the substance P (NK1) receptor. Science 251:435–437

    PubMed  CAS  Google Scholar 

  • Smith G, Harrison S, Bowers J, Wiseman J, Birch P (1994) Non-specific effects of the tachykinin NK1 receptor antagonist, CP-99,994, in antinociceptive tests in rat, mouse and gerbil. Eur J Pharmacol 271:481–487

    PubMed  Google Scholar 

  • Tian J, Wei EQ, Chen JS, Zhang WP (1997) Effect of SR 140333, a neurokinin NK1 receptor antagonist, on airway reactivity to methacholine in sedated rats. Acta Pharmacol Sin 18:485–488

    CAS  Google Scholar 

  • Tramontana M, Patacchini R, Lecci A, Giuliani S, Maggi CA (1998) Tachykinin NK2 receptors in the hamster urinary bladder: In vitro and in vivo characterization. Naunyn-Schmiedeberg's Arch Pharmacol 358:293–300

    CAS  Google Scholar 

  • Urban LA, Fox A (2000) NK1 receptor antagonists — are they really without effects in the pain clinic? Trends Pharmacol Sci 21:462–464

    PubMed  CAS  Google Scholar 

  • Vassout A, Schaub M, Gentsch C, Ofner S, Schilling W, Veenstra S (1994) P7/CGP 49823, a novel NK1 receptor antagonist: behavioural effects. Neuropeptides 26, Suppl 1:38

    Google Scholar 

  • Walpole CSJ, Brown MCS, James IF, Campbell EA, McIntyre P, Docherty R, Ko S, Hedley L, Ewan S, Buchheit KH, Urban LA (1998) Comparative, general pharmacology of SDZ NKT 343, a novel, selective NK1 receptor antagonist. Br J Pharmacol 124:83–92

    PubMed  CAS  Google Scholar 

References

  • Atkins PC, Norman ME, Zweiman B (1978) Antigen-induced neutrophil chemotactic activity in man. J Allergy Clin Immunol 62:149–155

    PubMed  CAS  Google Scholar 

  • Boyden S (1962) The chemotactic effects of mixtures of antibody and antigen on polymorpho-nuclear leukocytes. J Exp Med 115:453–466

    PubMed  CAS  Google Scholar 

  • Bray MA, Ford-Hutchinson AW, Shipley ME, Smith MJH (1980) Calcium ionophore A23187 induces release of chemokinetic and aggregating factors from polymorphonuclear leukocytes. Br J Pharmacol 71:507–512

    PubMed  CAS  Google Scholar 

  • Camussi G, Tetta C, Bussolino F, Baglioni C (1990) Antiinflammatory peptides (antiflammins) inhibit synthesis of platelet-activating factor, neutrophil aggregation and chemotaxis, and intradermal inflammatory reactions. J Exp Med 171:913–927

    PubMed  CAS  Google Scholar 

  • Ferrante A, Thong YH (1980) Optimal conditions for simultaneous purification of mononuclear and polymorphonuclear leukocytes from human blood by the Hypaque-Ficoll method. J Immunol Meth 36:109–117

    CAS  Google Scholar 

  • Figari IS, Mori NA, Palladino MA (1987) Regulation of neutrophil migration and superoxide production by recombinant tumor necrosis factors-α and-β: Comparison to recombinant interferon-γ and interleukin-1α. Blood 70:979–984

    PubMed  CAS  Google Scholar 

  • Harvath L, Falk W, Leonard EJ (1980) Rapid quantitation of neutrophil chemotaxis: Use of a polyvinylpyrrolidone-free polycarbonate membrane in a multiwell assembly. J Immunol Meth 37:39–45

    CAS  Google Scholar 

  • Issekutz AC, Issekutz TB (1989) Quantitation of blood cell accumulation and vascular responses in inflammatory reactions. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 129–150

    Google Scholar 

  • Matzner Y, Drexler R, Levy M (1984) Effect of dipyrone, acetylsalicylic acid and acetaminophen on human neutrophil chemotaxis. Eur J Clin Invest 14:440–443

    PubMed  CAS  Google Scholar 

  • Nelson RD, Quie PG, Simmons RL (1975) Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J Immunol 115:1650–1656

    PubMed  CAS  Google Scholar 

  • Roch-Arveiller M, Roblin G, Allain M, Giroud JP (1985) A visual technique of chemotactic assessment for pharmacological studies. J Pharmacol Meth 14:313–321

    CAS  Google Scholar 

  • Shalaby MR, Palladino MA, Hirabayashi SE, Eessalu TE, Lewis GT, Shepard HM, Aggarwal BB (1987) Receptor binding and activation of polymorphonuclear neutrophils by tumor necrosis factor-alpha. J Leukoc Biol 41:196–204

    PubMed  CAS  Google Scholar 

  • Watanabe K, Kinoshita S, Nakagawa H (1989) Very rapid assay of polymorphonuclear leukocyte chemotaxis in vitro. J Pharmacol Meth 22:13–18

    CAS  Google Scholar 

References

  • Bradford PG, Rubin RP (1986) The differential effects of nedocromil sodium and sodium cromoglycate on the secretory response of rabbit peritoneal neutrophils. Eur J Respir Dis 69(Suppl 147):238–240

    Google Scholar 

  • Bray MA, Ford-Hutchinson AW, Shipley ME, Smith MJH (1980) Calcium ionophore A23187 induces release of chemokinetic and aggregating factors from polymorphonuclear leucocytes. Br J Pharmacol 71:507–512

    PubMed  CAS  Google Scholar 

  • Bourgoin S, Borgeat P, Poubelle PE (1991) Granulocyte-macrophage colony-stimulating factor (GM-CSF) primes human neutrophils for enhanced phosphatidylcholine breakdown by phospholipase D. Agents Actions 34:32–34

    PubMed  CAS  Google Scholar 

  • Moqbel R, Walsh GM, Kay AB (1986) Inhibition of human granulocyte activation by nedocromil sodium. Eur J Respir Dis 69 (Suppl 147):227–229

    Google Scholar 

References

  • Anderson GD, Hauser SD, McGarity KL, Bremer ME, Isakson PC, Gregory SA (1996) Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. J Clin Invest 97:2672–2679

    PubMed  CAS  Google Scholar 

  • Berg J, Christoph T, Widerna M, Bodenteich A (1997) Isoenzyme-specific cyclooxygenase inhibitors: A whole cell assay system using the human erythroleukemic cell line HEL and the human monocytic cell line Mono Mac 6. J Pharmacol Toxicol Meth 37:179–186

    CAS  Google Scholar 

  • Boopathy R, Balasubramanian AS (1988) Purification and characterization of sheep platelet cyclooxygenase. Biochem J 239:371–377

    Google Scholar 

  • Borgeat P, Samuelsson B (1979), Arachidonic acid metabolism in polymorphonuclear leukocytes: Effect of ionophore A 23187. Proc Natl Acad Sci USA 76:2148–2152

    PubMed  CAS  Google Scholar 

  • Boyum A (1976) Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol 5 (Suppl 5)9–15

    PubMed  Google Scholar 

  • Brideau C, Kargman S, Liu S, Dallob AL, Ehich EW, Rodger IW, Chan C-C (1996) A human whole blood assay for clinical evaluation of biochemical efficacy of cyclooxygenase inhibitors. Inflamm Res 45:68–74

    PubMed  CAS  Google Scholar 

  • Bruns RF, Thomsen WJ, Pugsley TA (1983) Binding of leukotrienes C4 and D4 to membranes from guinea pig lung: regulation by ions and guanine nucleotides. Life Sci 33:645–653

    PubMed  CAS  Google Scholar 

  • Chan CC, Boyce S, Brideau C, Charleson S, Cromlish W, Ethier D, Evans J, Ford-Hutchinson AW, Forrest MJ, Gauthier JY, Gordon R, Gresser M, Guay J, Kargman S, Kennedy B, Leblanc Y, Léger S, Mancini J, O'Neill GP, Ouellet M, Patrick D, Percival H, Perrier H, Prasit P, Rodger I, Tagari P, Thérien M, Vickers P, Visco D, Wang Z, Webb J, Wong E, Xu LJ, Young RN, Zamboni R, Riendeau D (1999) Rofecoxib [Vioxx, MK-0966; 4-(4′-Methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone]: A potent and orally active cyclogenase-2 inhibitor. Pharmacological biochemical profiles. J Pharmacol Ex Ther 290:551–560

    CAS  Google Scholar 

  • Cheng JB, Cheng EIP, Kohi F, Townley RG (1986) [3H]Leukotriene B4 binding to the guinea-pig spleen membrane preparation: a rich tissue source for a high-affinity leukotriene B4 receptor site. J Pharmacol Exp Ther 236:126–132

    PubMed  CAS  Google Scholar 

  • Cochran FR, Finch-Arietta MB (1989) Optimization of cofactors which regulate RBL-1 arachidonate 5-lipoxygenase. Biochem Biophys Res Comm 161:1327–1332

    PubMed  CAS  Google Scholar 

  • Coleman RA, Smith WL, Narumiya S (1994) VIII. International union of pharmacology classification of prostanoid receptors: Properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46:205–229

    PubMed  CAS  Google Scholar 

  • Copeland RA, Williams JM, Giannaras J, Nurnberg S, Covington M, Pinto D, Pick S, Trzaskos JM (1994) Mechanism of selective inhibition of the inducible isoform of prostaglandin G/H synthase. Proc Natl Acad Sci USA 91:11202–11206

    PubMed  CAS  Google Scholar 

  • Crofford LJ (1997) COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol 24, Suppl 49:15–19

    Google Scholar 

  • Cromlish WA, Kennedy BP (1996) Selective inhibition of cyclogenase-and-2 using intact insect cell assays. Biochem Pharmacol 52:1777–1785

    PubMed  CAS  Google Scholar 

  • Evans AT, Formukong EA, Evans FJ (1987) Actions of cannabis constituents on enzymes of arachidonate metabolism: anti-inflammatory potential. Biochem Pharmacol 36:2035–2037

    PubMed  CAS  Google Scholar 

  • Funk CD, Funk LB, Kennedy ME, Pong AS, Fitzgerald GA (1991) Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment, FASEB J 5:2304–2312

    PubMed  CAS  Google Scholar 

  • Gierse JK, McDonald JJ, Hauser SD, Rangwala SH, Koboldt CM, Seibert K (1996) A single amino acid difference between cyclogenase-1 (COX-1) and-2 /COX-2) reverses the selectivity of COX-2 specific inhibitors. J Biol Chem 271:15810–15814

    PubMed  CAS  Google Scholar 

  • Halushka PV, Mais DE, Mayeux PR, Morinelli TA (1989) Thromboxane, prostaglandin and leukotriene receptors. Annu Rev Pharm Tox 10:213–239

    Google Scholar 

  • Harvey J, Osborne DJ (1983) A rapid method for detecting inhibitors of both cyclo-oxygenase and lipoxygenase metabolites of arachidonic acid. J Pharmacol Meth 9:147–155

    CAS  Google Scholar 

  • Hawkey CJ (1999) COX-2 inhibitors. Lancet 353:307–314

    PubMed  CAS  Google Scholar 

  • Hedberg A, Hall SE, Ogletree ML, Harris DN, Liu ECK (1988) Characterization of [5,6-3H]SQ 29,548 as a high affinity radio-ligand, binding to thromboxane A2/prostaglandin H2-receptors in human platelets. J Pharmacol Exp Ther 245:786–792

    PubMed  CAS  Google Scholar 

  • Herrmann F, Lindemann A, Gauss J, Mertelsmann R (1990) Cytokine-stimulation of prostaglandin synthesis from endogenous and exogenous arachidonic acids in polymorphonuclear leukocytes involving activation and new synthesis of cyclooxygenase. Eur J Immunol 20:2513–2516

    PubMed  CAS  Google Scholar 

  • Hock FJ, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102:769–773

    PubMed  CAS  Google Scholar 

  • Irvine RF (1982) Review article: How is the level of free arachidonic acid controlled in mammalian cells? Biochem J 204:3–16

    PubMed  CAS  Google Scholar 

  • Izumi T, Shimizu T, Seyama Y, Ohishi N, Takaku F (1986) Tissue distribution of leukotriene A4 hydrolase activity in guinea pig. Biochem Biophys Res Commun 135:139–145

    PubMed  CAS  Google Scholar 

  • Jakschik BA, Kuo CG (1983) Characterization of leukotriene A4 and B4 biosynthesis. Prostaglandins 25:767–781

    PubMed  CAS  Google Scholar 

  • Jones TR, Labelle M, Belley M, Champion E, Charette L, Evans J, Ford-Hutchinson AW, Gauthier JY, Lord A, Masson P, McAuliffe M, McFarlane CS, Metters KM, Pickett C, Piechuta H, Rochette C, Rodger IW, Sawyer N, Young RN, Zamboni R, Abraham WM (1995) Pharmacology of montelucast sodium (SingularTM), a potent and selective leukotriene D4 receptor antagonist. Can J Physiol Pharmacol 73:191–201

    PubMed  CAS  Google Scholar 

  • Kargman S, Wong E, Greig GM, Falgueyret JP, Cromlish W, Ethier D, Yergey JA, Riendeau D, Evans JF, Kennedy B, Tagari P, Francis DA, O'Neill GP (1996) Mechanism of selective inhibition of human prostaglandin G/H synthase-1 and-2 in intact cells. Biochem Pharmacol 52:1113–1125

    PubMed  CAS  Google Scholar 

  • Katsumata M, Gupta C, Goldman AS (1986) A rapid assay for activity of phospholipase A2 using radioactive substrate. Anal Biochem 154:676–681

    PubMed  CAS  Google Scholar 

  • Kemal C, Louis-Flamberg P, Krupinski-Olsen R, Shorter AL (1987) Reductive inactivation of soybean lipoxygenase 1 by catechols: a possible mechanism for regulation of lipoxygenase activity. Biochemistry 26:7064–7072

    PubMed  CAS  Google Scholar 

  • Klein T, Nüsing RM, Pfeilschifter J, Ullrich V (1994) Selective inhibition of cyclooxygenase 2. Biochem Pharmacol 48:1605–1610

    PubMed  CAS  Google Scholar 

  • Kuhl P, Borbe HO, Fischer H, Römer A, Safayhi H (1986) Ebselen reduces the formation of LTB4 in human and porcine leukocytes by isomerisation to its 5S,12R-6-trans-isomer. Prostaglandins 31:1029–1048

    PubMed  CAS  Google Scholar 

  • Lasché EM, Larson RE (1982) Interaction of insulin and prostacyclin production in the rat. Diabetes 31:454–458

    PubMed  Google Scholar 

  • Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H, Liou S, Simmons D, Hwang D, (1992) Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem 267:25934–25938

    PubMed  CAS  Google Scholar 

  • Lewis R, Austen KF (1981) Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. Nature 293:103–108

    PubMed  CAS  Google Scholar 

  • Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR (1994) Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci 90:11693–11697

    Google Scholar 

  • Mong S, Wu HL, Hogaboom GK, Clark MA, Crooke ST (1984) Characterization of the leukotriene D4 receptor in guinea-pig lung. Eur J Pharmacol 102:1–11

    PubMed  CAS  Google Scholar 

  • Murata T, Ushikubi F, Matsuoka T, Hirata M, Yamasaki A, Sugimoto Y, Ichikawa A, Aze Y, Tanaka T, Yoshida N, Ueno A, Oh-Ishi S, Narumiya S (1997) Altered pain reception and inflammatory response in mice lacking prostaglandin receptor. Nature 388:678–682

    PubMed  CAS  Google Scholar 

  • Noushargh S, Hoult JRS (1986) Inhibition of human neutrophil degranulation by forskolin in the presence of phosphodiesterase inhibitors. Eur J Pharmacol 122:205–212

    Google Scholar 

  • O'Neill GP, Mancini JA, Kargman S, Yergey J, Kwan MY, Falgueyret JP, Abramovitz M, Kennedy PP, Ouellet M, Cromlish W, Colp S, Evans JP, Ford-Hutchinson AW, Vickers PJ (1994) Overexpression of human prostaglandin G/H synthase-1 and-2 by recombinant vaccinia virus: Inhibition by nonsteroidal anti-inflammatory drugs and biosynthesis of 15-hydroxyeicosatetranoic acid. Mol Pharmacol 45:245–254

    PubMed  Google Scholar 

  • O'Sullivan MG, Huggins EM Jr., Meade EA, DeWitt DL, McCall CE (1992) Lipopolysaccharide induces prostaglandin H synthase-2 in alveolar macrophages. Biochem Biophys Res Commun 187:1123–1127

    PubMed  Google Scholar 

  • Ouellet M, Percival MD (1995) Effect of inhibitor time-dependency on selectivity towards cyclooxygenase isoforms. Biochem J 306:247–251

    PubMed  Google Scholar 

  • Powell WS (1985) Reversed-phase high-pressure liquid chromatography of arachidonic acid metabolites formed by cyclo-oxygenase and lipoxygenases. Analyt Biochem 148:59–69

    PubMed  CAS  Google Scholar 

  • Pugsley TA, Spencer C, Boctor AM, Gluckman MI (1985) Selective inhibition of the cyclooxygenase pathway of the arachidonic acid cascade by the nonsteroidal antiinflammatory drug isoxicam. Drug Dev Res 5:171–178

    CAS  Google Scholar 

  • Rådmark O, Shimizu T, Jörnvall H, Samuelsson B (1984) Leukotriene A4 hydrolase in human leukocytes. J Biol Chem 259:12339–12345

    PubMed  Google Scholar 

  • Riendeau D, Percival MD, Boyce S, Brideau C, Charleson S, Cromlish W, Ethier D, Evans J, Falgueyret JP, Ford-Hutchinson AW, Gordon R, Greig G, Gresser G, Guay J, Kargman S, Léger S, Mancini JA, O'Neill G, Ouellet M, Rodger IW, Thérien M, Wang Z, Webb JK, Wong E, Xu L, Young RN, Zamboni R, Prasit P, Chan C C 1997) Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor. Br J Pharmacol 121:105–117

    PubMed  CAS  Google Scholar 

  • Safayhi H, Mack T, Sabieraj J, Anazodo MI, Subramanian LR, Ammon HPT (1992) Boswellic acids: Novel, specific, nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther 261:1143–1146

    PubMed  CAS  Google Scholar 

  • Salari H, Braquet P, Borgeat P (1984) Comparative effects of indomethacin, acetylenic acids, 15-HETE, nordihydroguajaretic acid and BW 755c on the metabolism of arachidonic acid in human leukocytes and platelets. Prostagl Leukotr Med 13:53–60

    CAS  Google Scholar 

  • Samuelsson B (1986) Leukotrienes and other lipoxygenase products. Prog Lipid Res 25:13–18

    PubMed  CAS  Google Scholar 

  • Saussy DL Jr., Mais DE, Burch RM, Halushka PV (1986) Identification of a putative thromboxane A2/prostaglandin H2 receptor in human platelet membranes. J Biol Chem 261:3025–3029

    PubMed  CAS  Google Scholar 

  • Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA 91:12013–12017

    PubMed  CAS  Google Scholar 

  • Seibert K, Masferrer J, Zhang Y, Gregory S, Olson G, Hauser S, Leahy K, Perkins W, Isakson P (1995) Mediation of inflammation by cyclooxygenase-2. Agents Actions 46:41–50

    CAS  Google Scholar 

  • Shimizu T, Rådmark O, Samuelsson B (1984) Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc Natl Acad Sci USA 81:689–693

    PubMed  CAS  Google Scholar 

  • Smith WL, Meade EA, DeWitt DL (1994) Pharmacology of prostaglandin endoperoxide synthase isoenzymes-1 and-2. Ann New York Acad Sci 71:136–142

    Google Scholar 

  • Takeguchi C, Kohno E, Sih CJ (1971) Mechanism of prostaglandin biosynthesis. I. Characterization and assay of bovine prostaglandin synthetase. Biochemistry 10:2372–2377

    PubMed  CAS  Google Scholar 

  • Vane J (1987) The evolution of non-steroidal anti-inflammatory drugs and their mechanisms of action. Drugs 33 (Suppl 1):18–27

    PubMed  CAS  Google Scholar 

  • The mechanism of action of anti-inflammatory drugs. Naunyn-Schmiedeberg's Arch Pharmacol 358, Suppl 1, R 8

    Google Scholar 

  • Vane J, Botting R (1987) Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J 1:89–96

    PubMed  CAS  Google Scholar 

  • Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Ann Rev Pharmacol Toxicol 38:97–120

    CAS  Google Scholar 

  • Veenstra J, van de Pol H, van der Torre H, Schaafsma G, Ockhuizen T (1988) Rapid and simple methods for the investigation of lipoxygenase pathways in human granulocytes. J Chromatogr 431:413–417

    PubMed  CAS  Google Scholar 

  • Weithmann KU, Schlotte V, Seiffge D, Jeske S (1993) Concerted action of pentoxifylline in conjunction with acetylsalicylic acid on platelet cyclic AMP and aggregation. Thromb Haemorrh Dis 8:1–8

    Google Scholar 

  • Weithmann KU, Jeske S, Schlotte V (1994) Effect of leflunomide on constitutive and inducible pathways of cellular eicosanoid generation. Agents Actions 41:164–170

    PubMed  CAS  Google Scholar 

  • Winkler JD, Sarau HM, Foley JJ, Mong S, Crooke ST (1988) Leukotriene B4-induced homologous desensitization of calcium mobilization and phosphoinositide metabolism in U-937 cells. J Pharmacol Exp Ther 246:204–210

    PubMed  CAS  Google Scholar 

  • Wong E, DeLucca C, Boily C, Charleson S, Cromlish W, Denis D, Kargman S, Kennedy BP, Ouellet M, Skorey K, O'Neill GP, Vickers PJ, Riendeau D (1997) Characterization of autocrine inducible prostaglandin H synthase-2 (PGHS-2) in human osteosarcoma cells. Inflamm Res 46:51–59

    PubMed  CAS  Google Scholar 

  • Xie W, Robertson DL, Simmons DL (1992) Mitogen-inducible prostaglandin G/H synthase: A new target for nonsteroidal antiinflammatory drugs. Drug Dev Res 25:249–265

    CAS  Google Scholar 

References

  • Bird TA, Saklatvala J (1986) Identification of a common class of high-affinity receptors for both types of porcine interleukin-1 on connective tissue cells. Nature 324:263–266

    PubMed  CAS  Google Scholar 

  • Boyum A (1976) Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol 5 (Suppl 5):9–15

    PubMed  Google Scholar 

  • Chin J, et al. (1987) Identification of a high affinity receptor for native interleukin-1α and interleukin-1β on normal human lung fibroblasts. J Exp Med 165:70–86

    PubMed  CAS  Google Scholar 

  • Dinarello CA (1991) Interleukin-1 and interleukin-1 antagonism. Blood 77:1627–1652

    PubMed  CAS  Google Scholar 

  • Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508

    PubMed  CAS  Google Scholar 

  • Eugui EM, Delustro B, Rouhafza S, Wilhelm R, Allison AC (1993) Coordinate inhibition by some antioxidants of TNFα, IL-1β and IL-6 production by human peripheral blood mononuclear cells. Ann NY Acad Sci 696:171–184

    PubMed  CAS  Google Scholar 

  • Grob PM, David E, Warren TC, DeLeon RP, Farina PR, Homon CA (1990) Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor intereukin-8. J Biol Chem 265:8311–8316

    PubMed  CAS  Google Scholar 

  • Ibelgaufts H (ed) (1992) Lexikon Zytokine, München

    Google Scholar 

  • Killian PL (1986) Interleukin-1α and interleukin-1β bind to the same receptor on T cells. J Immunol 136:4509–4514

    Google Scholar 

  • Lewis GP, Barrett ML (1986) Immunosuppressive actions of prostaglandins and the possible increase in chronic inflammation after cyclooxygenase inhibitors. Agents Actions 19:59–65

    PubMed  CAS  Google Scholar 

  • Maloff BL, Shaw JE, Di Meo TM, Fox D, Bruin EM (1989) Development of a RIA-based primary screen for IL-1 antagonists. Clin Chim Acta 180:73–78

    PubMed  CAS  Google Scholar 

  • Moser B, Schumacher C, von Tscharner V, Clark-Lewis I, Baggiolini M (1990) Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide-1/interleukin-8 receptors on human neutrophils. J Biol Chem 266:10666–10671

    Google Scholar 

  • Tiku K, Tiku ML, Skosey JL (1986) Interleukin-1 production by human polymorphonuclear neutrophils. J Immunol 136:3677–3685

    PubMed  CAS  Google Scholar 

  • Van der Pouw-Kraan T, Van Kooten C, Rensink I, Aarden L (1992) Interleukin (IL)-4 production by human T cells: differential regulation of IL-4 vs. IL-2 production. Eur J Immunol 22:1237–1241

    PubMed  Google Scholar 

  • Warren JS (1993) Inflammation. DN&P (Drugs, News and Perspectives) 6:450–459

    Google Scholar 

  • Whicher JT, Thompson D, Billingham MEJ, Kitchen EA (1989) Acute phase proteins. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 101–128

    Google Scholar 

References

  • Abt H, Emmerich M, Miltenyi S, Radbruch A, Tesch H (1989) CD20 positive human B lymphocytes separated with the magnetic cell sorter (MACS) can be induced to proliferation and antibody secretion in vitro. J Immunol Meth 125:19–28

    Google Scholar 

  • Ashcroft RG, Lopez PA (2000) Commercial high speed machines open new opportunities in high throughput flow cytometry. J Immunol Meth 243:13–24

    CAS  Google Scholar 

  • Jung T, Schauer U, Heusser C, Neumann C, Rieger C (1993) Detection of intracellular cytokines by flow cytometry. J Immunol Meth 159:197–207

    CAS  Google Scholar 

  • Miltenyi S, Möller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11:231

    PubMed  CAS  Google Scholar 

  • Sander B, Andersson J, Andersson U (1991) Assessment of cytokines by immunofluorescence and the paraformaldehydesaponin procedure. Immun Rev 119:65–93

    PubMed  CAS  Google Scholar 

  • Sander B, Hoiden I, Andersson U, Moller E, Abrams JS (1993) Similar frequencies and kinetics of cytokine producing cells in murine peripheral blood and spleen. Cytokine detection by immunoassay and intracellular immunostaining. J Immunol Meth 166:201–214

    CAS  Google Scholar 

  • Slauson SD, Silva HT, Sherwood SW, Morris RE (1999) Flow cytometric analysis of the molecular mechanisms of immunosuppressive action of the active metabolite of leflunomide and its malononitrilamide analogues in a novel whole blood assay. Immunol Lett 67:179–183

    PubMed  CAS  Google Scholar 

References

  • Flick DA, Gifford GE (1984) Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J Immunol Meth 68:167–175

    CAS  Google Scholar 

  • Maloff BL, Delmendo RE (1991) Development of high throughput for interleukin-1α (IL-1α) and tumor necrosis factor (TNF-α) in isolated membrane preparations. Agents Actions 34:32–34

    Google Scholar 

References

  • Alexenko AP, Leaman DW, Li J, Roberts RM (1997) The anti-proliferative and antiviral activities of IFN-τ variants in human cells. J Interferone Cytokine Res 17:769–779

    CAS  Google Scholar 

  • Alexenko AP, Ealy AD, Roberts RM (1999) The cross-species antiviral activities of different IFN-τ subtypes on bovine, murine, and human cells: contradictory evidence for therapeutic potential. J Interferon Cytokine Res 19:1335–1341

    PubMed  CAS  Google Scholar 

  • Blatt LM, Davis JM. Klein SB, Taylor MW (1996) The biological activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon. J Interferon Cytokine Res 16:488–499

    Google Scholar 

  • Bosio E, Beilharz MW, Watson MW, Lawson CM (1999) Efficacy of low-dose oral use of type I interferon in cytomegalovirus infections in vivo. J Interferon Cytokine Res 19:869–876

    PubMed  CAS  Google Scholar 

  • Littman SJ, Faltynek CR, Baglioni C (1985) Binding of human recombinant 125I-interferon to receptors on human cells. J Biol Chem 260:1191–1195

    PubMed  CAS  Google Scholar 

  • Martal JL, Chene NM, Huynh LP, L'Haridon RM, Reinaud PB, Guillomot MW, Charlier MA, Charpigny SY (1998) IFN-τ: A novel subtype IIFN1. Structural characteristics, non-ubiquitous expression, structure-function relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentialities. Biochemie 80:755–777

    CAS  Google Scholar 

  • Munson PJ, Rodbard D (1980) LIGAND, a versatile computerized approach for characterization of ligand binding systems. Anal Biochem 107:220–239

    PubMed  CAS  Google Scholar 

  • Pontzer CH, Ott TL, Bazer FW, Johnson HM (1994) Structure/function studies with interferon τ: evidence for multiple active sites. J Interferon Res 14:133–141

    PubMed  CAS  Google Scholar 

  • Poynter ME, Daynes RA (1999) Age-associated alterations in splenic iNOS regulation: influence of constitutively expressed INF-γ and correction of following supplementation with PPARα activators of vitamin E. Cell Immunol 195:127–136

    PubMed  CAS  Google Scholar 

  • Sen GC, Lengyel P (1992) The interferon system. A bird's eye view of its biochemistry. J Biol Chem 267:5017–5020

    PubMed  CAS  Google Scholar 

  • Swann SL, Bazer FW, Villarete LH, Chung A, Pontzer CH (1999) Functional characterization and monoclonal antibodies to interferon-τ. Hybridoma 18:399–405

    PubMed  CAS  Google Scholar 

  • Thiam K, Loing E, Delanoye A, Diesis E, Gras-Masse H, Auriault C, Verwaerde C (1998) Unrestricted agonist activity on murine and human cells of a lipopeptide derived from INF-γ. Biochem Biophys Res Commun 253:639–647

    PubMed  CAS  Google Scholar 

  • Tovey MG, Maury C (1999) Oromucosal interferon therapy: marked antiviral and antitumor activity. J Interferon Cytokine Res 19:145–155

    PubMed  CAS  Google Scholar 

  • Viscomi GC, Antonelli G, Bruno C, Scapol L, Malavasi F, Funaro A, Simeoni E, Pestka S, de Pisa F, Dianzani F (1999) Antigenic characterization of recombinant, lymphoblastoid, and leukocyte INF-α by monoclonal antibodies. J Interferon Cytokine Res 19:319–326

    PubMed  CAS  Google Scholar 

  • Zhang F, Nakamura T, Aune TM (1999) TCR and IL-12 receptor signals cooperate to activate an individual response element in the INF-γ promoter on Th cells. J Immunol 163:728–735

    PubMed  CAS  Google Scholar 

References

  • Akeson A, Bohnke R, Schroeder K, Kastner P, Seligmann B, Robinson J (1996a) An ex vivo method for studying inflammation in cynomolgus monkeys: analysis of interleukin-1 receptor antagonist. J Pharmacol Toxicol Meth 36:155–161

    CAS  Google Scholar 

  • Akeson AL, Woods CW, Hsieh LC, Bohnke RA, Ackermann BL, Chan KY, Robinson JL, Yanofsky SD, Jacobs JW, Barrett RW, Bowlin TL (1996b) AF12198, a novel low molecular weight antagonist, selectively binds type I interleukin (IL)-1 receptor and blocks in vivo responses to IL-1. J Biol Chem 271:30517–30523

    PubMed  CAS  Google Scholar 

  • Arend WP (1991) Interleukin 1 receptor antagonist. A new member of the interleukin 1 family. J Clin Invest 88:1445–1451

    PubMed  CAS  Google Scholar 

  • Arend WP, Malyak M, Guthridge CJ, Gabay C (1998) Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol 16:27–55

    PubMed  CAS  Google Scholar 

  • Badford M (1976) Anal Biochem 72:248–252

    Google Scholar 

  • Carter DB, Deibel MR Jr., Dunn CJ, Tomich CSC, Laborde AL, Slightom JL, Berger AE, Bienkowski MJ, Sun FF, McEwan RN (1990) Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature (Lond) 344:633–638

    CAS  Google Scholar 

  • Carman-Krzan M, Vigé X, Wise BC (1991) Regulation by interleukin-1 of nerve growth factor secretion and nerve growth factor mRNA expression in rat primary astroglial cultures. J Neurochem 56:636–643

    PubMed  CAS  Google Scholar 

  • Colagiovanni DB, Shopp GM (1996) Evaluation of the interleukin-1 receptor antagonist (IL-1ra) and tumor necrosis factor binding protein (TNF-BP) in a rodent abscess model of host resistance. Immunopharmacol Immuntoxicol 18:397–419

    CAS  Google Scholar 

  • Dower SK, Wignall JM, Schooley K, McMahan CJ, Jackson JL, Prickett KS, Lupton S, Cosman D, Sims JE (1989) J Immunol 142:4314–4320

    PubMed  CAS  Google Scholar 

  • Fujioka N, Mukaida N, Harada A, Akiyama M, Kasahara T, Kuno K, Ooi A, Mai M, Matsushima K (1995) Preparation of specific antibodies against murine IL-1ra and the establishment of IL-1ra as an endogenous regulator of bacteria-induced fulminant hepatitis in mice. J Leukocyte Biol 58:90–98

    PubMed  CAS  Google Scholar 

  • Hannum CH, Wilcox CJ, Arend WP, Joslin FG, Dripps DJ, Heimdal PL, Armes LG, Sommer A, Eisenberg SP, Thompson RC (1990) Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature (Lond) 343:336–340

    CAS  Google Scholar 

  • Lennard AC (1995) Interleukin-1 receptor antagonist. Critical Rev Immunol 15:77–105

    CAS  Google Scholar 

  • Miesel R, Ehrlich W, Wohlert H, Kurpisz M, Kröger H (1995) The effects of interleukin-1 receptor antagonist on oxidant-induced arthritis in mice. Clin Exper Rheumatol 13:595–610

    CAS  Google Scholar 

  • Sarrubi E, Yanofsky SD, Barrett RW, Denaro M (1996) A cell-free, nonisotopic, high-throughput assay for inhibitors of type-I interleukin-1 receptor. Anal Biochem 237:70–75

    Google Scholar 

  • Schreuder HA, Rondeau JM; Tardif C, Soffientini A, Sarubbi E, Akeson A, Bowlin TL, Yanofsky S, Barrett RW (1995) Refined crystal structure of the interleukin-1 receptor antagonist. Presence of a disulfide link and a cis-proline. Eur J Biochem 227:838–847

    PubMed  CAS  Google Scholar 

  • Whitehorn E, Tate E, Yanofsky SD, Kochersperger L, Davis A, Mortensen RB, Yonkivich S, Bell K, Dover WJ, Barrett RW (1995) Biotechnology 13:1215–1219

    PubMed  CAS  Google Scholar 

  • Yanosfky SD, Zurawski G (1990) Identification of key residues in the amino-terminal third of human interleukin-1α. J Biol Chem 265:13000–13006

    Google Scholar 

  • Yanosfky SD, Baldwin DN, Butler JH, Holden FR, Jacobs JW, Balasubramanian P, Chinn JP, Cwirla SE, Peters-Bhatt E, Whitehorn EA, Tate EH, Akeson A, Bowlin TL, Dower WJ, Barrett RW (1996) High affinity type I interleukin 1 receptor antagonists discovered by screening recombinant peptide libraries. Proc Natl Acad Sci USA 93:7381–7386

    Google Scholar 

References

  • Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan JY (1996) Human ICE/CED3 nomenclature. Cell 87:171

    PubMed  CAS  Google Scholar 

  • Dinarello CA (1996) Biological basis for interleukin-1 in disease. Blood 87:2095–2147

    PubMed  CAS  Google Scholar 

  • Lee A, Whyte MKB, Haslett C (1993) Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J Leukocyte Biol 54:283–288

    PubMed  CAS  Google Scholar 

  • Livingstone DJ (1997) In vitro and in vivo studies of ICE inhibitors. J Cell Biochem: 19–26

    Google Scholar 

  • Naik SM, Cannon G, Burbach GJ, Singh SR, Swerlick RA, Wilcox JN, Ansel JC, Caughman SW (1999) Human keratinocytes constitutively express interleukin-18 and secrete biologically active interleukin-18 after treatment with pro-inflammatory mediators and dinitrochlorobenzene. J Invest Dermatol 113:766–772

    PubMed  CAS  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Meth 139:271–279

    CAS  Google Scholar 

  • Tatsuda T, Cheng J, Mountz JD (1996) Intracellular IL-1β is an inhibitor of Fas-mediated apoptosis. J Immunol 157:3949–3957

    Google Scholar 

  • William R, Watson G, Rotstein OD, Parodo J, Bitar R, Marshall JC (1988) The Il-1β-converting enzyme (caspase-1) inhibits apoptosis on inflammatory neurophils through activation of IL-1β. J Immunol 161:957–962

    Google Scholar 

  • Yuan JS, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin 1β-converting enzyme. Cell 75:641

    PubMed  CAS  Google Scholar 

References

  • Gloxhuber Ch (1976) A new inflammation model. Arzneim Forsch/Drug Res 26:43–45

    CAS  Google Scholar 

  • Kligman LH (1994) Rapid assay of the anti-inflammatory activity of topical corticosteroids by inhibition of a UVA-induced neutrophil infiltration in hairless mouse skin. II. Assessment of name brand versus generic potency. Acta Derm Venereol (Stockh) 74:18–19

    CAS  Google Scholar 

  • Selve N (1991) EM 405: a new substance with an uncommon profile of anti-inflammatory activity. Agents Actions 32:59–61

    PubMed  CAS  Google Scholar 

  • Warren JB, Loi RK, Coughlan ML (1993) Involvement of nitric oxide synthase in delayed response to ultraviolet light irradiation of rat skin in vitro. Br J PHarmacol 109:802–806

    PubMed  CAS  Google Scholar 

  • Wilhelmi G (1949) Ueber die pharmakologischen Eigenschaften von Irgapyrin, einem neuen Präparat aus der Pyrazolreihe. Schweiz Med Wschr 79:577–582

    PubMed  CAS  Google Scholar 

  • Wilhelmi G, Domenjoz H (1951) Vergleichende Untersuchungen über die Wirkung von Pyrazolen und Antihistaminen bei verschiedenen Arten der experimentellen Entzündung. Arch Int Pharmacodyn 85:129–143

    PubMed  CAS  Google Scholar 

  • Winder CV, Wax J, Burr V, Been M, Rosiere CE (1958) A study of pharmacological influences on ultraviolet erythema in guinea pigs. Arch Int Pharmacodyn 116:261–292

    PubMed  CAS  Google Scholar 

  • Woodbury RA, Kligman LH, Woodbury MJ, Kligman AM (1994) Rapid assay of the anti-inflammatory activity of topical corticosteroids by inhibition of a UVA-induced neutrophil infiltration in hairless mouse skin. I. The assay and its sensitivity. Acta Derm Venereol (Stockh) 74:15–17

    CAS  Google Scholar 

  • Woodward DF, Owen DAA (1979) Quantitative measurement of the vascular changes produced by UV radiation and carrageenin using the guinea-pig ear as the site of inflammation. J Pharmacol Meth 2:5–42

    Google Scholar 

  • Yawalkar S, Wiesenberg-Boettcher I, Gibson JR, Siskin SB, Pignat W (1991) Dermatopharmacologic investigations of halobetasol propionate in comparison with clobetasol 17-propionate. Am Acad Dermatol 25:1137–1144

    CAS  Google Scholar 

References

  • Ahluwalia A, Maggi C, Santiccioli P, Lecci A, Giulani S (1994) Characterisation of the capsaicin-sensitive component of cyclophosphamide-induced inflammation in the rat urinary bladder. Br J Pharmacol 111:1017–1022

    PubMed  CAS  Google Scholar 

  • Alfieri A, Gardner C (1997) The NK1 antagonist GR203040 inhibits cyclophosphamide-induced damage in the rat and ferret bladder. Gen Pharmacol 29:245–250

    PubMed  CAS  Google Scholar 

  • Bennett AJ, West GB (1978) Measurement of the changes in vascular permeability in rat skin. J Pharmacol Meth 1:105–108

    CAS  Google Scholar 

  • Blackham A, Woods FAM (1986) Immune complex mediated inflammation in the mouse peritoneal cavity. J Pharmacol Meth 15:77–85

    CAS  Google Scholar 

  • Bon K, Lantéri-Minet M, de Pommery J, Michiels JF, Menétrey D (1996) Cyclophosphamide cystitis as a model of visceral pain in rats. A survey of hindbrain structures involved in visceroception and nociception using the expression of c-Fos and Krox-24 proteins. Exp Brain Res 108:404–416

    PubMed  CAS  Google Scholar 

  • Boucher M, Meen M, Codron JP, Coudoré F, Kémény JL, Eschalier A (1997) Cyclophosphamide cystitis in rats: A new behavioral model of visceral pain. Fund Clin Pharmacol 11:160

    Google Scholar 

  • Cambridge H, Ajuebor MN, Brain SD (1996) Investigation of 6-hydroxydopamine-induced plasma extravasation in rat skin. Eur J Pharmacol 301:151–157

    PubMed  CAS  Google Scholar 

  • Collins PD, Connolly DT, Williams TJ (1993) Characterization of the increase in vascular permeability induced by vascular permeability factor in vivo. Br J Pharmacol 109:195–199

    PubMed  CAS  Google Scholar 

  • Feldberg W, Miles A (1953) Regional variations of increased permeability of skin capillaries induced by a histamine liberator and their relation to the histamine content in skin. J Physiol 120:205–213

    PubMed  CAS  Google Scholar 

  • Frimmer M, Müller FW (1962) Brauchbarkeit und Grenzen der Farbstoffmethoden zur Bestimmung vermehrter Durchlässigkeit der Haut-Capillaren. Med Exp 6:327–330

    PubMed  CAS  Google Scholar 

  • Fujii E, Irie K, Ogawa A, Ohba K, Muraki T (1996) Role of nitric oxide and prostaglandins in lipopolysaccharide-induced increase in vascular permeability in mouse skin. Eur J Pharmacol 297:257–263

    PubMed  CAS  Google Scholar 

  • Hirota K, Zsigmond EK, Matsuki A, Rabito SF (1995) Topical ketamine inhibits albumin extravasation in chemical peritonitis in rats. Acta Anaesthesiol Scand 39:174–178

    PubMed  CAS  Google Scholar 

  • Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn Schmiedeberg's Arch Pharmacol 310:175–183

    CAS  Google Scholar 

  • McClure N, Robertson DM, Heyward P, Healy DL (1994) Image analysis quantification of the Miles assay. J Pharmacol Toxicol Meth 32:49–52

    CAS  Google Scholar 

  • Miles AA, Miles EM (1952) Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea-pigs. J Physiol 118:228–257

    PubMed  CAS  Google Scholar 

  • Nagahisa A, Kanai Y, Suga O, Taniguchi K, Tsuchiya M, Lowe III JA, Hess HJ (1992) Antiinflammatory and analgesic activity of a non-peptide substance P receptor antagonist. Eur J Pharmacol 217:191–195

    PubMed  CAS  Google Scholar 

  • Pouleau A, Garbag M, Ligneau X, Mantion C, Lavie P, Advenier C, Lecomte JM, Krause M, Stark H, Schunack W, Schwartz JC (1997) Bioavailability, antinociceptive and antiinflammatory properties of BP 2-94, a histamine H3 receptor agonist prodrug. J Pharmacol Exp Ther 281:1985–1094

    Google Scholar 

  • Saria A, Lundberg JM, Skofitsch G, Lembeck F (1983) Vascular protein leakage in various tissues induced by substance P, capsaicin, bradykinin, serotonin, histamine and by antigen challenge. Naunyn-Schmiedeberg's Arch Pharmacol 324:212–218

    CAS  Google Scholar 

  • Sensch KH, Zeiller P, Raake W (1979) Zur antiexsudativen und antioedematösen Wirkung von Sympathikomimetika. Arzneim Forsch/Drug Res 29:116–121

    CAS  Google Scholar 

  • Shionoya H, Ohtake S (1975) A new simple method for extraction of extravasated dye in the skin. Japan J Pharmacol 103, Suppl 25:103

    Google Scholar 

  • Teixeira MM, Williams TJ, Hellewell PG (1993) Role of prostaglandins and nitric oxide in acute inflammatory reactions in guinea-pig skin. Br J Pharmacol 110:1515–1521

    PubMed  CAS  Google Scholar 

  • Watanabe K, Nakagawa H, Tsurufuji S (1984) A new sensitive fluorometric method for measurement of vascular permeability. J Pharmacol Meth 11:167–176

    CAS  Google Scholar 

  • Whittle BA (1964) The use of changes in capillary permeability in mice to distinguish between narcotic and non narcotic analgesics. Br J Pharmacol 22:246–253

    CAS  Google Scholar 

  • Zentel HJ, Töpert M (1994) Preclinical evaluation of a new topical corticosteroid methylprednisolone aceponate. J Eur Acad Dermatol Venereol 3, Suppl 1:S32–S38

    Google Scholar 

References

  • Burch RM, Connor JR, Bator JM, Weitzberg M, Laemont K, Noronha-Blob L, Sullivan JP, Steranka LR (1992) NPC 15669 inhibits the reverse passive Arthus reaction in rats by blocking neutrophil recruitment. J Pharm Exp Ther 263:933–937

    CAS  Google Scholar 

  • Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins. Cell 65:859–873

    PubMed  CAS  Google Scholar 

  • MacGregor RR, Spagnuolo PJ, Lentnek AL (1974) Inhibition of granulocyte adherence by ethanol, prednisone, and aspirin, measured with an assay system. New Engl J Med 291:642–646

    PubMed  CAS  Google Scholar 

  • Stecher VJ, Chinea GL (1978) The neutrophil adherence assay as a method for detecting unique anti-inflammatory agents. Agents Actions 8:258–262

    PubMed  CAS  Google Scholar 

  • Zielinski T, Müller HJ, Schleyerbach R, Bartlett RR (1994) Differential effects of leflunomide on leukocytes: Inhibition of rat in vivo adhesion and human in vitro oxidative burst without affecting surface marker modulation. Agents Actions 41 Spec Conf Issue: C276–278

    Google Scholar 

References

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Bailey SC, Asghar F, Przekop PA, Kurtz ES (1995) A novel contact hypersensitivity model for rank-ordering formulated corticosteroids. Inflamm Res 44, Suppl 2:S162–163

    PubMed  CAS  Google Scholar 

  • Evans PD, Hossack M, Thomson DS (1971) Inhibition of contact sensitivity in the mouse by topical application of corticosteroids. Br J Pharmacol 43:403

    PubMed  CAS  Google Scholar 

  • Griswold DE, DiLorenzo JA, Calabresi P (1974) Quantification and pharmacological dissection of oxazolone-induced contact sensitivity in the mouse. Cell Immunol 11:198–204

    PubMed  CAS  Google Scholar 

  • Meingassner, JG, Grassberger M, Fahrngruber H, Moore HD, Schuurman H, Stütz A (1997) A novel anti-inflammatory drug, SDZ ASM 981, for the topical and oral treatment of skin diseases. In vivo pharmacology. Br J Dermatol 137:568–576

    PubMed  CAS  Google Scholar 

  • Williams RN, Paterson CA, Eakins KE, Bhattacherjee P (1983) Quantification of ocular inflammation: Evaluation of polymorphonuclear leukocyte infiltration by measuring myeloperoxidase activity. Current Eye Res 2:465–470

    CAS  Google Scholar 

  • Young JM, Young LM (1989) Cutaneous models of inflammation for the evaluation of topical and systemic pharmacological agents. In: Pharmacological Models in the Control of Inflammation. Alan R. Liss, Inc., pp 215–231

    Google Scholar 

References

  • Akiyama H, Kanzaki H, Abe Y, Tada H, Arata J (1994) Staphylococcus aureus infection on experimental croton oil-inflamed skin in mice. J Dermatol Sci 8:1–10

    PubMed  CAS  Google Scholar 

  • Anderson CD, Groth O (1984) The influence on the dermal cellular infiltrate of topical steroid applications and vehicles in guinea pig skin: normal skin, allergic and toxic reactions. Contact Dermatitis 10:193–200

    PubMed  CAS  Google Scholar 

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch / Drug Res 32:633–638

    CAS  Google Scholar 

  • Chang J, Blazek E, Skowronek M, Marinari L, Carlson RP (1987) The antiinflammatory action of guanabenz is mediated through 5-lipoxygenase and cyclooxygenase inhibition. Eur J Pharm 142:197–205

    CAS  Google Scholar 

  • Colorado A, Slama JT, Stavinoha WB (1991) A new method for measuring auricular inflammation in the mouse. J Pharmacol Meth 26:73–77

    CAS  Google Scholar 

  • Crummey A, Harper GP, Boyle EA, Mangan FR (1987) Inhibition of arachidonic acid-induced ear oedema as a model for assessing topical anti-inflammatory compounds. Agents Actions 20:69–72

    PubMed  CAS  Google Scholar 

  • De Young LM, Spires DA, Kheifets J, Terrell TG (1987) Biology and pharmacology of recombinant interleukin-1β-induced rat ear inflammation. Agents Actions 21:325–327

    PubMed  Google Scholar 

  • De Young LM, Kheifets JB, Ballaron SJ, Young JM (1989) Edema and cell infiltration in the phorbol ester-treated mouse ear are temporally separate and can be differentially modulated by pharmacologic agents. Agents Actions 26:335–341

    PubMed  Google Scholar 

  • Griswold DE, Chabot-Fletcher M, Webb EF, Martin L, Hillegass L (1995) Antiinflammatory activity of topical auranofin in arachidonic acid-and phorbol ester-induced inflammation in mice. Drug Dev Res 34:369–375

    CAS  Google Scholar 

  • Hensby CN, Eustache J, Shroot B, Bouclier M, Chatelus A, Luginbuhl B (1987) Antiinflammatory aspects of systemic and topically applied retinoids. Agents Actions 21:238–240

    PubMed  CAS  Google Scholar 

  • Iwasaki K, Mishima E, Miura M, Sakai N, Shimao S (1995) Effect of RU 486 on the atrophogenic and antiinflammatory effects of glucocorticoids in skin. J Dermatol Sci 10:151–158

    PubMed  CAS  Google Scholar 

  • Maloff BL, Shaw JE, DiMeo TM (1989) IL-1 dependent model of inflammation mediated by neutrophils. J Pharmacol Meth 22:133–140

    CAS  Google Scholar 

  • Opas EE, Bonney RJ, Humes JL (1985) Prostaglandin and leukotriene synthesis in mouse ears inflamed by arachidonic acid. J Invest Dermatol 84:253–256

    PubMed  CAS  Google Scholar 

  • Tarayre JP, Aliaga M, Barbara M, Villanova G, Caillol V, Lauressergues H (1984) Pharmacological study of cantharidin-induced ear inflammation in mice. J Pharmacol Meth 11:271–277

    CAS  Google Scholar 

  • Tomchek LA, Hartman DA, Lewin AC, Calhoun W, Chau TT, Carlson RP (1991) Role of corticosterone in modulation of eicosanoid biosynthesis and antiinflammatory activity by 5-lipoxygenase (5-LO) and cyclooxygenase (CO) inhibitors. Agents Actions 34:20–24

    PubMed  CAS  Google Scholar 

  • Tonelli G, Thibault L, Ringler I (1965) A bio-assay for the concomitant assessment of the antiphlogistic and thymolytic activities of topically applied steroids. Endocrinology 77:625–630

    PubMed  CAS  Google Scholar 

  • Tubaro A, Dri P, Delbello G, Zilli C, Della Loggia R (1985) The Croton oil ear test revisited. Agents Actions 17:347–349

    CAS  Google Scholar 

  • Ueno H, Maruyama A, Miyake M, Nakao E, Nakao K, Umezu K, Nitta I (1991) Synthesis and evaluation of antiinflammatory activities of a series of corticosteroid 17α-esters containing a functional group. J Med Chem 34:2468–2473

    PubMed  CAS  Google Scholar 

  • Weirich EG, Longauer JK, Kirkwood AH (1977) New experimental model for the primary evaluation of topical contra-inflammatory agents. Arch Derm Res 259:141–149

    CAS  Google Scholar 

  • Wilhelmi G, Domenjoz H (1951) Vergleichende Untersuchungen über die Wirkung von Pyrazolen und Antihistaminen bei verschiedenen Arten der experimentellen Entzündung. Arch Int Pharmacodyn 85:129–143

    PubMed  CAS  Google Scholar 

  • Young JM, Wagner M, Spires DA (1983) Tachyphylaxis in 12-O-tetradecanoylphorbol acetate-and arachidonic acid-induced ear edema. J Invest Dermatol 80:48–52

    PubMed  CAS  Google Scholar 

  • Young JJ, Spires DA, Bedord CJ, Wagner B, Ballaron SJ, DeYoung LM (1984) The mouse ear inflammatory response to topical arachidonic acid. J Invest Dermatol 82:367–371

    PubMed  CAS  Google Scholar 

  • Zentel HJ, Töpert M (1994) Preclinical evaluation of a new topical corticosteroid methylprednisolone aceponate. J Eur Acad Dermatol Venereol 3, Suppl 1:S32–S38

    Google Scholar 

References

  • Alpermann HG, Magerkurth KO (1972) Messanordnung zur Bestimmung der Wirkung von Antiphlogistika. Arzneim Forsch/Drug Res 22:1078–1088

    Google Scholar 

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Arrigoni-Martelli E, Schatti P, Selva D (1971) The influence of anti-inflammatory and immunosuppressant drugs on nystatin induced oedema. Pharmacology 5:215–224

    PubMed  CAS  Google Scholar 

  • Braga da Motta JI, Cinha FQ, Vargaftig BB, Ferreira SH (1994) Drug modulation of antigen-induced paw oedema in guinea-pigs: effects of lipopolysaccharide, tumor necrosis factor and leucocyte depletion. Br J Pharmacol 112:111–116

    CAS  Google Scholar 

  • Branceni D, Azadian-Boulanger A, Jequier R (1964) L'inflamma-tion expérimentale par un analogue de l'héparine. Un test d'activité antiinflammatoire. Arch Int Pharmacodyn 152:15–24

    PubMed  CAS  Google Scholar 

  • Brooks RR, Carpenter JF, Jones SM, Ziegler TC, Pong SF (1991) Canine carrageenin-induced acute paw inflammation model and its response to nonsteroidal antiinflammatory drugs. J Pharmacol Meth 25:275–283

    CAS  Google Scholar 

  • Burch RM, DeHaas Ch (1990) A bradykinin antagonist inhibits carrageenan edema in rats. Naunyn-Schmiedeberg's Arch Pharmacol 342:189–193

    CAS  Google Scholar 

  • Cirino G, Peers SH, Wallace JL, Flower RJ (1989) A study of phospholipase A2-induced oedema in rat paw. Eur J Pharmacol 166:505–510

    PubMed  CAS  Google Scholar 

  • Damas J, Remacle-Volon G (1992) Influence of a long-acting bradykinin antagonist, Hoe 140, on some acute inflammatory reactions in the rat. Eur J Pharmacol 211:81–86

    PubMed  CAS  Google Scholar 

  • Dewes R (1955) Auswertung antiphlogistischer Substanzen mit Hilfe des Hyaluronidase-Ödems. Arch Int Pharmacodyn 104:19–28

    PubMed  CAS  Google Scholar 

  • Gemmel DK, Cottney J, Lewis AJ (1979) Comparative effects of drugs on four paw oedema models. Agents and Actions 9:107–116

    Google Scholar 

  • Griesbacher T, Sutliff RL, Lembeck F (1994) Anti-inflammatory and analgesic activity of the bradykinin antagonist, icatibant (Hoe 140), against an extract from Porphyromonas gingivalis. Br J Pharmacol 112:1004–1006

    PubMed  CAS  Google Scholar 

  • Gupta OP, Sharma N, Chand D (1994) Application of papayalatex-induced rat paw inflammation: model for evaluation of slowly acting antiarthritic drugs. J Pharmacol Toxicol Meth 31:95–98

    CAS  Google Scholar 

  • Higgs EA, Moncada S, Vane JR (1978) Inflammatory effects of prostacyclin (PGI2) and 6-oxo-PGF in the rat paw. Prostaglandins 16:153–161

    PubMed  CAS  Google Scholar 

  • Hofrichter G, Liehn HD, Hampel H (1969) Eine plethysmometrische Messanordnung zur Bestimmung des Rattenpfotenvolumens. Arzneim Forsch / Drug Res 19:2016–2017

    CAS  Google Scholar 

  • Kalbhen DA, Smalla HD (1977) Pharmakologische Studien zur antiphlogistischen Wirkung von Pentosanpolysulfat in Kombination mit Metamizol. Arzneim Forsch/Drug Res 27:1050–1057

    CAS  Google Scholar 

  • Legat FJ, Griesbacher T, Lembeck F (1994) Mediation by bradykinin of rat paw oedema induced by collagenase from Clostridium histolyticum. Br J Pharmacol 112:433–460

    Google Scholar 

  • Lewis AJ, Cottney J, Nelson DJ (1976) Mechanisms of phytohaemagglutinin-P, concanavalin-A and kaolin-induced oedemas in the rat. Eur J Pharmacol 40:1–8

    PubMed  CAS  Google Scholar 

  • Leyck S, Parnham MJ (1990) Acute antiinflammatory and gastric effects of the seleno-organic compound ebselen. Agents Actions 30:426–431

    PubMed  CAS  Google Scholar 

  • Lorenz D (1961) Die Wirkung von Phenylbutazon auf das Pfotenoedem der Ratte nach oraler Applikation. Naunyn-Schmiedeberg's Arch exp Path Pharm 241:516–517

    Google Scholar 

  • Marek J (1980) Bentonite-induced paw edema as a tool for simultaneous testing of prophylactic and therapeutic effects of antiinflammatory and other drugs. Pharmazie 36:46–49

    Google Scholar 

  • Moore E, Trottier RW (1974) Comparison of various types of carrageenin in promoting pedal edema in the rat. Res Commun Chem Pathol Pharmacol 7:625–628

    PubMed  CAS  Google Scholar 

  • Nikolov R, Nikolova M, Peneva M (1978) Study of dipyrone (Analgin) antagonism toward certain pharmacological effects of prostaglandins E2 and F2a. In: Ovtcharov R, Pola W (eds) Proceedings Dipyrone. Moscow Symposium, Schattauer-Verlag, Stuttgart New York, pp 81–89

    Google Scholar 

  • Oyanagui Y, Sato S (1991) Inhibition by nilvadipine of ischemic and carrageenan paw edema as well as of superoxide radical production from neutrophils and xanthine oxidase. Arzneim Forsch/Drug Res 41:469–474

    CAS  Google Scholar 

  • Peterfalvi M, Branceni D, Azadian-Boulanger G, Chiflot L, Jequier R (1966) Etude pharmacologique d'un nouveau composé analgésique antiiflammatoire, la Glaphénine. Med Pharmacol Exp 15:254–266

    CAS  Google Scholar 

  • Portanova JP, Zhang Y, Anderson GD, Hauser SD, Masferrer JL, Seibert K, Gregory SA, Isakson PC (1996) Selective neutralization of prostaglandin E2 blocks inflammation, hyperalgesia, and interleukin 6 production in vivo. J Exp Med 184:883–891

    PubMed  CAS  Google Scholar 

  • Randall LO, Baruth H (1976) Analgesic and anti-inflammatory activity of 6-chloro-alpha-methyl-carbazole-2-acetic acid (C-5720). Arch Int Pharmacodyn 220:94–114

    PubMed  CAS  Google Scholar 

  • Schiatti P, Selva D, Arrigoni-Martelli E (1970) L'edema localizzato da nystatin come modello di inflammazione sperimetale. Boll Chim Farm 109:33–38

    PubMed  CAS  Google Scholar 

  • Schönhöfer P (1967) Eine kritische Bemerkung zur Vergleich-barkeit der Wirkung entzündungshemmender Pharmaka auf die Glucosamin-6-phosphat-Synthese in vitro und am Rattenpfotenödem in vivo. Med Pharmacol Exp 16:66–74

    Google Scholar 

  • Shirota H, Kobayashi S, Shiojiri H, Igarashi T (1984) Determination of inflamed paw surface temperature in rats. J Pharmacol Meth 12:35–43

    CAS  Google Scholar 

  • Siegel DM, Giri SN, Scheinholtz RM, Schwartz LW (1980) Characteristics and effect of antiinflammatory drugs on adriamycin-induced inflammation in the mouse paw. Inflammation 4:233–248

    PubMed  CAS  Google Scholar 

  • Souza Pinto JC, Remacle-Volon G, Sampaio CAM, Damas J (1995) Collagenase-induced oedema in the rat paw and the kinin system. Eur J Pharmacol 274:101–107

    Google Scholar 

  • Tsumuri K, Kyuki K, Niwa M, Kokuba S, Fujimura H (1986) Pharmacological investigations of the new antiinflammatory agent 2-(10,11-dihydro-10-oxodibenzo(b,f)thiepin-2-yl) propionic acid. Arzneim Forsch/Drug Res 36:1796–1800

    Google Scholar 

  • Wagner-Jauregg Th, Jahn U, Buech O (1962) Die antiphlogistische Prüfung bekannter Antirheumatika am Rattenpfoten-Kaolinödem. Arzneim Forsch/Drug Res 12:1160–1162

    CAS  Google Scholar 

  • Webb EF, Griswold DE (1984) Microprocessor-assisted plethysmograph for the measurement of mouse paw volume. J Pharmacol Meth 12:149–153

    CAS  Google Scholar 

  • Willis AL, Cornelsen M (1973) Repeated injection of prostaglandin E2 in rat paws induces chronic swelling and a marked decrease in pain threshold. Prostaglandins 3:353–357

    PubMed  CAS  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced oedema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    PubMed  CAS  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1963) Antiinflammatory and antipyretic activities of indomethacin, (1-(p-chlorobenzoyl)-5-methoxy-2-methyl-indole-3-acetic acid. J Pharmacol Exp Ther 141:369–376

    PubMed  CAS  Google Scholar 

  • Wirth KJ, Alpermann HG, Satoh R, Inazu M (1992) The brady-kinin antagonist HOE 140 inhibits carrageenan-and thermically induced paw edema in rats. Recent Progress on Kinins, Birkhäuser, Basel, pp 428–431

    Google Scholar 

References

  • Ackerman N, Tomolonis A, Miram L, Kheifets J, Martinez S, Carter A (1980) Three day pleural inflammation: A new model to detect drug effects on macrophage accumulation. J Pharmacol Exp Ther 215:588–595

    PubMed  CAS  Google Scholar 

  • De Brito FB (1989) Pleurisy and pouch models of acute inflammation. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc. pp 173–194

    Google Scholar 

  • Dunn CJ, Doyle DV, willoughby DA (1993) Investigation of the acute and chronic anti-inflammatory properties of diphosphonates using a broad spectrum of immune and non-immune inflammatory reactions. Drug Dev Res 28:47–55

    CAS  Google Scholar 

  • Harada Y, Hatanaka K, Kawamura M, Saito M, Ogino M, Majima M, Ohno T, Ogino K, Yamamoto K, Taketani Y, Yamamoto S, Katori M (1996) Role of prostaglandin synthase-2 in prostaglandin E2 formation in rat carrageenin-induced pleurisy. Prostaglandins 51:19–33

    PubMed  CAS  Google Scholar 

  • Meyers KP, Czachowski CL, Coffey JW (1993) Effect of treatment with interleukin-1 receptor antagonist on the development of carrageenan-induced pleurisy in the rat. Inflammation 17:121–134

    PubMed  CAS  Google Scholar 

  • Mielens ZE, Connolly K, Stecher VJ (1985) Effects of disease modifying antirheumatic drugs and nonsteroidal antiinflammatory drugs upon cellular and fibronectin responses in a pleurisy model. J Rheumatol 12:1083–1087

    PubMed  CAS  Google Scholar 

  • Mikami T, Miyasaka K (1983) Effects of several anti-inflammatory drugs on the various parameters involved in the inflammation response in rat carrageenin-induced pleurisy. Eur J PHarmacol 95:1–12

    PubMed  CAS  Google Scholar 

  • Sancilio L (1969) Evans blue-carrageenan pleural effusion as a model for the assay of nonsteroidal antirheumatic drugs. J Pharmacol Exp Ther 168:199–204

    PubMed  CAS  Google Scholar 

  • Sancilio LF, Fishman A (1973) Application of sequential analysis to Evans blue-carrageenan-induced pleural effusion for screening of compounds for anti-inflammatory activity. Toxicol Appl Pharmacol 26:575–584

    PubMed  CAS  Google Scholar 

  • Tomlinson A, Appleton I, Moore AR, Gilroy DW, Willis D, Mitchell JA, Willoughby DA (1994) Cyclo-oxygenase and nitric oxide synthase isoforms in rat carrageenin-induced pleurisy. Br J Pharmacol 113:693–698

    PubMed  CAS  Google Scholar 

  • Tsurumi K, Mibu H, Okada K, Hasegawa J, Fujimura H (1986) Pharmacological investigations of the new antiinflammatory agent 2-(10,11-dihydro-10-oxodibenzo[b,f]thiepin-2-yl) propionic acid. Arzneim Forsch/Drug Res 36:1806–1809

    CAS  Google Scholar 

  • Ushida Y, Oh-Ishi S, Tanaka K, Harada Y, Ueno A, Katori M (1982) Activation of plasma kallikrein-kinin system and its significant role in the pleural fluid accumulation of rat carrageenin-induced pleurisy. In: Fritz H (ed) Recent Progress on Kinins. Agents and Actions Suppl Vol 9:379–383

    Google Scholar 

References

  • Atkinson RM, Jenkins L, Tomich EG, Woollett EA (1962) The effects of some anti-inflammatory substances on carrageenin-induced granulomata. J Endocrinol 25:87–93

    PubMed  CAS  Google Scholar 

  • Bobalik GR, Bastian JW (1967) Effects of various antiphlogistic agents on adjuvant-induced exudate formation in rats. Arch INt Pharmacodyn 166:466–472

    PubMed  CAS  Google Scholar 

  • Boris A, Stevenson RH (1965) The effects of some non-steroidal anti-inflammatory agents on carrageenin-induced exudate formation. Arch Int Pharmacodyn 153:205–210

    CAS  Google Scholar 

  • Bowers RR, Birch ML, Thomas DW (1985) A biochemical study of the carrageenan-induced granuloma in the rat lung. Conn Tiss Res 13:191–206

    CAS  Google Scholar 

  • De Brito FB (1989) Pleurisy and pouch models of acute inflammation. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc. pp 173–194

    Google Scholar 

  • Erdö F, Török K, Szekely JI (1994) Measurement of interleukin-1 in zymosan air-pouch exudate in mice. Agents and Actions 41:93–95

    PubMed  Google Scholar 

  • Karran EH, Harper GP (1995) Collagen degradation within subcutaneous air pouches in vivo: the effects proteinase inhibitors. J Pharmacol Toxicol Meth 34:97–102

    CAS  Google Scholar 

  • Martin SW, Stevens AJ, Brennan BS, Davies D, Rowdland M, Houston JB (1994) The six-day-old rat air pouch model of inflammation: characterization of the inflammatory response to carrageenan. J Pharmacol Toxicol Meth 32:139–147

    CAS  Google Scholar 

  • Miller AJ, Hopkins SJ, Luheshi GN (1997) Sites of action of IL-1 in the development of fever and cytokine response to tissue inflammation in the rat. Br J Pharmacol 120:1274–1279

    PubMed  CAS  Google Scholar 

  • Moreno JJ (1993) time course of phopsholipase A2, eikosanoid release and cellular accumulation in rat immunological air pouch inflammation. Int J Immunopharmacol 15:597–603

    PubMed  CAS  Google Scholar 

  • Robert A, Nezamis JE (1957) The granuloma pouch as a routine assay for antiphlogistic compounds. Acta Endocr (Kbh) 25:105–112

    CAS  Google Scholar 

  • Selye H (1953) On the mechanism through which hydrocortisone affects the resistance of tissues to injury. An experimental study with teh granuloma pouch technique. J Am Med Ass 152:1207–1213

    CAS  Google Scholar 

  • Ueno H, Maruyama A, Miyake M, Nakao E, Nakao K, Umezu K, Kitta I (1991) Synthesis and evaluation of antiinflammatory activities of a series of corticosteroid 17α-esters containing a functional group. J Med Chem 34:2468–2473

    PubMed  CAS  Google Scholar 

  • Sugio K, Tsurufuji S (1981) Mechanisms of anti-inflammatory action of glucocorticoids: re-evaluation of vascular constriction hypothesis. Br J Pharmacol 73:605–608

    PubMed  CAS  Google Scholar 

  • Vogel HG (1963) Intensität und Dauer der antiinflammatorischen und glykoneogenetischen Wirkung von Prednisolon und Prednisolonazetat nach oraler und subcutaner Applikation an der Ratte. Acta Endocr (Kbh) 42:85–96

    CAS  Google Scholar 

  • Vogel HG (1965) Intensität und Dauer der Wirkung von 6-Methylprednisolon und seinen Estern an der Ratte. Acta Endocr (Kbh.) 50:621–642

    CAS  Google Scholar 

References

  • Botrel MA, Haak T, Legrand C, Concordet D, Chevalier R, Toutain PL (1994) Quantitative evaluation of an experimental inflammation induced with Freund's complete adjuvant in dogs. J Pharmacol Toxicol Meth 32:63–71

    CAS  Google Scholar 

  • Carleson J, Alstergren P, Appelgren A, Appelgren B, Kopp S, Theodorsson E, Lundeberg T (1996) A model for experimental induction of acute temporomandibular joint inflammation in rats: Effects of substance P (SP) in neuropeptide-like immunoreactivity. Life Sci 59:1193–1201

    PubMed  CAS  Google Scholar 

  • Carlson RP, Datko LJ, Welch TM, Purvis WF, Shaw GW, Thompson JL, Brunner TR (1986) An automated microcomputer-based system for determining canine paw pressure quantitatively in the dog synovitis model. J Pharmacol Meth 15:95–104

    CAS  Google Scholar 

  • Chau TT (1989) Analgesic testing in animal models. In: Pharmacological models in the control of inflammation. Alan R. Liss, Inc., pp 195–212

    Google Scholar 

  • Daniel A Jouvin JL (1984) Experimentally induced inflammation of the guinea pig palatal mucosa by injection of a microcrystalline suspension of monosodium urate. J Pharmacol Meth 12:155–166

    CAS  Google Scholar 

  • Dubinsky B, Gebre-Mariam S, Capetola RJ, Rosenthale ME (1987) The antialgesic drugs: Human therapeutic correlates of their potency in laboratory animal models of hyperalgesia. Agents and Actions 20:50–60

    PubMed  CAS  Google Scholar 

  • Faires JS, McCarty DJ (1962) Acute arthritis in man and dog after intrasynovial injection of sodium urate crystals. Lancet 2:682–685

    Google Scholar 

  • Fujihira E, Mori T, Nakazawa M, Ozawa H (1971) A simple method for evaluating analgesic efficacy of non-steroidal anti-inflammatory drugs. Chem Pharm Bull 19:1506–1508

    CAS  Google Scholar 

  • McCarty DJ, Faires JS (1963) A comparison of the duration of local anti-inflammatory effects of several adrenocorticosteroid esters — a bioassay technique. Curr Ther Res 5:284–290

    PubMed  Google Scholar 

  • McCarty DJ, Phelps P, Pyenson J (1966) Crystal-induced inflammation in canine joints. I. An experimental model with quantification of the host response. J Exp Med 124:99–114

    PubMed  Google Scholar 

  • Perkins MN, Campell EA (1992) Capsazepine reversal of the antinociceptive action of capsaicin in vivo. Br J Pharmacol 107:329–333

    PubMed  CAS  Google Scholar 

  • Phelps P, McCarty DJ (1967) Animal techniques for evaluating anti-inflammatory drugs. In: Siegler PE. Moyer JH (eds) Animal and pharmacological techniques in drug evaluation. Vol 2. Year Book Medical Publishers, Inc., Chicago, pp 742–747

    Google Scholar 

  • Rosenthale ME, Kassarich J, Schneider F (1966) Effect of anti-inflammatory agents on acute experimental synovitis in dogs. Proc Soc Exp Biol Med 122:693–696

    PubMed  CAS  Google Scholar 

  • Rosenthale ME, Dervinis A, Kassarich J, Singer S (1972) Prostaglandins and anti-inflammatory drugs in the dog knee joint. J Pharm Pharmacol 24:149–150

    PubMed  CAS  Google Scholar 

  • Schaible HG, Schmidt RF (1985) Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 54:1109–1122

    PubMed  CAS  Google Scholar 

  • Schött E, Berge OG, Ängeby-Möller K, Hammerström G, Dalsgaard CJ, Brodin E (1994) Weight bearing as an objective measure of arthritic pain in the rat. J Pharmacol Toxicol Meth 31:79–83

    Google Scholar 

  • Tanaka K, Shimotori T, Makino S, Aikawa Y, Inaba T, Yoshida C, Takano S (1992) Pharmacological studies of the new antiin-flammatory agent 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-1-benzopyran-4-one. 1st Communication: antiin-flammatory, analgesic and other related properties. Arzneim Forsch/Drug Res 42:935–944

    CAS  Google Scholar 

References

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Bush IE, Alexander RW (1960) An improved method for the assay of antiinflammatory substances in rats. Acta Endocr (Kbh) 35:268–276

    CAS  Google Scholar 

  • Hicks R (1969) The evaluation of inflammation induced by material implanted subcutaneously in the rat. J Pharm Pharmacol 21:581–588

    PubMed  CAS  Google Scholar 

  • Meier R, Schuler W, Desaulles P (1950) Zur Frage des Mechanismus der Hemmung des Bindegewebswachstums durch Cortisone. Experientia 6:469–471

    PubMed  CAS  Google Scholar 

  • Penn GB, Ashford A (1963) The inflammatory response to implantation of cotton pellets in the rat. J Pharm Pharmacol 15:798–803

    PubMed  CAS  Google Scholar 

  • Roszkowski AP, Rooks WH, Tomolonis AJ, Miller LM (1971) Anti-inflammatory and analgesic properties of d-2-(6′-methoxy-2′-naphthyl)-propionic acid (NAPROXEN). J Pharmacol Exper Ther 179:114–123

    CAS  Google Scholar 

  • Rudas B (1960) Zur quantitativen Bestimmung von Granulationsgewebe in experimentell erzeugten Wunden. Arzneim Forsch 10:226–229

    CAS  Google Scholar 

  • Tanaka A, Kobayashi F, Miyake T (1960) A new anti-inflammatory activity test for corticosteroids. The formalin-filter paper pellet method. Endocrinol Japon 7:357–364

    CAS  Google Scholar 

  • Tsurumi K, Mibu H, Okada K, Hasegawa J, Fujimura H (1986) Pharmacological investigations of the new antiinflammatory agent 2-(10,11-dihydro-10-oxodibenzo[b,f]thiepin-2-yl) pro pionic acid. Arzneim Forsch/Drug Res 36:1806–1809

    CAS  Google Scholar 

References

  • Bonta IL, Adolfs MJP, Parnham MJ (1979) Cannulated sponge implants in rats for the study of time-dependent pharmacological influences on inflammatory granulomata. J Pharmacol Meth 2:1–11

    CAS  Google Scholar 

  • Boucek RJ, Noble NL (1955) Connective tissue. A technique for its isolation and study. AMA Arch Pathol 59:553–558

    PubMed  CAS  Google Scholar 

  • Bragt PC, Bonta IL, Adolfs MJP (1980) Cannulated Teflon chamber implant in the rat: A new model for continuous studies on granulomatous inflammation. J Pharmacol Meth. 3:51–61

    CAS  Google Scholar 

  • Damas J, Remacle-Volon G (1992) Influence of a long-acting bradykinin antagonist, Hoe 140, on some acute inflammatory reactions in the rat. Eur J Pharmacol 211:81–86

    PubMed  CAS  Google Scholar 

  • Ford-Hutchinson AW, Walker JR, Smith MJH (1978) Assessment of anti-inflammatory activity by sponge implantation techniques. J Pharmacol Meth 1:3–7

    CAS  Google Scholar 

  • Higgs GA (1989) Use of implanted sponges to study the acute inflammatory response. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 151–171

    Google Scholar 

  • Holm-Pedersen P, Zederfeldt B (1971) Granulation tissue formation in subcutaneously implanted cellulose sponges in young and adult rats. Scand J Plast Reconstr Surg 5:13–16

    PubMed  CAS  Google Scholar 

  • Paulini K, Körner B, Beneke G, Endres R (1974) A quantitative study of the growth of connective tissue: Investigation on implanted polyester-polyurethane sponges. Conn Tiss Res 2:257–264

    CAS  Google Scholar 

  • Paulini K, Körner B, Mohr W, Sonntag W (1976) The effect of complete Freund — adjuvant on chronic proliferating inflammation in an experimental granuloma model. Z Rheumatol 35:123–131

    PubMed  CAS  Google Scholar 

  • Saxena PN (1960) Effects of drugs on early inflammation reaction. Arch Int Pharmacodyn Ther 126:228–237

    PubMed  CAS  Google Scholar 

References

  • Vogel HG (1970) Das Glasstabgranulom, eine Methode zur Untersuchung der Wirkung von Corticosteroiden auf Gewicht, Festigkeit und chemische Zusammensetzung des Granulationsgewebes an Ratten. Arzneim Forsch/Drug Res 20:1911–1918

    CAS  Google Scholar 

  • Vogel HG (1975) Collagen and mechanical strength in various organs of rats treated with d-penicillamine or amino-acetonitrile. Conn Tiss Res 3:237–244

    CAS  Google Scholar 

  • Vogel HG (1977) Mechanical and chemical properties of connective tissue organs in rats as influenced by non-steroidal antirheumatic drugs. Conn Tiss Res 5:91–95

    CAS  Google Scholar 

  • Vogel HG, De Souza NJ, D's A (1990) Effect of terpenoids isolated from Centella asiatica on granuloma tissue. Acta therapeut 16:285–298

    CAS  Google Scholar 

References

  • Alich AA, Wittmers LE, Anderson LA, Rieschl EM, Peterson PL (1992) Gastric mucosal damage due to aspirin and copper aspirinate assessed by gastric mucosal potential difference changes. J Pharm Toxicol Meth 27:245–250

    CAS  Google Scholar 

  • Cashin CH, Dawson W, Kitchen EA (1977) The pharmacology of benoxaprofen (2-[4-chlorophenyl]-α-methyl-5-benzoxazole acetic acid), LRCL 3794, a new compound with antiinflammatory activity apparently unrelated to prostaglandin synthesis. J Pharm Pharmacol 29:330–336

    PubMed  CAS  Google Scholar 

  • Ford J, Martin SW, Houston JB (1995) Assessment of intestinal permeability changes induced by nonsteroidal anti-inflammatory drugs in the rat. J Pharmacol Toxicol Meth 34:9–16

    CAS  Google Scholar 

  • Goburdhun R, Gurlez K, Haruna H, West GB (1978) Testing for the gastro-intestinal irritancy of aspirin and indomethacin. J Pharmacol Meth 1:109–114

    CAS  Google Scholar 

  • Rainsford KD (1987) Gastric ulcerogenicity of non-steroidal antiinflammatory drugs in mice sensitized by cholinomimetic treatment. J Pharm Pharmacol 39:669–672

    PubMed  CAS  Google Scholar 

  • Rainsford KD (1989) Gastrointestinal side effects. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 343–362

    Google Scholar 

  • Scarpignato C, Corradi C, Gandolfi AM,, Galmiche JP (1995) A new technique for continuous measurement and recording of gastric potential difference in the rat: evaluation of NSAID-induced gastric mucosal damage. J Pharmacol Toxicol Meth 34:63–72

    CAS  Google Scholar 

  • Szabo S, Trier JS, Brown A, Schnoor J, Howan HD, Braford JC (1985) A quantitative method for assessing the extent of experimental gastric erosions and ulcers. J Pharmacol Meth 13:59–66

    CAS  Google Scholar 

References

  • Wittmers LE, Anderson LA, Fall MM, Alich AA (1990) Intragastric inulin as a measure of mucosal damage caused by aspirin. J Pharmacol Meth 24:229–239

    CAS  Google Scholar 

References

  • Ghanayem BI, Ahmed AE (1982) Quantitative determination of gastrointestinal bleeding in rats. J Pharmacol Meth 8:311–318

    CAS  Google Scholar 

References

  • Bejanian M, Jones BL, Syapin PJ, Finn DA, Alkana RJ (1991) Brain temperature and ethanol sensitivity in mice: A radiotelemetric study. Pharmacol Biochem Behav 39:457–463

    PubMed  CAS  Google Scholar 

  • Brune K, Alpermann H (1983) Non-acidic pyrazoles: inhibition of prostaglandin production, carrageenan oedema and yeast fever. Agents Actions 13:360–363

    PubMed  CAS  Google Scholar 

  • Burn JH, Finney DJ, Goodwin LG (1950) Chapter XIV: Antipyretics and analgesics. In: Biological Standardisation, Oxford University Press, London, New York, pp 312–319

    Google Scholar 

  • Clement JG, Mills P, Brockway B (1989) Use of telemetry to record body temperature and activity in mice. J Pharmacol Meth 21:129–140

    CAS  Google Scholar 

  • Gallaher EJ, Egner DA, Swen J (1985) Automated remote temperature measurement in small animals using a telemetry/microcomputer interface. Comput Biol Med 15:103–110

    PubMed  CAS  Google Scholar 

  • Guillet MC, Molinié B, Laduron PM, Terlain B (1990) Effects of ketoprofen in adjuvant-induced arthritis measured in a new telemetric model test. Eur J Pharmacol 183:2266–2267

    Google Scholar 

  • Inoue K, Fujisawa H, Sasaki Y, Nishimura T, Nishimura I, Inoue Y, Yokota M, Masuda T, Ueda F, Shibata Y, Kimura K, Inoue K, Komiya Y, Nishioka J (1991) Pharmacological properties of the new non-steroidal anti-inflammatory agent Etodolac. Arzneim Forsch/Drug Res 41:228–235

    CAS  Google Scholar 

  • Kluger MJ, Carole AC, Franklin B, Freter R, Abrams BD (1990) Effect of gastrointestinal flora on body temperature of rats and mice. Am J Physiol 258:R552–R557

    PubMed  CAS  Google Scholar 

  • Loux JJ, DePalma PD, Yankell SL (1972) Antipyretic testing of aspirin in rats. Toxicol Appl Pharmacol 22:672–675Riley JL, Thursten JR, Egemo CL, Elliot HL (1978) A radiotelemetry transmitter for transmitting temperatures from small animals. J Appl Physiol 45:1016–1018

    PubMed  CAS  Google Scholar 

  • Luheshi G, Miller AJ, Brouwer S, Dascombe MJ, Rothwell NJ, Hopkins SJ (1996) Interleukin-1 receptor antagonist inhibits endotoxin fever and systemic interleukin-6 induction in the rat. Am J Physiol, Endocrinol Metab 270/1 33-1:E91–E95

    CAS  Google Scholar 

  • Miller AJ, Hopkins SJ, Luheshi GN (1997) Sites of action of IL-1 in the development of fever and cytokine response to tissue inflammation in the rat. Br J Pharmacol 120:1274–1279

    PubMed  CAS  Google Scholar 

  • Roszkowski AP, Rooks WH, Tomolonis AJ, Miller LM (1971) Anti-inflammatory and analgesic properties of d-2-(6′-methoxy-2′-naphthyl)-propionic acid (NAPROXEN). J Pharmacol Exper Ther 179:114–123

    CAS  Google Scholar 

  • Shimada SG, Otterness IG, Stitt JT (1994) A study of the mechanism of action of the mild analgesic dipyrone. Agents Actions 41:188–192

    PubMed  CAS  Google Scholar 

  • Smith PK, Hambourger WE (1935) The ratio of the toxicity of acetanilide to its antipyretic activity in rats. J Pharmacol Exp Ther 54:346–351

    CAS  Google Scholar 

  • Stitt JT, Shimada SG (1991) Calcium channel blockers inhibit endogenous pyrogen fever in rats and rabbits. J Appl Physiol 71:951–955

    PubMed  CAS  Google Scholar 

  • Tanaka K, Shimotori T, Makino S, Aikawa Y, Inaba T, Yoshida C, Takano S (1992) Pharmacological studies of the new antiinflammatory agent 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-1-benzopyran-4-one. 1st Communication: antiinflammatory, analgesic and other related properties. Arzneim Forsch/Drug Res 42:935–944

    CAS  Google Scholar 

  • Watkinson WP, Highfill JW, Slade R, Hatch GE (1996) Ozone toxicity in the mouse: comparison and modeling of responses in susceptible and resistant strains. J Appl Physiol 80:2134–2142

    PubMed  CAS  Google Scholar 

References

  • Cashin CH, Heading CE (1968) The assay for anti-pyretic drugs in mice, using intracerebral injection of pyretogenins. Br J Pharmacol 34:148–158

    PubMed  CAS  Google Scholar 

  • Cashin CH, Dawson W, Kitchen EA (1977) The pharmacology of benoxaprofen (2-[4-chlorophenyl]-α-methyl-5-benzoxazole acetic acid), LRCL 3794, a new compound with antiinflammatory activity apparently unrelated to prostaglandin synthesis. J Pharm Pharmacol 29:330–336

    PubMed  CAS  Google Scholar 

  • Davidson J, Flower RJ, Milton AS, Peers SH, Rotondo D (1991) Antipyretic actions of human recombinant lipocortin-1. Br J Pharmacol 102:7–9

    PubMed  CAS  Google Scholar 

  • Deeter LB, Martin LW, Lipton JM (1989) Antipyretic effect of central α-MSH summates with that of acetaminophen or ibuprofen. Brain Res Bull 23:573–575

    PubMed  CAS  Google Scholar 

  • Lee TF, Mora F, Myers RD (1985) Effect of intracerebroventricular vasopressin on body temperature and endotoxin fever of macaque monkey. Am J Physiol 248:R674–R678

    PubMed  CAS  Google Scholar 

  • Loza Garcia MI, Baamonde Arbaiza A, Hidalgo Balsera A, Andres-Trelles F (1993) Potenciación por dipirona (meta-mizol) magnésica y dipirona sódica de la hipotermia produ-cida por chlorpromazina en rata anestesiada. An Real Acad Farm 59:181–190

    Google Scholar 

  • Matuszek M, Szreder Z, Korolkiewicz Z (1990) The antipyretic effect of some newer alpha-1 antagonists. Eur J Pharmacol 183:2279–2280

    Google Scholar 

  • Petrova L, Nikolova M, Nikolov R, Stefanova D (1978) Dipyrone and acetylsalicylic acid comparative pharmacological research. Antipyretic, anti-inflammatory and analgesic action. In: Ovtcharov R, Pola W (eds) Proceedings Dipyrone. Moscow Symposium, Schattauer-Verlag, Stuttgart New York, pp 99–107

    Google Scholar 

  • Shimada SG, Otterness IG, Stitt JT (1994) A study of the mechanism of action of the mild analgesic dipyrone. Agents Actions 41:188–192

    PubMed  CAS  Google Scholar 

  • Szeder Z (1990) Comparison of the effect of prazosin with that of dihydrobenzperidol and nifedipine on thermoregulatory responses produced by pyrogen in rabbits. Gen Pharmacol 21:833–838

    Google Scholar 

  • Szreder Z, Korolkiewicz Z (1991) Inhibition of pyrogen Escherichia coli fever with intracerebral administration of prazosin, dihydrobenzperidol and nifedipin in the rabbits. Gen Pharmacol 22:381–388

    PubMed  CAS  Google Scholar 

  • USP 23 (1995) Pyrogen test. The United States Pharmacopeia 23, p 1718

    Google Scholar 

  • van Miert ASJPAM, van Essen JA, Tromp GA (1972) The antipyretic effect of pyrazolone derivates and salicylates on fever induced with leukocytic or bacterial pyrogen. Arch int Pharmacodyn 197:388–391

    PubMed  Google Scholar 

  • van Miert ASJPAM, van der Wal-Komproe, van Duin CTM (1977) Effects of antipyretic agents on fever and ruminal stasis induced by endotoxins in conscious goats. Arch Int Pharmacodyn 225:39–50

    PubMed  Google Scholar 

  • Zimecki M, Schnaper HW, Wieczorek Z, Webb DR, Pierce CW (1990) Inhibition of interleukin 1 (IL-1)-elicited leukocytosis and LPS-induced fever by soluble immune response suppressor (SIRS). Immunopharmacol 19:39–46

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this entry

Cite this entry

Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (2002). Analgesic, anti-inflammatory, and anti-pyretic activity1 . In: Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29837-1_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-29837-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42396-6

  • Online ISBN: 978-3-540-29837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics