Skip to main content

Anti-obesity activity1

  • Reference work entry

1 L.4.5.2 Adipsin expression in mice 1092

1.1 L.1.0.1 General considerations

Influence of the central nervous system, in particular of the hypothalamus, on development of obesity has been suspected since the early clinical observations of Babinski (1900) and Fröhlich (1901), Biedl 1916). Experiments reported by Smith (1927, 1930) showed that injections of chromic acid into the suprasellular region of rats with lesion of the hypothalamus induced obesity in rats (Bomskov 1939). Hetherington and Ranson (1939) found that electrolytic lesions, restricted to the ventromedial region of the hypothalamus, could be associated with the development of obesity.

A virally induced obesity syndrome in mice was described by Lyons et al. (1982).

Chan (1995) gave a review on β-cell stimulus-secretion coupling defects in rodent models of obesity.

Leiter and Herberg (1997) reviewed the advances in understanding the molecular bases for monogenic obesity mutations capable of producing obesity-induced...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

References

  • Astrup A, Lundsgaard C (1998) What do pharmacological approaches to obesity management offer? Linking pharmacological mechanisms of obesity management agents to clinic practice. Exp Clin Endocrinol Diabetes 106, Suppl 2:29–34

    PubMed  CAS  Google Scholar 

  • Babinski MJ (1900) Tumeur de corps pituitaire sans acromegalie et avec manquer de developpement des organes genitaux. Rev Neurol 8:531–533

    Google Scholar 

  • Biedl A (1916) Innere Sekretion. Ihre physiologischen Grundlagen und ihre Bedeutung für die Pathologie. Zweiter Teil. Urban und Schwarzenberg, Berlin/Wien, pp 173–179

    Google Scholar 

  • Bomskov C (1939) Methodik der Hormonforschung, Zweiter Band, Georg Thieme Verlag Leipzig, pp 614–615

    Google Scholar 

  • Bray G, York DA (1979) Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev 59:719–809

    PubMed  CAS  Google Scholar 

  • Chan CB (1995) β-Cell stimulus-secretion coupling defects in rodent models of obesity. Can J Physiol Pharmacol 73:1414–1424

    PubMed  CAS  Google Scholar 

  • Fröhlich A (1901) Ein Fall von Tumor der Hypophysis cerebri ohne Akromegalie. Wien Klin Rundsch 15:883–886

    Google Scholar 

  • Hetherington AW, Ranson SW (1939) Experimental hypothalamico-hypophyseal obesity in the rat. Proc Soc Exp Biol Med 41:465–466

    Google Scholar 

  • Leiter EH, Herberg (1997) The polygenetics of diabesity in mice. Diabetes Rev 5:131–148

    Google Scholar 

  • Lyons MJ, Faust IM, Hemmes RB, Buskirk DR, Hirsch J, Zabriskie JB (1982) A virally induced obesity syndrome in mice. Science 216:82–85

    PubMed  CAS  Google Scholar 

  • Scalfani A (1984) Animal models of obesity: classification and characterization. Int J Obesity 8:491–508

    Google Scholar 

  • Smith PE (1927) The disabilities caused by hypophysectomy and their repair. The tuberal (hypothalamic) syndrome in the rat. J Amer Med Assoc 88:158–161

    CAS  Google Scholar 

  • Smith (1930) Amer J Anat 45:265

    Google Scholar 

References

  • Collins S, Daniel KW, Petro AE, Surwit RS (1997) Strain-specific response to β3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology 138:405–413

    PubMed  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Foster DO, Ma SWY (1989) The effector of diet-induced thermogenesis: brown adipose tissue or liver? In: Lardy H, Stratman F (eds) Hormones, Thermogenesis and Obesity. Elsevier, New York, pp 165–171

    Google Scholar 

  • Harris RB (1993) The impact of high-or low-fat cafeteria foods on nutrient intake and growth of rats consuming a diet containing 30% energy as fat. Int J Obes 17:307–315

    CAS  Google Scholar 

  • Herberg L, Döppen W, Major E, Gries FA (1974) Dietary-induced hypertrophic-hyperplastic obesity in mice. J Lipid Res 15:580–585

    PubMed  CAS  Google Scholar 

  • Hill JO, Lin D, Yakubu F, Peters JC (1992) Development of dietary obesity in rats: influence of amount and composition of dietary fat. Int J Obes 16:321–333

    CAS  Google Scholar 

  • Hirsch J, Gallian E (1968) Methods for determination of adipose cell size in man and animals. J Lipid Res 9:110–119

    PubMed  CAS  Google Scholar 

  • LeBlanc J, Labrie A (1997) A possible role for palatability of the food in diet-induced thermogenesis. Int J Obes 21:1100–1103

    CAS  Google Scholar 

  • Llado I, Pons A, Palou A (1997) Fatty acid composition of brown adipose tissue in dietary obese rats. Biochem Mol Biol Int 43:1129–1136

    PubMed  CAS  Google Scholar 

  • Levin BE, Dunn-Meynell AA, Balkan B, Keesey R (1997) Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol (Regul Integr Comp Physiol) 273:R725–R730

    CAS  Google Scholar 

  • Mayer J (1953) Genetic, traumatic and environmental factors in the etiology of obesity. Physiol Rev 33:472–508

    PubMed  CAS  Google Scholar 

  • Rolls BJ, Rowe RA, Turner RC (1980) Persistent obesity in rats following a period of consumption of a mixed, high energy diet. J Physiol 298:415–427

    PubMed  CAS  Google Scholar 

  • Rothwell NJ, Stock MJ (1986) Brown adipose tissue and diet-induced thermogenesis. In: Trayhum P, Nicholls DG (eds) Brown Adipose Tissue. Edward Arnold, Ltd., London, pp 269–298

    Google Scholar 

  • Rothwell NJ, Saville ME, Stock MJ (1982) Effects of feeding a “cafeteria” diet on energy balance and diet-induced thermogenesis in four strains of rats. J Nutr 112:1515–1524

    PubMed  CAS  Google Scholar 

  • Salmon DMV, Flatt JP (1985) Effect of dietary fat content on the incidence of obesity among ad libitum fed mice. Int J Obes 9:443–449

    PubMed  CAS  Google Scholar 

  • Scalfani A, Springer D (1976) Dietary obesity in adult rats: similarities to hypothalamic and human obesity syndromes. Physiol Behav 17:461–471

    Google Scholar 

  • Segues T, Salvado J, Arola L, Alemany M (1994) Long-term effects of cafeteria diet feeding on young Wistar rats. Biochem Mol Biol Int 33:321–328

    PubMed  CAS  Google Scholar 

  • Stock MJ, Rothwell NJ (1979) Energy balance in reversible obesity. In: Festing MFW (ed) Animal Model of Obesity. MacMillan Press Ltd., pp 141–151

    Google Scholar 

  • Tiscari J, Nauss-Karol C, Levin BE, Sullivan AC (1985) Changes in lipid metabolism in diet-induced obesity. Metabolism 34:580–587

    Google Scholar 

  • Wade GN, Gray JM (1979) Gonadal effects on food intake and adiposity: a metabolic hypothesis. Physiol Behav 22:583–593

    PubMed  CAS  Google Scholar 

  • West DB, Boozer CN, Moody DL, Atkinson RL (1992) Dietary obesity in nine inbred mouse strains. Am J Physiol 262:R1025–R1032

    PubMed  CAS  Google Scholar 

  • West DB; Waguespack J, York B, Goudey-Lefevre J, Price RA (1994) Genetics of dietary obesity in AKR/J x RWR/J mice: segregation of the trait and identification of a linked locus on chromosome 4. Mammalian Genome 5:546–552

    PubMed  CAS  Google Scholar 

References

  • Bray GA, York DA (1979) Hypothalamic and genetic obesity in experimental animals: An autonomic and endocrine hypothesis. Physiol Rev 59:719–809

    PubMed  CAS  Google Scholar 

  • Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: Hypothalamic control of food intake and body weight. Neuron 22:221–232

    PubMed  CAS  Google Scholar 

  • Funahashi T, Shimomura I, Hiraoka H, Arai T, Takahashi M, Nakamura T, Nokazi S, Yamashita S, Takemura K, Tokonuga K, Matsusawa Y (1995) Enhanced expression of rat obese (ob) gene in adipose tissue of ventromedial hypothalamus (VMH)-lesioned rats. Biochem Biophys Res Commun 211:469–475

    PubMed  CAS  Google Scholar 

  • Gold RM, Kapatos G, Carey RJ (1973) A retracting wire knife for stereotaxic brain surgery made from a microliter syringe. Physiol Behav 10:813–815

    PubMed  CAS  Google Scholar 

  • Himms-Hagen J, Tokuyama K, Eley J, Park IRA, Cui J, Zaror-Behrens G, Coscina DV (1989) Hypothalamic regulation of brown adipose tissue in lean and obese rodents. In: Lardy H, Stratman F (eds) Hormones, Thermogenesis and Obesity. Elsevier, New York, pp 173–184

    Google Scholar 

  • Leibowitz SF, Hammer NJ, Chang K (1981) Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol Behav 27:1031–1040

    PubMed  CAS  Google Scholar 

  • Liu CM, Yin TH (1974) Caloric compensation to gastric loads in rats with hypothalamic hyperphagia. Physiol Behav 13:231–238

    PubMed  CAS  Google Scholar 

  • Sclafani A, Aravich PF (1983) Macronutrient self-selection in three forms of hypothalamic obesity. Am J Physiol (Regul Integr Comp Physiol 13):R686–694

    Google Scholar 

  • Vander Tuig, Kerner J, Romsos DR (1985) Hypothalamic obesity, brown adipose tissue, and sympathoadrenal activity in rats. Am J Physiol 248 (Endocrinol Metab 11):E607–E617

    Google Scholar 

References

  • Brecher G, Waxler SH (1949) Obesity in albino mice due to single injections of goldthioglucose. Proc Soc Exp Biol Med 70:498–501

    PubMed  CAS  Google Scholar 

  • Debons AF, Silver L, Cronkite EP, Johnson A, Brecher G, Tenzer D, Schwartz IL (1962) Localization of gold in mouse brain in relation to gold thioglucose obesity. Am J Physiol 202:743–750

    PubMed  CAS  Google Scholar 

  • Debons AF, Krimsky I, Likuski HJ, From A, Cloutier RJ (1968) Goldthioglucose damage to the satiety center: inhibition in diabetes. Am J Physiol 214:562–658

    Google Scholar 

  • Debons AF, Krimsky I, Maayan ML, Fani K, Jimenez FA (1977) Goldthioglucose obesity syndrome. Fed Proc 36:143–137

    PubMed  CAS  Google Scholar 

  • Deter RL, Liebelt RA (1964) Goldthioglucose as an experimental tool. Texas Rep Biol Med 22:229–243

    CAS  Google Scholar 

  • Laughton W, Powley TL (1981) Bipiperidyl mustard produces brain lesions and obesity in the rat. Brain Res 221:415–420

    PubMed  CAS  Google Scholar 

  • Marshall NB, Barrnett RJ, Mayer J (1955) Hypothalamic lesions in goldthioglucose injected mice. Proc Soc Exp Biol Med 90:240–244

    PubMed  CAS  Google Scholar 

  • Mizutani T (1977) Characterization of obesity in mice induced with 4-nitroquinoline 1-oxide. Jap J Vet Sci 39:141–147

    CAS  Google Scholar 

  • Perry JH, Liebelt RA (1961) Extra-hypothalamic lesions associated with gold-thioglucose induced obesity. Proc Soc Exp Biol Med 106:55–57

    PubMed  CAS  Google Scholar 

  • Rutman RJ, Lewis FS, Bloomer WD (1966) Bipiperidyl mustard, a new obesifying agent in the mouse. Science 153:1000–1002

    PubMed  CAS  Google Scholar 

  • Smith CJV (1972) Hypothalamic glucoreceptors — the influence of gold thioglucose implants in the ventromedial and lateral hypothalamic areas of normal and diabetic rats. Physiol Behav 9:391–396

    PubMed  CAS  Google Scholar 

  • Smith CJV, Britt DL (1971) Obesity in the rat induced by hypothalamic implants of gold thioglucose. Physiol Behav 7:7–10

    PubMed  CAS  Google Scholar 

  • Stauffacher W, Lambert AE; Vecchio D, Renold AE (1967) Measurement of insulin activities in pancreas and serum of mice with spontaneous (“obese” and “New Zealand obese”) and induced (goldthioglucose) obesity and hyperglycemia, with considerations on the pathogenesis of the spontaneous syndrome. Diabetologia 3:230–237

    PubMed  CAS  Google Scholar 

References

  • Bunyan D, Merrell EA, Shah PD (1976) The induction of obesity in rodents by means of monosodium glutamate. Br J Nutr 35:25–39

    PubMed  CAS  Google Scholar 

  • Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721

    PubMed  CAS  Google Scholar 

  • Pizzi WJ, Barnhart JE (1976) Effects of monosodium glutamate on somatic development, obesity and activity in the mouse. Pharmacol Biochem Behav 5:551–557

    PubMed  CAS  Google Scholar 

  • Poon TKY, Cameron DP (1978) Measurement of oxygen consumption and locomotor activity in monosodium glutamate-induced obesity. Am J Physiol 234:E532–E534

    PubMed  CAS  Google Scholar 

  • Redding TW, Schally AV, Arimura A, Wakabayashi I (1971) Effect of monosodium glutamate on some endocrine functions. Neuroendocrinology 8:245–255

    PubMed  CAS  Google Scholar 

  • Remke H, Wilsdorf A, Müller F (1988) Development of hypothalamic obesity in rats. Exp Pathol 33:223–232

    PubMed  CAS  Google Scholar 

  • Seress L (1982) Divergent effects of acute and chronic monosodium L-glutamate treatment on the anterior and posterior parts of the arcuate nucleus. Neuroscience 7:2207–2216

    PubMed  CAS  Google Scholar 

  • Tokuyama K, Himms-Hagen J (1986) Brown adipose tissue thermogenesis, torpor, and obesity in glutamate-treated mice. Am J Physiol 251 (Endocrin Metab 14):E407–E415

    PubMed  CAS  Google Scholar 

  • Yoshida T, Nishioka H, Nakamura Y, Kondo M (1984) Reduced norepinephrine turnover in mice with monosodium glutamate-induced obesity. Metabolism 33:1060–1063

    PubMed  CAS  Google Scholar 

  • Yoshida T, Nishioka H, Nakamura Y, Kanatsuna T, Kondo M (1985) Reduced norepinephrine turnover in brown adipose tissue of pre-obese mice treated with monosodium-L-glutamate. Life Sci 36:931–938

    PubMed  CAS  Google Scholar 

  • Yoshida T, Sakane N, Wakabayashi Y, Umekawa T, Kondo M (1994) Anti-obesity effect of CL 316,243, a highly specific β3-adrenoceptor agonist, in mice with monosodium-L-glutamate-induced obesity. Eur J Endocrinol 131:97–102

    PubMed  CAS  Google Scholar 

References

  • Bray GA, York DA (1979) Hypothalamic and genetic obesity in experimental animals: An autonomic and endocrine hypothesis. Physiol Rev 59:719–809

    PubMed  CAS  Google Scholar 

  • Cawthorne (1979) The use of animal models in the detection and evaluation of compounds for the treatment of obesity. In: Festing MFW (ed) Animal Model of Obesity. MacMillan Press Ltd., pp 79–90

    Google Scholar 

  • Coleman DL (1978) Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice

    Google Scholar 

  • Festing MFW (1979) The inheritance of obesity in animal models of obesity. In Festing MFW (ed) Animal Model of Obesity. MacMillan Press Ltd., pp 15–37

    Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    PubMed  CAS  Google Scholar 

  • Hunt CE, Lindsey JR, Walkley SU (1976) Animal models of diabetes and obesity including PBB-Ld mouse. Fed Proc 35:1206–1217

    PubMed  CAS  Google Scholar 

  • Westman S (1968) Development of the obese-hyperglycaemic syndrome in mice. Diabetologia 4:141–149

    PubMed  CAS  Google Scholar 

References

  • Koizumi M, Shimoda I, Sato K, Shishido T, Ono T, Ishizuka J, Toyota T, Goto Y (1989) Effects of CAMOSTAT on development of spontaneous diabetes in the WBN/Kob rats. Biomed Res 10, Suppl 1:45–50

    CAS  Google Scholar 

  • Nakama K, Shichinohe K, Kobayashi K, Naito K, Ushida O, Yasuhara K, Zobe M (1985) Spontaneous diabetes-like syndrome in WBN/Kob rats. Acta Diabetol Lat. 122:335–342

    Google Scholar 

  • Tsichitani M Saegusa T, Narama I, Nishikawa T, Gonda T (1985) A new diabetic strain of rat (WBN/Kob) Laboratory Animals 19:200–207

    Google Scholar 

  • Abadie JM, Wright B, Correa G, Browne ES, Porter JR, Svec F (1993) Effect of dihydro-epiandrosterone on neurotransmitter levels and appetite regulation of the obese Zucker rat. Diabetes 42:662–669

    PubMed  CAS  Google Scholar 

  • Alamzadeh R, Slonim AE, Zdanowicz MM (1993) Modification of insulin resistance by diazoxide in obese Zucker rats. Endocrinology 133:705–712

    Google Scholar 

  • Bray GA (1977) The Zucker-fatty rat: A review. Fed Proc 36:148–153

    PubMed  CAS  Google Scholar 

  • Cleary MP (1989) Antiobesity effect of dehydroepiandrosterone in the Zucker rat. In: Lardy H, Stratman F (eds) Hormones, Thermogenesis and Obesity. Elsevier, New York, pp 365–376

    Google Scholar 

  • Clark JB, Palmer CJ, Shaw WN (1983) The diabetic Zucker fatty rat. Proc Soc Exp Biol Med 173:68–75

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H (1988) Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37:1549–1558

    PubMed  CAS  Google Scholar 

  • Galante P, Maerker E, Scholz R, Rett K, Herberg L, Mosthaf L, Häring HU (1994) Insulin-induced translocation of GLUT 4 in skeletal muscle of insulin-resistant Zucker rats. Diabetologia 37:3–9

    PubMed  CAS  Google Scholar 

  • Kasim SE, Elovson J, Khilnani S, Almario RU, Jen KLC (1993) Effect of lovostatin on the secretion of very low density lipoproteins and apolipoprotein B in the hypertriglyceridemic Zucker obese rat. Atherosclerosis 104:147–152

    PubMed  CAS  Google Scholar 

  • Kava R, Greenwoof MRC, Johnson PR (1990) Zucker (fa/fa) rat. Ilar News 32:4–8

    Google Scholar 

  • Lynch CJ, McCall KM, Billingsley ML, Bohlen LM, Hreniuk SP, Martin LF, Witters LA, Vannucci SJ (1992) Pyruvate carboxylase in genetic obesity. Am J Physiol 262 (Endocrinol Metab 25):E608–618

    PubMed  CAS  Google Scholar 

  • McCaleb ML, Sredy J (1992) Metabolic abnormalities of the hyperglycemic obese Zucker rat. Metabolism 41:522–525

    PubMed  CAS  Google Scholar 

  • Rouru J, Pesonen U, Isaksson K, Huupponen R, Koulu M (1993) Effect of chronic treatment with TFMPP, a 5-HT1 receptor agonist, on food intake, weight gain, plasma insulin and neuropeptide Y mRNA expression in obese Zucker rats. Eur J Pharmacol 234:191–198

    PubMed  CAS  Google Scholar 

  • Santti E, Huupponen R, Rouro J, Hänninen V, Pesonen U, Jhanwar-Uniyal M, Koulu M (1994) Potentiation of the anti-obesity effect of the β3-adrenoceptor agonist BRL 35135 in obese Zucker rats by exercise. Br J Pharmacol 113:1231–1236

    PubMed  CAS  Google Scholar 

  • Savontaus E, Raasmaja A, Rouru J, Koulu M, Pesonen U, Virtanen R, Savola JM, Huupponen R (1997) Anti-obesity effect of MPV-1743 A III, a novel imidazoline derivative, in genetic obesity. Eur J Pharmacol 328:207–215

    PubMed  CAS  Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    CAS  Google Scholar 

  • Triscari J, Sullivan AC (1987) A pharmacotherapeutic approach to the regulation of hyperinsulinemia and obesity. Int J Obesity 11, Suppl 3:43–51

    CAS  Google Scholar 

  • Truett GE, Bahary N, Friedman JM, Leibel RL (1991) Rat obesity gene fatty (fa) maps to chromosome 5: Evidence for homology with the mouse gene diabetes (db). Proc Natl Acad Sci USA 88:7806–7809

    PubMed  CAS  Google Scholar 

  • Vasselli JR, Flory T, Fried KS (1987) Insulin binding and glucose transport in adipocytes of acarbose-treated Zucker lean and obese rats. Int J Obesity 11:71–75

    CAS  Google Scholar 

  • Yoshioka S, Nishino H, Shiraki T, Ikeda K, Koike H, Okuno A, Wada M, Fujiwara T, Horikoshi H (1993) Antihypertensive effects of CS-045 treatment in obese Zucker rats. Metabolism 42:75–80

    PubMed  CAS  Google Scholar 

  • Zhang B, Graziano MF, Doebber TW, Leibowitz MD, White-Carrington S, Szalkowski DM, Hey PJ, Wu M, Cullinan CA, Bailey P, Lollmann B, Frederich R, Flier JS, Strader CD, Smith RG (1996) Down-regulation of the expression of the obese gene by an antidiabetic thiazolidinedione in Zucker diabetic fatty rats and db/db mice. J Biol Chem 271:9455–9459

    PubMed  CAS  Google Scholar 

  • Zucker LM (1965) Hereditary obesity in the rat associated with hyperlipidemia. Ann NY Acad Sci 131:447–458

    PubMed  CAS  Google Scholar 

  • Ikeda H, Shino A, Matsuo T, Iwatsuka H, Suzuoki Z (1981) A new genetically obese-hyperglycemic rat (Wistar fatty). Diabetes 30:1045–1050

    PubMed  CAS  Google Scholar 

  • Kava R, Peterson RG, West DB, Greenwood MRC (1990) Ilar News 32:9–13

    Google Scholar 

  • Kava RA, West DB, Lukasik VA, Greenwood MRC (1989) Sexual dimorphism of hyperglycemia and glucose tolerance in Wistar fatty rats. Diabetes 38:159–163

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Iwanshi M, Egawa K, Shigeta Y (1992) Pioglitazone increases insulin sensitivity by activating insulin receptor kinase. Diabetes 41:476–483

    PubMed  CAS  Google Scholar 

  • Madar Z, Omusky Z (1991) Inhibition of intestinal α-glucosidase activity and postprandial hyperglycemia by α-glucosidase inhibitors in fa/fa rats. Nutrit Res 11:1035–1046

    CAS  Google Scholar 

  • Mazusaki H, Hosoda K, Ogawa Y, Shigemoto M, Satoh N, Mori K, Tamura N, Nishi S, Yoshimasa Y, Yamori Y, Nakao K (1996) Augmented expression of obese (ob) gene during the process of obesity in genetically obese-hyperglycemic Wistar fatty (fa/fa) rats. FEBS Lett 378:267–271

    Google Scholar 

  • Peterson RG, Little LA, Neel MA (1990) WKY fatty rat as a model of obesity and non-insulin dependent diabetes mellitus. Ilar News 32:13–15

    Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE,IV (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    PubMed  CAS  Google Scholar 

  • Aizawa T, Taguchi N, Sato Y, Nakabayashi T, Kobuchi H, Hidaka H, Nagasawa T, Ishihara F, Itoh N, Hashizume K (1995) Prophylaxis of genetically determined diabetes by diazoxide: a study in a rat model of naturally occurring obese diabetes. J Pharmacol Exp Ther 275:194–199

    PubMed  CAS  Google Scholar 

  • Ishida K, Mizuno A, Sano T, Shima K (1995) Which is the primary etiologic event in Otsuka Long-Evans Tokushima fatty rats, a model of spontaneous non-insulin-dependent diabetes mellitus, insulin resistance, or impaired insulin secretion? Metabolism 44:940–945

    PubMed  CAS  Google Scholar 

  • Kawano K, Hirashima T, Mori S, Kurosumi M, Saitoh Y (1991) A new rat strain with non-insulin dependent diabetes mellitus, “OLETF”. Rat News Lett 25:24–26

    Google Scholar 

  • Kawano K, Hirashima T, Mori S, Saitoh YA, Kurosumi M, Natori T (1992) Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima fatty (OLETF) strain. Diabetes 41:1422–1428

    PubMed  CAS  Google Scholar 

  • Umekawa T, Yoshida T, Sakane N, Saito M, Kumamoto K (1997) Anti-obesity and anti-diabetic effects of CL316,243, a highly specific β3-adrenoceptor agonist, in Otsuka Long Evans Tokushima Fatty rats: induction of uncoupling protein and activation of glucose transporter 4 in white fat. Eur J Endocrinol 136:429–437

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Dong M J, Fukumitsu KI, Imoto I, Kihara Y, Hirohata Y, Otsuki M (1999) Metabolic abnormalities in the genetically obese and diabetic Otsuka Long Evans Tukushima fatty rat can be prevented by α-glucosidase inhibitor. Metab Clin Exp 48:347–354

    PubMed  CAS  Google Scholar 

  • Emsberger P, Koletsky RJ, Friedman JE (1999) Molecular pathology in the obese spontaneous hypertensive Koletsky rat: A model of syndrome X. Ann New York Acad Sci 892:272–288

    Google Scholar 

  • Koletsky S (1973) Obese spontaneous hypertensive rats-a model for study of arteriosclerosis. Exp Mol Pathol 19:53–60

    PubMed  CAS  Google Scholar 

  • Koletsky S (1975) Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol 80:129–142

    PubMed  CAS  Google Scholar 

  • Russell JC, Graham S, Hameed M (1994) Abnormal insulin and glucose metabolism in the JCR:LA-corpulent rat. Metabolism 43:538–543

    PubMed  CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE,IV (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    PubMed  CAS  Google Scholar 

  • Yen T, Shaw WN, Yu PL (1977) Genetics of obesity in Zucker rats and Koletsky rats. Heredity 38:373–377

    PubMed  CAS  Google Scholar 

  • Dophin PJ, Stewart B, Amy RM, Russell JC (1987) Serum lipids and lipoproteins in the atherosclerotic-prone LA/N-corpulent rat. Biochem Biophys Acta 919:140–148

    Google Scholar 

  • Pederson RA, Campos RV, Buchan AMJ, Chisholm CB, Russell JC, Brown JC (1991) Comparison of the enteroinsular axis in two strains of obese rat, the fatty Zucker and the JCR:LA-corpulent. Int J Obesity 15:461–470

    CAS  Google Scholar 

  • Russell JC, Amy RM (1986a) Early arteriosclerotic lesions in a susceptible rat model: the LA/N-corpulent rat. Arteriosclerosis 60:119–129

    CAS  Google Scholar 

  • Russell JC, Amy RM (1986b) Myocardial and vascular lesions in the LA/N-corpulent rat. Can J Physiol Pharmacol 64:1272–1280

    PubMed  CAS  Google Scholar 

  • Russell JC, Graham S, Hameed M (1994) Abnormal insulin and glucose metabolism in the JCR:LA-corpulent rat. Metabolism 43:538–543

    PubMed  CAS  Google Scholar 

  • Vydelingum S, Shillabeer G, Hatch G, Russell JC, Lau DCW (1995) Overexpression of the obese gene in the genetically obese JCR:LA-corpulent rat. Biochem Biophys Res Commun 216:148–153

    PubMed  CAS  Google Scholar 

  • Clark RG, Mortensen DL, Carlsson LMS, Carlsson B, Carmignac D, Robinson ICAF (1996) The obese growth hormone (GH)-deficient dwarf rat: Body fat responses to patterned delivery of GH and insulin-like growth factor-I. Endocrinology 137:1904–1912

    PubMed  CAS  Google Scholar 

References

  • Bartke A, Gorecki A (1968) Oxygen consumption by obese yellow mice and their normal littermates. Am J Physiol 214:1250–1252

    PubMed  CAS  Google Scholar 

  • Bateson W (1903) The present state of knowledge of colors heredity in mice and rats. Proc Zool Soc London 2:71–99

    Google Scholar 

  • Carpenter KJ, Mayer J (1958) Physiological observations on yellow obesity in the mouse. Am J Physiol 193:499–504

    PubMed  CAS  Google Scholar 

  • Cuenot L (1905) Les races pures et leur combinaisons chez les souris. Arch Zool Exp Gen 122:123–132

    Google Scholar 

  • Dickerson GE, Gowan JW (1967) Hereditary obesity and efficient food utilization in mice. Science 105:496–498

    Google Scholar 

  • Dickie MM, Wooley GW (1946) the age factor in weight of yellow and “thin-yellows” revealed in litter-mate comparisons. J Hered 37:365–358

    PubMed  CAS  Google Scholar 

  • Eaton GJ, Green MM (1962) Implantation and lethality of the yellow mouse. Genetica 33:106–112

    Google Scholar 

  • Fenton PF, Chase HB (1951) Effect of diet on obesity of yellow mice in inbred lines. Proc Soc Exp Biol Med 77:420–422

    PubMed  CAS  Google Scholar 

  • Gill AM, Yen TT (1991) Effects of ciglitazone on endogenous plasma islet amyloid polypeptide and insulin sensitivity in obese-diabetic viable yellow mice. Life Sci 48:703–710

    PubMed  CAS  Google Scholar 

  • Hollifield G, Parson W (1957) Food drive and satiety in yellow mice. Am J Physiol 189:36–38

    PubMed  CAS  Google Scholar 

  • Lataste F (1883) Trois questions: naturaliste. Bull Sci du Dep du Nord 8:364

    Google Scholar 

  • Pedersen RA (1974) Development of lethal yellow (Ay/Ay) mouse embryos in vitro. J Exp Zool 188:307–320

    PubMed  CAS  Google Scholar 

  • Robertson GG (1942) An analysis of the development of homozygous yellow mouse embryos. J Exp Zool 89:197–230

    Google Scholar 

  • Silberberg R, Silberberg M (1957) Lesions in “yellow” mice fed stock, high-fat or high-carbohydrate diets. Yale J Biol Med 29:525–539

    PubMed  CAS  Google Scholar 

  • Diani AR, Sawada GA, Zhang NY, Wyse BM, Connell CL, Vidmar TJ, Connell MA (1987) The KKAy mouse: a model for the rapid development of glomerular capillary basement membrane thickening. Blood Vessels 24:297–303

    PubMed  CAS  Google Scholar 

  • Hofmann CA, Edwards CW, Hillman RM, Colca JR (1992) Treatment of insulin-resistant mice with the oral antidiabetic agent pioglitazone: evaluation of liver GLUT2 and phosphoenolpyruvate carboxykinase expression. Endocrinol 130:735–740

    CAS  Google Scholar 

  • Iwatsuka H, Shino A, Suzouki Z (1970) General survey of diabetic features of yellow KK mice. Endocrinol Japon 17:23–35

    CAS  Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    CAS  Google Scholar 

  • Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H (1990) Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyl]-2,4-thiazolidinediones. Arzneim Forsch/Drug Res 40:37–42

    CAS  Google Scholar 

  • Yoshida T, Hiraoka N, Yoshioka K, Hasegawa G, Kondo M (1991) Anti-obesity and anti-diabetic actions of a, BRL 28630A, in yellow kk mice. Endocrinol Japon 38:397–403

    CAS  Google Scholar 

  • Yoshida T, Umekawa T, Wakabayashi Y, Yoshimoto K, Sakane N, Kondo M (1996) Anti-obesity and anti-diabetic effects of mazindol in yellow kk mice: its activating effect on brown adipose tissue thermogenesis. Clin Exp Pharmacol Physiol 23:476–482

    PubMed  CAS  Google Scholar 

  • Bleisch VR, Mayer J, Dickie MM (1952) Familial diabetes mellitus in mice associated with insulin resistance, obesity and hyperplasia of the islands of Langerhans. Am J Pathol 28:369–385

    PubMed  CAS  Google Scholar 

  • Boissenault GA, Hornshuh MJ, Simons JW, Romsos DR, Leveille GA (1976) Oxygen consumption of lean and obese (ob/ob) mice from birth to 16 weeks of age. Fed Proc 36:1150

    Google Scholar 

  • Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269:546–549

    PubMed  CAS  Google Scholar 

  • Chehab FF, Lim ME, Lu R (1996) Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nature Genet 12:318–322

    PubMed  CAS  Google Scholar 

  • Chlouverakis C (1972) Insulin resistance of parabiotic obese-hyperglycemic mice (obob). Horm Metab Res 4:143–148

    PubMed  CAS  Google Scholar 

  • Chlouverakis C, White PA (1969) Obesity and insulin resistance in the obese-hyperglycemic mouse (obob). Metabolism 18:998–1006

    PubMed  CAS  Google Scholar 

  • Coleman DL (1973) Effects of parabiosis of obese with diabetes and normal mice. Diabetologia 9:294–298

    PubMed  CAS  Google Scholar 

  • Coleman DL (1989) Therapeutic effects of dehydroepiandrosterone and its metabolites in diabetes-obesity mutants. In: Lardy H, Stratman F (eds) Hormones, Thermogenesis and Obesity. Elsevier, New York, pp 377–383

    Google Scholar 

  • Coleman DL, Hummel KP (1973) The influence of genetic background on the expression of obese (ob) gene in the mouse. Diabetologia 9:287–293

    PubMed  CAS  Google Scholar 

  • Cresto JC, Lavine RL, Buchly ML, Penhos JC, Bhathena SJ, Recant L (1977) Half life of injected 125I-insulin in control and ob/ob mice. Acta Physiol Lat Am 27:7–15

    PubMed  CAS  Google Scholar 

  • Dickie MM (1962) New mutations. Mouse News Letter 27:37

    Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1955) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    Google Scholar 

  • Hellman B (1967) Some metabolic aspects of the obese-hyperglycemic syndrome in mice. Diabetologia 3:222–229

    PubMed  CAS  Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    PubMed  CAS  Google Scholar 

  • Ingalls AM, Dickie MM, Snell GT (1950) Obese, a new mutation in the house mouse. J Hered 14:317–318

    Google Scholar 

  • Mayer J, Bates MW, Dickie MM (1951) Hereditary diabetes in genetically obese mice. Science 113:746–747

    PubMed  CAS  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    PubMed  CAS  Google Scholar 

  • Roupas P, Towns RJ, Kostyo JL (1990) Isolated adipocytes from growth hormone-treated obese (ob/ob) mice exhibit insulin resistance. Biochim Biophys Acta 1052:341–344

    PubMed  CAS  Google Scholar 

  • Sirek A (1968) Spontaneous hereditary diabetes in laboratory animals. in: Pfeiffer EF (ed) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 715–726

    Google Scholar 

  • Stauffacher W, Lambert AE; Vecchio D, Renold AE (1967) Measurement of insulin activities in pancreas and serum of mice with spontaneous (“obese” and “New Zealand obese”) and induced (goldthioglucose) obesity and hyperglycemia, with considerations on the pathogenesis of the spontaneous syndrome. Diabetologia 3:230–237

    PubMed  CAS  Google Scholar 

  • Stein JM, Bewsher PD, Stowers JN (1970) The metabolism of ketones, triglyceride and monoglyceride in livers of obese hyperglycaemic mice. Diabetologia 6:570–574

    PubMed  CAS  Google Scholar 

  • Strautz RL (1970) Studies of hereditary-obese mice (obob) after implantation of pancreatic islets in Millipore filter capsules. Diabetologia 6:306–312

    PubMed  CAS  Google Scholar 

  • Trayhurn P, Thurlby PL, James WPT (1977) Thermogenic defect in pre-obese ob/ob mice. Nature 266:60–62

    PubMed  CAS  Google Scholar 

  • Trayhurn P, Thomas MEA, Duncan JS, Rayner DV (1996) Effects of fasting and refeeding on ob gene expression in white adipose tissue of lean and obese (ob/ob) mice. FEBS Lett 368:488–490

    Google Scholar 

  • Westman S (1968) Development of the obese-hyperglycaemic syndrome in mice. Diabetologia 4:141–149

    PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    PubMed  CAS  Google Scholar 

  • Coleman DL, Hummel KP (1973) The influence of genetic background on the expression of the obese (ob) gene in the mouse. Diabetologia 9:287–293

    PubMed  CAS  Google Scholar 

  • Genuth SM, Przybyslski RS, Rosenberg DM (1971) Insulin resistance in genetically obese hyperglycemic mice. Endocrinology 88:1230–1238

    PubMed  CAS  Google Scholar 

  • Ingalls AM, Dickie MM, Snell GD (1950) Obese, a new mutation in the mouse. J Hered 41:317–318

    PubMed  CAS  Google Scholar 

  • Joosten HFP, van der Kroon PHW (1974) Enlargement of epididymal adipocytes in relation to hyperinsulinemia in obese mice (obob). Metabolism 23:59–66

    PubMed  CAS  Google Scholar 

  • Bielschowsky M, Bielschowsky F (1953) A new strain of mice with hereditary obesity. Proc Univ Otago Med School 31:29–31

    Google Scholar 

  • Cofford OB, Davis CK (1965) Growth characteristics, glucose tolerance and insulin sensitivity of New Zealand obese mice. Metabolism 14:271–280

    Google Scholar 

  • Herberg L, Major E, Hennings U, Grüneklee G, Freytag G, Gries FA (1970) Differences in the development of the obese-hyperglycemic syndrome in obob and NZO mice. Diabetologia 6:292–299

    PubMed  CAS  Google Scholar 

  • Melez KA; Harrison LC, Gilliam JN, Steinberg AD (1980) Diabetes is associated with autoimmunity in the New Zealand obese (NZO) mouse. Diabetes 29:835–840

    PubMed  CAS  Google Scholar 

  • Seemayer TA, Colle E (1980) Pancreatic cellular infiltrates in autoimmune-prone New Zealand black mice. Diabetologia 19:216–221

    Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    PubMed  CAS  Google Scholar 

  • Veroni MC, Proietto J, Larkins RG (1991) Insulin resistance in New Zealand obese mice. Diabetes 40:1480

    PubMed  CAS  Google Scholar 

  • Campbell IL, Das AK (1982) A spontaneous diabetic syndrome in the CBA/Ca laboratory mouse. Biochem Soc Trans 10:392

    Google Scholar 

  • Connelly DM, Taberner PV (1985) Insulin independent diabetes in male mice from an inbred CBA strain. Endocrinol 104(Suppl):139

    Google Scholar 

  • Connelly DM, Taberner PV (1989) Characterization of spontaneous diabetes obesity syndrome in mature CBA/Ca mice. Pharmacol Biochem Behav 34:255–259

    PubMed  CAS  Google Scholar 

  • Sclafani A (1984) Animal models in obesity: classification and characterization. Int J Obes 8:491–508

    PubMed  CAS  Google Scholar 

  • Coleman DL, Eicher EM (1990) Fat (fat) and tubby (tub): two autosomal recessive mutations causing obesity syndromes in the mouse. J Hered 88:424–427

    Google Scholar 

  • Cool DR, Normant E, Shen F, Chen H, Pannell L, Zhang Y, Loh YP (1997) Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe/fat mice. Cell 88:73–83

    PubMed  CAS  Google Scholar 

  • Naggert JK, Fricker DL, Varlamov O, Nishina PM, Rouille Y, Steiner DF, Carroll RJ, Paigen BJ, Leiter EH (1995) Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 10:135–142

    PubMed  CAS  Google Scholar 

  • Naggert J, Harris T, North M (1997) The genetics of obesity. Curr Opin Genet Devel 7:398–404

    CAS  Google Scholar 

  • Rovere C, Viale A, Nahon J, Kitabgi P (1996) Impaired processing of brain proneurotensin and promelanin-concentrating hormone in obese fat/fat mice. Endocrinology 137:2954–2958

    PubMed  CAS  Google Scholar 

  • Coleman DL, Eicher EM (1990) Fat (fat) and tubby (tub): two autosomal recessive mutations causing obesity syndromes in the mouse. J Hered 88:424–427

    Google Scholar 

  • Heckenlively JR, Chang B, Erway LC, Peng C, Hawes NL, Hageman GS, Roderick TH (1995) Mouse model for Usher syndrome: linkage mapping suggests homology to Usher type I reported at human chromosome 11p15. Proc Natl Acad Sci USA 92:11100–11104

    PubMed  CAS  Google Scholar 

  • Kleyn PW, Fan W, Kovats SG, Lee JJ, Pulido JC, Wu Y, Berkemeier LR, Misumi DJ, Holmgren L, Charlat O (1996) Identification and characterization of the mouse gene tubby: a member of a novel gene family. Cell 85:281–290

    PubMed  CAS  Google Scholar 

  • Noben-Trauth K, Naggert JK, North MA, Nishina PM (1996) A candidate gene for the mouse mutation tubby. Nature 380:534–538

    PubMed  CAS  Google Scholar 

References

  • Bray G, Bouchard C (1997) Genetics and human obesity: research directions. FASEB J 11:937–945

    PubMed  CAS  Google Scholar 

  • Jensen DR, Schlaepfer IR, Morin CL, Pennington DS, Marcell T, Ammon SM, Gutierrez-Hartmann A, Eckel RH (1997) Prevention of diet-induced obesity in transgenic mice overexpressing skeletal muscle lipoprotein lipase. Am J Physiol (Regul Integr Comp Physiol) 273:R683–R689

    CAS  Google Scholar 

  • Lowell BB, Susulic VS, Haman A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS (1993) Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366:740–742

    PubMed  CAS  Google Scholar 

References

  • Abadie JM, Wright B, Correa G, Browne ES, Porter JR, Svec F (1993) Effect of dihydro-epiandrosterone on neurotransmitter levels and appetite regulation of the obese Zucker rat. Diabetes 42:662–669

    PubMed  CAS  Google Scholar 

  • Anelli M, Bizzi A, Caccia S, Codegoni AM, Fracasso C, Garattini S (1992) Anorectic activity of fluoxetine and norfluoxetine in mice, rats, and guinea pigs. J Pharm Pharmacol 44:696–698

    PubMed  CAS  Google Scholar 

  • Antelman SM, Szechtman H (1975) Tail pinch induces eating in sated rats which appears to depend on nigrostriatal dopamine. Science 189:731–733

    PubMed  CAS  Google Scholar 

  • Bowden CR, Karkanias CD, Bean AJ (1988) Re-evaluation of histidyl-proline diketopiperazine [cyclo(his-pro)] effects on food intake in the rat. Pharmacol Biochem Behav 29:357–363

    PubMed  CAS  Google Scholar 

  • Caccia S, Anelli M, Fracasso C, Frittoli E, Giorcelli P, Gobbi M, Taddei C, Garattini S, Mennini T (1993) Anorectic effect and brain concentrations of D-fenfluramine in the marmoset: relationship to the in vivo and in vitro effects on serotonergic mechanisms. Naunyn Schmiedeberg's Arch Pharmacol 347:306–312

    CAS  Google Scholar 

  • Clark JM, Clark AJM, Winn P (1992) N-methyl-D-aspartate lesions of the lateral hypothalamus do not reduce amphetamine or fenfluramine anorexia but enhance the acquisition of eating in response to tail pinch in the rat. Psychopharmacology 109:331–337

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Dourish CT, Barber DJ (1990a) Fluoxetine reduces food intake by a cholecystokinin-independent mechanism. Pharmacol Biochem Behav 35:51–54

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Dourish CT, Barber DJ (1990b) Reversal of the anorectic effect of (+)-fenfluramine in the rat by the selective cholecystokinin receptor antagonist MK-329. Br J Pharmacol 99:65–70

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Francis J, Rusk IN (1990c) The anorectic effect of SK&F 38393, a selective dopamine D1 agonist: a microstructural analysis of feeding and related behavior. Psychopharmacology 100:182–187

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Francis J, Barber DJ (1993) Selective dopamine D-1 receptor antagonists, SK&F 38393 and CY 208–243 reduce sucrose sham-feeding in the rat. Neuropharmacol 32:101–102

    CAS  Google Scholar 

  • Dourish CT, Hutson PH, Curzon G (1985) Low doses of the putative serotonin agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) elicit feeding in the rat. Psychopharmacology 86:197–204

    PubMed  CAS  Google Scholar 

  • Dourish CT, Hutson PH, Curzon G (1986) Para-chlorophenyl-alanine prevents feeding induced by the serotonin agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Psychopharmacology 89:467–471

    PubMed  CAS  Google Scholar 

  • Eberle-Wang K, Simansky KJ (1992) The CCK-A receptor antagonist, devazipide, blocks the anorectic action of CCK but not peripheral serotonin in rats. Pharmacol Biochem Behav 43:943–947

    PubMed  CAS  Google Scholar 

  • Fantino M, Cabanac M (1980) Body weight regulation with a proportional hoarding response. Physiol Behav 24:939–942

    PubMed  CAS  Google Scholar 

  • Fantino M, Faïon F, Roland Y (1986) Effect of dexfenfluramine on body weight set-point: Study in the rat with hoarding behavior. Appetite 7 (Suppl):115–126

    PubMed  CAS  Google Scholar 

  • Fantino M, Boucher H, Faïon F, Mathiot P (1988) Dexfenfluramine and body weight regulation: experimental study with hoarding behavior. Clin Neuropharmacol 11 (Suppl 1):S97–S104

    PubMed  CAS  Google Scholar 

  • Ferrari F, Pelloni F, Giuliani D (1992) B-HT 920 stimulates feeding and antagonizes anorexia induced by ACTH and immobilisation. Eur J Pharmacol 210:17–22

    PubMed  CAS  Google Scholar 

  • Fray PJ, Koob GF, Iversen SD (1982) Tail-pinch-elicited behavior in rats: preference, plasticity and learning. Behav Neural Biol 36:108–136

    PubMed  CAS  Google Scholar 

  • Garattini S (1992) An update on the pharmacology of serotoninergic appetite-suppressive drugs. Int J Obesity 16/Suppl 14:S41–S48

    CAS  Google Scholar 

  • Garattini S, Bizzi A, Codegoni AM, Caccia S, Mennini T (1992a) Progress report on the anorexia induced by drugs believed to mimic some of the effects of serotonin on the central nervous system. Am J Clin Nutr 55:160S–166S

    PubMed  CAS  Google Scholar 

  • Garattini S, Bizzi A, Caccia S, Mennini T (1992b) Progress report on the anorectic effects of dexfenfluramine, fluoxetine and sertaline. Intern J Obesity 16/Suppl 3:S43–S50

    Google Scholar 

  • Gilbert F, Dourish CT (1987) Effects of the novelanxiolytics gespirone, buspirone and ipsapirone on free feeding and on feeding induced by 8-OH-DPAT. Psychopharmacology 93:349–352

    PubMed  CAS  Google Scholar 

  • Hammer VA, Gietzen DW, Beverly JL, Rogers QR (1990) Serotonin3 receptor antagonists block anorectic responses to amino acid imbalance. Am J Physiol, Regul Integr Comp Physiol 259:R627–R636

    CAS  Google Scholar 

  • Hull KM, Maher TJ (1990) L-Tyrosine potentiates the anorexia induced by mixed-acting sympathomimetic drugs in hyperphagic rats. J Pharm Exp Ther 255:403–409

    CAS  Google Scholar 

  • Jackson HC, Bearham MC, Hutchins LJ, Mazurkiewicz SE, Needham AM, Heal DJ (1997) Investigation of the mechanisms underlying the hypophagic effects of the 5-HT and noradrenaline reuptake inhibitor, sibutramine, in the rat. Br J Pharmacol 121:1613–1618

    PubMed  CAS  Google Scholar 

  • Knoll J (1979) Satietin: A highly potent anorexogenic substance in human serum. Physiol Behav 23:497–502

    PubMed  CAS  Google Scholar 

  • Knoll J (1984) Satietin: A 50 000 dalton glycoprotein in human serum with potent, long-lasting and selective anorectic activity. J Neural Transmiss 59:163–194

    CAS  Google Scholar 

  • Leung PMB, Rogers QR (1969) Food intake: regulation by plasma amino acid pattern. Life Sci 8:1–9

    PubMed  CAS  Google Scholar 

  • Maher TJ, Hull KM (1990) Effects of L-tyrosine on the anorectic activity of mixed-acting sympathomimetics in hyperphagic rats. Eur J Pharmacol 183:429–430

    Google Scholar 

  • Mennini T, Bizzi A, Caccia S, Codegoni A, Fracasso C, Frittoli E, Guiso G, Padura IM, Taddei C, Uslenghi A, Garattini S (1991) Comparative studies on the anorectic activity of d-fenfluramine in mice, rats and guinea pigs. Naunyn Schmiedeberg's Arch Pharmacol 343:483–490

    CAS  Google Scholar 

  • Nagy J (1994) Purification of the anorectic agents satietin from bovine serum. Pharmacol Biochem Behav 48:17–22

    PubMed  CAS  Google Scholar 

  • Nishida KJ, Dougherty GG, Ellinwood EH, Rockwell WJK (1990) Effects of chronic chlorimipramine and imipramine administration on food hoarding behavior in male rats. Res Commun Psychol Psychiatry Behav 15:115–128

    Google Scholar 

  • Robert JJ, Orosco M, Rouch C, Jacquot C, Cohen Y (1989) Unexpected responses of the obese “cafeteria” rat to the peptide FMRF-amide. Pharmacol Biochem Behav 34:341–344

    PubMed  CAS  Google Scholar 

  • Rosofsky M, Geary N (1989) Phenylpropanolamine and amphetamine disrupt postprandial satiety in rats. Pharmacol Biochem Behav 34:797–803

    PubMed  CAS  Google Scholar 

  • Rouru J, Huuponen R, Pesonen U, Koulu M (1992) Subchronic treatment with metformin produces anorectic effect and reduces hyperinsulinemia in genetically obese Zucker rats. Life Sci 50:1813–1820

    PubMed  CAS  Google Scholar 

  • Samanin R, Mennini T, Ferraris A, Bendotti C, Borsini F, Garattini S (1979) m-Chlorophenylpiperazine: A central serotonin agonist causing powerful anorexia in rats. Naunyn-Schmiedeberg's Arch Pharmacol 308:159–163

    CAS  Google Scholar 

  • Simansky KJ, Vaidya AH (1990) Behavioral mechanisms for the anorectic action of the serotonin (5-HT) uptake inhibitor sertaline in rats: comparison with directly acting 5-HT agonists. Brain Res Bull 25:953–960

    PubMed  CAS  Google Scholar 

  • Simmons RD, Blosser JC, Rosamond JR (1994) FPL 14294: A novel CCK-8 agonist with potent intranasal anorectic activity in the rat. Pharmacol Biochem Behav 47:701–708

    PubMed  CAS  Google Scholar 

  • Stevens R, Edwards S (1996) Effect of a 5-HT3 antagonist on peripheral 5-hydroxytryptamine-induced anorexia. Psychobiology 24:67–70

    CAS  Google Scholar 

  • Thurlby PL, Samanin R (1981) Effects of anorectic drugs and prior feeding on food-rewarded runway behavior. Pharmacol Biochem Behav 14:799–804

    PubMed  CAS  Google Scholar 

  • Vergoni AV, Poggioli R, Marrama D, Bertolini A (1990) Inhibition of feeding by ACTH-(1–24): behavioral and pharmacological aspects. Eur J Pharmacol 179:347–355

    PubMed  CAS  Google Scholar 

  • Voigt JP, Fink H, Marsden CA (1995) Evidence for the involvement of the 5-HT1A receptor in CCK induced satiety in rats. Naunyn-Schmiedeberg's Arch Pharmacol 351:217–220

    CAS  Google Scholar 

References

  • Arch JRS, Ainsworth AT, Cawthorne MA, Piercy V, Sennitt MV, Thody VE, Wilson C, Wilson S (1984) Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309:163–165

    PubMed  CAS  Google Scholar 

  • Foster DO (1986) Quantitative role of brown adipose tissue in thermogenesis. In: Trayhurn P, Nicholls DG (eds) Brown Adipose Tissue. Edward Arnold, Ltd., London, pp 31–51

    Google Scholar 

  • Halloway BR (1989) Selective β-agonists of brown fat and thermogenesis. In: Lardy H, Stratman F (eds) Hormones, Thermogenesis and Obesity. Elsevier, New York, pp 477–484

    Google Scholar 

  • Himms-Hagen J (1989) Brown adipose tissue thermogenesis and obesity. Progr Lipid Res 28:67–115

    CAS  Google Scholar 

  • Isler D, Hill HP, Meier MK (1987) Glucose metabolism in isolated brown adipocytes under β-adrenergic stimulation. Quantitative contribution of glucose to total thermogenesis. Biochem J 245:789–793

    PubMed  CAS  Google Scholar 

  • Kajita J, Kobayashi S, Yoshida T (1994) Effect of benidipine hydrochloride on regional blood flow of the adipose tissue in anesthetized rats. Arzneim Forsch/Drug Res 44:297–300

    CAS  Google Scholar 

  • Milner RE, Wilson S, Arch JRS, Trayhurn A (1988) Acute effects of a β-adrenoceptor agonist (BRL 26830A) on rat brown adipose tissue mitochondria. Biochem J 249:759–763

    PubMed  CAS  Google Scholar 

  • Nedergaaard J, Jacobsson A, Cannon B (1989) Adrenergic regulation of thermogenin activity and amount in brown adipose tissue. In: Lardy H, Stratman F (eds) Hormones, Thermogenesis and Obesity. Elsevier, New York, pp 105–116

    Google Scholar 

  • Nicholls DG (1976) Hamster-brown-adipose tissue mitochondria: purine nucleotide control of the ionic conductance of the inner membrane, the nature of the nucleotide binding site. Eur J Biochem 62:223–228

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Cunningham SA, Rial E (1986) The bioenergetic mechanisms of brown adipose tissue thermogenesis. In: Trayhurn P, Nicholls DG (eds) Brown Adipose Tissue. Edward Arnold, Ltd., London, pp 52–85

    Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is generally more applicable. Anal Biochem 83:346–356

    PubMed  CAS  Google Scholar 

  • Ricquier D, Mory G (1984) Factors affecting brown adipose tissue in animals and man. Clinics Endocrinol Metab 13:501–521

    CAS  Google Scholar 

  • Ricquier D, Bouillaud F (1986) The brown adipose tissue mitochondrial uncoupling protein. In: Trayhurn P, Nicholls DG (eds) Brown Adipose Tissue. Edward Arnold, Ltd., London, pp 86–104

    Google Scholar 

  • Santti E, Huupponen R, Rouro J, Hänninen V, Pesonen U, Jhanwar-Uniyal M, Koulu M (1994) Potentiation of the anti-obesity effect of the β3-adrenoceptor agonist BRL 35135 in obese Zucker rats by exercise. Br J Pharmacol 113:1231–1236

    PubMed  CAS  Google Scholar 

  • Savontaus E, Raasmaja A, Rouru J, Koulu M, Pesonen U, Virtanen R, Savola JM, Huupponen R (1997) Anti-obesity effect of MPV-1743 A III, a novel imidazoline derivative, in genetic obesity. Eur J Pharmacol 328:207–215

    PubMed  CAS  Google Scholar 

  • Swick RW, Henningfield MF (1989) Changes in the number of GDP binding sites on brown adipose tissue (BAT) mitochondria and its uncoupling protein. In: Lardy H, Stratman F (eds) Hormones, Thermogenesis and Obesity. Elsevier, New York, pp 117–127

    Google Scholar 

  • Takahashi H, Nakano K, Yasuda TT, Komiyma Y, Muakami T, Nishimura M, Nakanishi T, Sakamoto SH, Nanbu A, Yoshimura M (1994) Anti-obesity and anti-diabetic effects of carterenol in non-insulin dependent diabetic mice. Clin Exp Pharmacol Physiol 21:477–483

    PubMed  CAS  Google Scholar 

  • Yoshida T, Nishioka H, Nakamura Y, Kondo M (1984) Reduced norepinephrine turnover in mice with monosodium glutamateinduced obesity. Metabolism 33:1060–1063

    PubMed  CAS  Google Scholar 

  • Yoshida T, Nishioka H, Nakamura Y, Kanatsuna T, Kondo M (1985) Reduced norepinephrine turnover in brown adipose tissue of pre-obese mice treated with monosodium-L-glutamate. Life Sci 36:931–938

    PubMed  CAS  Google Scholar 

  • Yoshida T, Hiraoka N, Yoshioka K, Hasegawa G, Kondo M (1991) Anti-obesity and anti-diabetic actions of a β3-adrenoceptor agonist, BRL 28630A, in yellow kk mice. Endocrinol Japon 38:397–403

    CAS  Google Scholar 

  • Yoshida T, Sakane N, Wakabayashi Y, Umekawa T, Kondo M (1994a) Anti-obesity and anti-diabetic effects of CL 316,243, a highly specific β3-adrenoceptor agonist, in yellow KK mice. Life Sci 54:491–498

    PubMed  CAS  Google Scholar 

  • Yoshida T, Umekawa T, Wakabayashi Y, Sakane N, Kondo M (1994b) Mechanism of anti-obesity action of bendipine hydrochloride in mice. Int J Obesity 18:776–779

    CAS  Google Scholar 

  • Yoshida T, Umekawa T, Wakabayashi Y, Yoshimoto K, Sakane N, Kondo M (1996) Anti-obesity and anti-diabetic effects of mazindol in yellow kk mice: its activating effect on brown adipose tissue thermogenesis. Clin Exp Pharmacol Physiol 23:476–482

    PubMed  CAS  Google Scholar 

  • Umekawa T, Yoshida T, Sakane N, Saito M, Kumamoto K (1997) Anti-obesity and anti-diabetic effects of CL316,243, a highly specific β3-adrenoceptor agonist, in Otsuka Long Evans Tokushima Fatty rats: induction of uncoupling protein and activation of glucose transporter 4 in white fat. Eur J Endocrinol 136:429–437

    PubMed  CAS  Google Scholar 

References

  • Bartness TJ, Billington CJ, Levine AS, Morley JE, Brown DM, Rowland ME (1986) Insulin and metabolic efficacy in rats. I. Effects of sucrose feeding and BAT axotomy. Am J Physiol 251:R1108–R1117

    Google Scholar 

  • Berraondo B, Matrti A, Duncan JS, Trayhurn P, Martinez JA (2000) Up-regulation of muscle UPC2 gene expression by a new β3-adrenoceptor agonist, trecadrine, in obese (cafeteria) rodents, but down-regulation in lean animals. Int J Obes 24:156–163

    CAS  Google Scholar 

  • Boss O, Samec S, Paolini-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino JP (1997) Uncoupling protein-3: A new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 408:39–42

    PubMed  CAS  Google Scholar 

  • Branco M, Ribeiro M, Negrao N, Bianco C (1999) 3,5,3′-Triiodothyronine actively stimulates UCP in brown fat under minimal sympathetic activity. Am J Physiol 276; Endocrinol Metab 39:E179–E187

    Google Scholar 

  • Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH (1997) Uncoupling protein-2: A novel gene linked to obesity and hyperinsulinemia. Nat Genet 15:269–272

    PubMed  CAS  Google Scholar 

  • Foellmi-Adams LA, Wyss BM, Herron D, Nedergaard J, Kletzien RF (1996) Induction of uncoupling protein in brown adipose tissue. Synergy between norepinephrine and pioglitazone, an insulin-sensitizing agent. Biochem Pharmacol 52:693–701

    PubMed  CAS  Google Scholar 

  • Ghorbani M, Himms-Hagen J (1997) Appearance of brown adipocytes in white adipose tissue during CL316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int J Obes 21:465–475

    CAS  Google Scholar 

  • Gong DW, He Y, Karas M, Reitman M (1997) Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, β3-adrenergic agonists, and leptin. J Biol Chem 272:24129–24132

    PubMed  CAS  Google Scholar 

  • Kotz CM, Wang CF, Briggs JE, Levine AS, Billington CJ (2000) Effect of NPY in the hypothalamic paraventricular nucleus on uncoupling protein 1, 2, and 3 in the rat. Am J Physiol 278, Regul Integr Comp Physiol 47:R494–R498

    Google Scholar 

  • Lanni A, Beneduce L, Lombardi A, Moreno M, Boss O, Muzzin P, Giacobino JP, Goglia F (1999) Expression of uncoupling protein-3 and mitochondrial activity in the transition from hypothyroid to hyperthyroid state in rat skeletal muscle. FEBS Lett 444:250–254

    PubMed  CAS  Google Scholar 

  • Larkin S, Mull E, Miao W, Pittner R, Albrandt K, Moore C, Young A, Denaro M, Beaumont K (1997) Regulation of the third member of the uncoupling protein family, UCP3, by cold and thyroid hormone. Biochem Biophys Res Commun 240:222–227

    PubMed  CAS  Google Scholar 

  • Lin CS, Klingenberg M (1980) Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett 133:299–303

    Google Scholar 

  • Liu Y L, Stock MJ, (1995) Acute effects of the β3-adrenocptor agonist, BRL 35135, on tissue glucose utilization. Br J Pharmacol 114:888–894

    PubMed  CAS  Google Scholar 

  • Liu Y L, Kashani SMZ, Heal DJ, Stock MJ, (1996) Effect of sibutramine on tissue glucose utilization in the rat. Br J Pharmacol 117:324P

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mao W, Yu XX, Zhong A, Li W, Brush J, Sherwood SW, Adams SA, Pan G (1999) UCP, a novel, brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett 443:326–330

    PubMed  CAS  Google Scholar 

  • Masaki T, Yoshimatsu H, Kakuma T, Hidaka S, Kurakawa M, Sataka T (1997) Enhanced expression of uncoupling protein 2 gene in rat white adipose tissue and skeletal muscle following chronic treatment with thyroid hormone. FEBS Lett 418:323–326

    PubMed  CAS  Google Scholar 

  • Matsuda J, Hosada K, Itoh H, Son C, Doi K, Tanaka T, Fukunaga Y, Inoue G, Nishimura H, Yoshimasa Y, Yamori Y, Nakao K (1997) Cloning of rat uncoupling protein-3 and uncoupling protein-2 cDNAs: Their gene expression in rats fed a high fat diet. FEBS Lett 418:200–204

    PubMed  CAS  Google Scholar 

  • Milner RE, Wilson S, Arch JRS, Trayhurn P (1988) Acute effects of a β-adrenoceptor agonist (BRL 26830A) on rat brown-adipose-tissue mitochondria. Biochem J 249:759–763

    PubMed  CAS  Google Scholar 

  • Nagase I, Yoshida T, Kumamoto K, Umekawa T, Sakane N, Nikami H, Kawada T, Saito M (1996) Expression of uncoupling protein in skeletal muscle and white fat of obese mice treated with thermogenic β3-adrenergic agonist. J Clin Invest 97:2898–2094

    PubMed  CAS  Google Scholar 

  • Paulik MA, Lenhard M (1997) Thiazolidinediones inhibit alkaline phosphatase activity while increasing expression off uncoupling protein, deiodinase, and increasing mitochondrial mass in C3H10T1/2 cells. Cell Tiss Res 290:79–87

    CAS  Google Scholar 

  • Puigserver P, Vazquez F, Bonet ML, Pico C, Palou A (1996) In vitro and in vivo induction of brown adipocyte uncoupling protein (thermogenin) by retinoic acid. Biochem J 317:827–833

    PubMed  CAS  Google Scholar 

  • Ricquier D, Raimbault S, Champigny O, Miroux B, Bouillaud F (1992) The uncoupling protein is not expressed in rat liver. FEBS Lett 303:103–106

    PubMed  CAS  Google Scholar 

  • Savontaus E, Rouro J, Boss O, Huupponen R, Koulu M (1998) Differential regulation of uncoupling proteins by chronic treatments with β3-adrenergic agonist BRL 35135 and metformin in obese fa/fa Zucker rats. Biochem Biophys Res Commun 246:899–904

    PubMed  CAS  Google Scholar 

  • Scarpace PJ, Matheney M (1996) Thermogenesis in brown adipose tissue with age: post-receptor activation by forskolin. Eur J Physiol 431:388–394

    CAS  Google Scholar 

  • Scarpace PJ, Matheny M, Moore RL, Kumar MV (2000) Modulation of uncoupling protein 2 and uncoupling protein 3: regulation by denervation, leptin and retinoic acid treatment. J Endocrinol 164:331–337

    PubMed  CAS  Google Scholar 

  • Shimabukuro M, Zhou YT, Unger RH (1997) Induction of uncoupling protein-2 mRNA by troglitazone in the pancreatic islets of Zucker diabetic fatty rats. Biochem Biophys Res Commun 237:359–361

    PubMed  CAS  Google Scholar 

  • Shimizu Y, Nikami H, Tsukazaki K, Machado UF, Yano H, Seino Y, Saito M (1993) Increased expression of glucose transporter GLUT-4 in brown adipose tissue of fasted rats after cold exposure. Am J Physiol 264:E890–E895

    PubMed  CAS  Google Scholar 

  • Shrago E, McTigue J, Katiyar S, Woldegiorgis C (1989) Preparation of highly purified reconstituted uncoupling protein to study biochemical mechanism(s) of proton conductance. In: Lardy H, Stratman F (eds) Hormones, Thermogenesis and Obesity. Elsevier, New York, pp 129–136

    Google Scholar 

  • Stock MJ (1997) Sibutramine: a review of the pharmacology of a novel anti-obesity agent. Int J Obesity 21 (Suppl 1):S25–S29

    CAS  Google Scholar 

  • Tonello C, Dioni L, Briscini L, Nisoli E, Carruba MO (1998) SR59230A blocks β3-adrenoreceptor-linked modulation of uncoupling protein-1 and leptin in rat brown adipocytes. Eur J Pharmacol 352:125–129

    PubMed  CAS  Google Scholar 

  • Umekawa T, Yoshida T, Sakane N, Saito M, Kumamoto K, Kondo M (1997) Anti-obesity and anti-diabetic effects of CL316,243, a highly specific β3-adrenoceptor agonist, in Otsuka Long-Evans Tokushima fatty rats: induction of uncoupling protein and activation of GLUT4 in white fat. Eur J Endocrinol 136:429–437

    PubMed  CAS  Google Scholar 

  • Viadal-Puig A., Solanes G, Grujic D, Flier JS, Lowell BB (1997) UCP3: An uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Commun 235:79–82

    Google Scholar 

  • Yonetani T, Ray GS (1965) A study on cytochrome oxidase: kinetics of the aerobic oxidation of ferrocytochrome c by cytochrome oxidase. J Biol Chem 240:3392–3398

    PubMed  CAS  Google Scholar 

References

  • Ghorbani M, Claus TH, Himms-Hagen J (1997) Hypertrophy of brown adipocytes in brown and white adipose tissue and reversal of diet-induced obesity in rats treated with a β3-adrenoceptor agonist. Biochem Pharmacol 54:121–131

    PubMed  CAS  Google Scholar 

  • Himms-Hagen J, Cui J, Danforth E Jr., Taatjes DJ, Lang SS, Waters BL, Claus TH (1994) Effect of CL-316,243, a thermogenic β3-agonist, on energy balance and brown and white adipose tissue in rats. Am J Physiol 266 (Regul Integr Comp Physiol 35):R1371–1382

    PubMed  CAS  Google Scholar 

  • Jensen DR, Gayles EC, Ammon S, Phillips R, Eckel RH (2001) A self-correcting indirect calorimeter system for the measurement of energy balance in small animals. J Appl Physiol 90:912–918

    PubMed  CAS  Google Scholar 

  • Molnar JA, Cunningham JJ, Miyatani S, Vizulis A, Write JD, Burke JF (1986) Closed-circuit metabolic system with multiple applications. J Appl Physiol 61:1582–1585

    PubMed  CAS  Google Scholar 

  • Niemegeers CJE, Janssen PAJ (1979) Differential antagonism to amphetamine-induced oxygen consumption and agitation by psychoactive drugs. In: Fielding S, Lal H (eds) Industrial Pharmacology, Vol II, Antidepressants., pp 125–141

    Google Scholar 

  • Paulik MA, Buckholz RG, Lancaster ME, Dallas WS, Hull-Ryde EA, Weiel JE, Lenhard JM (1998) Thermogenic effects of uncoupling protein-2, troglitazone, and β-adrenoceptor agonists. Pharm Res 15:944–949

    PubMed  CAS  Google Scholar 

  • Poon TKY, Cameron DP (1978) Measurement of oxygen consumption and locomotor activity in monosodium glutamateinduced obesity. Am J Physiol 234:E532–E534

    PubMed  CAS  Google Scholar 

  • Rothwell NJ (1989) Central activation of thermogesesis by prostaglandins: dependence on CRF. Horm Metab Res 22:616–618

    Google Scholar 

  • Stock MJ (1975) An automatic close-circuit oxygen consumption apparatus for small animals. J Appl Physiol 253:1271–1276

    Google Scholar 

  • Yoshida T, Yoshioka K, Kamanaru K, Hiraoka N, Kondo M (1990) Mitigation of obesity by BRL 26830A, a new β-adrenoceptor agonist, in MSG obese mice. J Nutr Sci Vitaminol 36:75–80

    PubMed  CAS  Google Scholar 

  • Yoshida T, Hiraoka N, Yoshioka K, Hasegawa G, Kondo M (1991) Anti-obesity and anti-diabetic actions of a β3-adrenoceptor agonist, BRL 28630A, in yellow kk mice. Endocrinol Japon 38:397–403

    CAS  Google Scholar 

References

  • Arch JRS, Wilson S (1996) Prospects for β3-adrenoceptor agonists in the treatment of obesity and diabetes. Int J Obes 20:191–199

    CAS  Google Scholar 

  • Carruba M, Tomello C, Briscini L, Nisoli E, Astrup A (1998) Advances in pharmacotherapy for obesity. Int J Obes 22; Suppl 1:S13–S17

    CAS  Google Scholar 

  • Emorine L, Blin N, Strosberg AD (1994) The human β3-adrenoceptor: the search for a physiological function. Trends Pharmacol Sci 15:3–7

    PubMed  CAS  Google Scholar 

  • Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human β3-adrenergic receptor. Science 245:1118–1121

    PubMed  CAS  Google Scholar 

  • Evans BA, Papaioannou M, Bonazzi VR, Summers RJ (1996) Expression of β3-adrenoreceptor mRNA in tissues. Br J Pharmacol 117:210–216

    PubMed  CAS  Google Scholar 

  • Evans BA, Papaioannou M, Anastasopoulos F, Summers RJ (1998) Differential regulation of β3-adrenoceptors in gut and adipose tissue of genetically obese (ob/ob) C57BL/6J mice. Br J Pharmacol 124:763–771

    PubMed  CAS  Google Scholar 

  • Galitzky J, Langin D, Montastruc JL, Lafontan M, Berlan M (1998) On the presence of a fourth β-adrenoceptor in human adipose tissue. Trends Pharmacol Sci 19:164–165

    PubMed  CAS  Google Scholar 

  • Gettys TW, Harkness PJ, Watson PM (1996) The β3-adrenergic receptor inhibits insulin-stimulated leptin secretion from isolated rat adipocytes. Endocrinology 137:4054–4057

    PubMed  CAS  Google Scholar 

  • Granneman JG, Lahners KN, Chaudry A (1991) Molecular cloning and expression of the rat β3-adrenergic receptor. Mol Pharmacol 40:895–899

    PubMed  CAS  Google Scholar 

  • He Y, Nikulin VI, Vansal SS, Feller DR, Miller DD (2000) Synthesis and human β3-adrenoceptor activity of 1-(3,5-diiodo-4-methoxybenzyl)-1,2,3,4-tetrahydroisoquinolin-6-ol derivatives in vitro. J Med Chem 43:591–598

    PubMed  CAS  Google Scholar 

  • Kaumann AJ, Preitner F, Sarsero D, Molenaar P, Revelli JP, Giacobino JP (1998) (−)-CGP 12177 causes cardiostimulation and binds to cardiac putative β4-adrenoceptors in both wild-type and β3-adrenoceptor knockout mice. Mol Pharmacol 53:670–675

    PubMed  CAS  Google Scholar 

  • Koike K, Ichino T, Horinouchi T, Takayanagi I (1997) The β2-and β3-adrenoceptor-mediated relaxation induced by isoprenaline and salbutamol in guinea pig taenia caecum. J Smooth Muscle Res 33:99–106

    PubMed  CAS  Google Scholar 

  • Kumar MV, Moore RL, Scarpace PJ (1999) β3-adrenergic regulation of leptin, food intake, and adiposity is impaired with age. Pflügers Arch Eur J Physiol 438:681–688

    CAS  Google Scholar 

  • Nahmias C, Blin N, Elalouf JM, Mattei MG, Stroberg AD, Emorine LJ (1991) Molecular characterization of the mouse β3-adrenergic receptor: relationship with the atypical receptor of adipocytes. EMBO J 10:3721–3727

    PubMed  CAS  Google Scholar 

  • Sarsero D, Molenaar P, Kaumann AJ (1998) Validity of (−)-[3H]-CGP 12177A as a radioligand for the ‘putative β4-adrenoceptor’ in rat atrium. Br J Pharmacol 123:371–380

    PubMed  CAS  Google Scholar 

  • Strosberg AD (1997) Structure and function of the β3-adrenergic receptor. Annu Rev Pharmacol Toxicol 37:421–450

    PubMed  CAS  Google Scholar 

  • Strosberg AD, Gerhardt CC, Gros J, Jockers R, Rouxel FP (1998) On the putative existence of a fourth β-adrenoceptor: proof is still missing. Trends Pharmacol Sci 19:165–166

    CAS  Google Scholar 

  • Tomiyama Y, Hayakawa K, Shinagawa K, Akahane M, Ajisawa Y, Park YC, Kurita T (1998) β3-adrenoceptor subtypes in the ureteral smooth muscle of rats, rabbits and dogs. Eur J Pharmacol 352:269–278

    PubMed  CAS  Google Scholar 

  • Vansal SS, Fellner DR (1999) An efficient cyclic AMP assay for the functional elevation of β-adrenergic receptor ligands. J Receptor Signal Transduct Res 19:853–863

    CAS  Google Scholar 

  • Weyer C, Gautier JF, Danforth E Jr. (1999) Development of β3-adrenoceptor agonists for the treatment of obesity and diabetes — An update. Diabetes Metab 25:11–21

    PubMed  CAS  Google Scholar 

  • Yoshida T, Sakane N, Wakabajashi Y, Umekawa T, Kondo M (1994) Anti-obesity and anti-diabetic effects of CL 316,243, a highly specific beta3-adrenoceptor agonist, in yellow KK mice. Life Sci 54:491–498

    PubMed  CAS  Google Scholar 

References

  • Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrin Metab 11:327–332

    CAS  Google Scholar 

  • Bacher D, Kreienkamp HJ, Weise C, Buck F, Richter D (1999) Identification of melanin concentrating hormone (MHC) as the natural ligand for the orphan somatostatin-like receptor 1 (SLC-1) FEBS Lett 467:522–524

    Google Scholar 

  • Berger A (2001) Resistin, a new hormone that links obesity with type 2 diabetes. Br Med J 322:193

    Google Scholar 

  • Broberger C (1999) Hypothalamic cocaine-and amphetamine-regulated transcript (CART) neurons. Histochemical relationship to thyrotropin-releasing hormone, melatonin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Res 848:101–113

    PubMed  CAS  Google Scholar 

  • Broberger C, Holmberg K, Kuhar MJ, Hökfelt T (1999) Cocaine-and amphetamine-regulated transcript in the rat vagus nerve: A putative mediator of cholecystokinin-induced satiety. Proc Natl Acad Sci USA 96:13506–13511

    PubMed  CAS  Google Scholar 

  • Burgaud JL, Poosti R, Fehrentz JA, Martinez J, Nahon JL (1997) Melanin-concentrating hormone binding sites in human SVK14 keratinocytes. Biochem Biophys Res Commun 241:622–629

    PubMed  CAS  Google Scholar 

  • Chambers J, Ames RS, Bergsma D, Muir A, Fitzgerald LR, Hervieu G, Dytko GM, Foley JJ, Martin S, Liu WS, Park J, Ellis C, Ganguly S, Konchar S, Cluderay J, Leslie R, Wilson S, Sarau HM (1999) Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 400:261–265

    PubMed  CAS  Google Scholar 

  • Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee JL, Bauer TL, Caro JF (1996) Serum immunoreactive leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295

    PubMed  CAS  Google Scholar 

  • Couceyro PR, Lambert PD (1999) CART peptides: Therapeutic potential in obesity and feeding disorders. Drug News Perspect 12:133–136

    CAS  Google Scholar 

  • Crawley JN, Austin MC, Fiske SM, Martin B, Consolo S, Berthold M, Langel U, Fisone G, Bartfai T (1990) Activity of centrally administered galanin fragments on stimulation of feeding behavior and on galanin receptor binding in the rat hypothalamus. J Neurosci 10:3695–3700

    PubMed  CAS  Google Scholar 

  • Dun NJ, Dun SL, Kwok EH, Yang J, Chang J-K (2000) Cocaine-and amphetamine-regulated transcript-immunoreactivity in the rat sympatho-adrenal axis. Neurosci Lett 283:97–100

    PubMed  CAS  Google Scholar 

  • Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232

    PubMed  CAS  Google Scholar 

  • Fong TM, Mao C, MacNeil T, Kalyani R, Smith T, Weinberg T, Tota MR, Van der Ploeg LH (1997) ART (protein product of agouti-related transcript) as an antagonist of MC-3 and MC-4 receptors. Biochem Biophys Res Commun 237:629–631

    PubMed  CAS  Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    PubMed  CAS  Google Scholar 

  • Hintermann E, Drozdz R, Tanner H, Eberle AN (1999) Synthesis and characterization of new radioligands for the mammalian melanin-concentrating hormone (MCH) receptor. J Recept Signal Transduction Res 19:411–422

    CAS  Google Scholar 

  • Huang Q, Viale A, Picard F, Nahon JL, Richard D (1999) Effect of leptin on melanin-concentrating hormone expression in the brain of lean and obese Lep(ob)/Lep(ob) mice. Neuroendocrinology 69:145–153

    PubMed  CAS  Google Scholar 

  • Jain MR, Horvath TL, Kalra PS, Kalra SP (2000) Evidence that NPY Y1 receptors are involved in stimulation of feeding by orexins (hypocretins) in sated rats. Regul Pept 87:19–24

    PubMed  CAS  Google Scholar 

  • Jensen PB, Kristensen P, Clausen JT, Judge ME, Hastrup S, Thim L, Wulff BS, Foged C, Jensen J, Holst JJ, Madsen OD (1999) The hypothalamic satiety peptide CART is expressed in anorectic and non-anorectic pancreatic islets tumors and in the normal islet of Langerhans. FEBS Lett 447:139–143

    PubMed  CAS  Google Scholar 

  • Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20:68–100

    PubMed  CAS  Google Scholar 

  • Kastin AJ, Akerström V (1999) Entry of CART into brain is rapid but not inhibited by excess CART or leptin. Am J Physiol 277; Endocrinol Metab 40:E901–E904

    Google Scholar 

  • Koylu EO, Couceyro PR, Lambert PD, Kuhar MJ (1998) Cocaine-and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. J Comp Neurol 391:115–132

    PubMed  CAS  Google Scholar 

  • Koylu EO, Smith Y, Couceyro PR, Kuhar MJ (1999) CART peptides colocalize with tyrosine hydroxylase neurones in rat locus coeruleus, Synapse 31:309–311

    PubMed  CAS  Google Scholar 

  • Kristensen P, Judge ME, Thim L, Ribel U, Christijansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N, Larsen PJ, Hastrup S (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393:72–76

    PubMed  CAS  Google Scholar 

  • Kuhar MJ, Dall-Vechia SE (1999) CART peptides: Novel addiction-and feeding-related peptides. Trends Neurosci 22:316–320

    PubMed  CAS  Google Scholar 

  • Lambert PD, Wilding JPH, al Dokhayel AAM, Bohuon C, Comoy E, Gilbey SG, Bloom SR (1993) A role for neuropeptide Y, dynorphin, and noradrenaline in the central control of food intake after food deprivation. Endocrinology 133:29–33

    PubMed  CAS  Google Scholar 

  • Lambert PD, Couceyro PR, McGirr KM, Vechia SED, Smith Y, Kuhar MJ (1998) CART peptides in the central control of feeding and interaction with neuropeptide Y. Synapse 29:293–298

    PubMed  CAS  Google Scholar 

  • Leibowitz SF, Kim T (1992) Impact of a galanin antagonist on exogenous galanin and natural patterns of fat ingestion. Brain Res 599:148–152

    PubMed  CAS  Google Scholar 

  • Ludwig DS, Mountjoy KG, Tatro JB, Gillette JA, Frederich RC, Flier JS, Marato-Flier E (1998) Melanin-concentrating hormone: A functional melanocortin antagonist in the hypothalamus. Am J Physiol 274; Endocrinol Metab 37:E627–E633

    Google Scholar 

  • Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL, Burn P, Palmiter RD (1999) Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nature Genetics 21:119–122

    PubMed  CAS  Google Scholar 

  • Ollmann MM, Wilson BD, Yang Y-K, Kerns JA, Chen Y, Gantz I, Barsh GS (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278:135–138

    PubMed  CAS  Google Scholar 

  • Ollmann MM, Lamoreux ML, Wilson BD, Barsh GS (1998) Interaction of Agouti protein with the melanocortin-1 receptor in vitro and in vivo. Genes Dev 12:316–3330

    PubMed  CAS  Google Scholar 

  • Parker EM (1999) The role of central neuropeptide, neurotransmitter and hormonal systems in the regulation of body weight. Neurotransmiss 15:3–11

    Google Scholar 

  • Qu D, Ludwig DS, Gammeltoft S, Piper M, Pellemounter A, Cullen MJ, Foulds-Mathes W, Przypek J, Kanarek R, Maratos-Flier E (1996) A role for melatonin-concentrating hormone in the control of feeding behavior. Nature 380:243–237

    PubMed  CAS  Google Scholar 

  • Rosenfeld RD, Zeni L, Welcher AA, Narhi LO, Hale C, Marasco J, Delaney J, Gleason T, Philo JS, Katta V, Hui J, Baumgartner J, Graham M, Stark KL, Karbon W (1998) Biochemical and biophysical characterization of bacterially expressed human agouti-related protein. Biochemistry 37:16041–16052

    PubMed  CAS  Google Scholar 

  • Rossi M, Beak SA, Choi SJ, Small CJ, Morgan DGA, Ghatei MA, Smith DM, Bloom SR (1999) Investigation of the feeding effects of melanin concentrating hormone on food intake. Action independent of galanin and the melanocortin receptors. Brain Res 846:164–170

    PubMed  CAS  Google Scholar 

  • Sahu A (1998) Evidence that galanin (GAL), melanin-concentrating hormone (MHC), neurotensin (NT) proopiomelanocortin (POMC) and neuropeptide Y (NPY) are targets of leptin signaling in the hypothalamus. Endocrinology 139:795–798

    PubMed  CAS  Google Scholar 

  • Shutter JR, Graham M, Kinsey AC, Scully S, Lüthy R, Stark KL (1997) Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mice. Genes Dev 11:593–602

    PubMed  CAS  Google Scholar 

  • Saito Y, Nothacker HP, Wang Z, Lin SHS, Leslie F, Civelli O (1999) Molecular characterization of the melanin-concentrating hormone receptor. Nature 400:265–269

    PubMed  CAS  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JRS, Buckingham RB, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu W-S, Terrett JA, Elshourbagy NA, Berg-sma DJ, Yanagisawa M (1998) Orexins and orexin receptors: A family of hypothalamic neuropeptides an G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    PubMed  CAS  Google Scholar 

  • Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E (1998) Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396:670–674

    PubMed  CAS  Google Scholar 

  • Shimomura Y, Mori M, Sugo T, Ishibashi Y, Abe M. Kurokawa T, Onda H, Nishimura O, Sumino Y, Fujino M (1999) Isolation and identification of melanin-concentrating hormone as the endogenous ligand for the SLC-1 receptor. Biochem Biophys Res Commun 261:622–626

    PubMed  CAS  Google Scholar 

  • Stanley BG, Magdalin W, Seirafi A, Nguyen MM, Leibowitz SF (1992) Evidence for neuropeptide Y mediation of eating produced by food deprivation and for a variant of the Y-1 receptor mediating this peptide's effect. Peptides 13:581–587

    PubMed  CAS  Google Scholar 

  • Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312

    PubMed  CAS  Google Scholar 

  • Thim L, Nielsen PF, Judge ME, Andersen AS, Diers I, Egel-Mitani M, Hastrup S (1998a) Purification and characterization of e new hypothalamic satiety peptide, cocaine and amphetamine regulated transcript (CART), produced in yeast. FEBS Lett 428:263–268

    PubMed  CAS  Google Scholar 

  • Thim L, Kristene P, Larsen PJ, Wulff BS (1998b) CART, a new anorectic peptide. Int J Biochem Cell Biol 30:1281–1284

    PubMed  CAS  Google Scholar 

  • Tota MR, Smith TS, Mao C, McNeil T, Mosley RT, Van der Ploeg LTH, Fong TM (1999) Molecular interaction of Agouti protein and Agouti-related protein with human melanocortin receptors. Biochemistry 38:897–904

    PubMed  CAS  Google Scholar 

  • Trayhurn P, Hoggard N, Mercer JG, Rayner DV (1999) Leptin: Fundamental aspects. Int J Obes 23, Suppl 1:22–28

    CAS  Google Scholar 

  • Tritos NA, Maratos-Flier E (1999) Two important systems in energy homeostasis: Melanocortins and melanin-concentrating hormone. Neuropeptides 33:339–349

    PubMed  CAS  Google Scholar 

  • Xu B, Dube MG, Kalra PS, Farmeie WG, Kaibara A, Moldawer LL, Martin D, Kalra SP (1998) Anorectic effects of the cytokine, ciliary neurotropic factor, are mediated by hypothalamic neuropeptide Y: Comparison with leptin. Endocrinology 139:466–473

    PubMed  CAS  Google Scholar 

References

  • Arch JRS, Beeley LJ (1996) Leptin: The hormone that directs the regulation of energy balance. Pharmacol Commun 7:317–322

    CAS  Google Scholar 

  • Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437

    PubMed  CAS  Google Scholar 

  • Barinaga M (1995) “Obese” protein that slims mice. Science 269:475–476

    PubMed  CAS  Google Scholar 

  • Chebab FF (2000) Leptin as a regulator of adipose mass and reproduction. Trends Pharmacol Sci 21:309–314

    Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    PubMed  CAS  Google Scholar 

  • Grasso P, Leinung MC, Ingher SP, Lee DW (1997) In vivo effects of leptin-related synthetic peptides on body weight and food intake in female ob/ob mice. Endocrinology 138:1413–1418

    PubMed  CAS  Google Scholar 

  • Grasso P, White DW, Tartaglia LA, Leinung MC, Lee DW (1999) Inhibitory effects of leptin-related synthetic peptide 116–130 on food intake and body weight gain in female C57BL/6Job/ob mice may not be mediated by peptide activation of the long form of the leptin receptor. Diabetes 48:2204–2209

    PubMed  CAS  Google Scholar 

  • Guan X M, Hess JF, Yu H, Hey PJ, Van der Ploeg LHT (1997) Differential expression of mRNA for leptin receptor isoforms in the rat brain. Mol Cell Endocrinol 133:1–7

    PubMed  CAS  Google Scholar 

  • Hamann A, Matthaei S (1996) Regulation of energy balance by leptin. Exp Clin Endocrinol Diabetes 104:293–300

    PubMed  CAS  Google Scholar 

  • Igel M, Becker W, Herberg L, Joost HG (1997) Hyperleptinemia, leptin resistance, and polymorphic leptin receptor in the New Zealand obese mouse. Endocrinology 138:4234–4239

    PubMed  CAS  Google Scholar 

  • Liu C, Liu X J, Barry G, Ling N, Maki RA, De Souza EB (1997) Expression and characterization of a putative high affinity human soluble leptin receptor. Endocrinology 138:3548–3554

    PubMed  CAS  Google Scholar 

  • MacDougald OA, Hwang CS, Fan H, Lane MD (1995) Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc Natl Acad Sci USA 92:9034–9037

    PubMed  CAS  Google Scholar 

  • Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S, Kern PA, Friedman JM (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Med 1:1155–1161

    PubMed  CAS  Google Scholar 

  • Maffei M, Stoffel M, Berone M, Moon B, Dammerman M, Ravussin E, Bogardus C, Ludwig DS, Flier JS, Talley M, Auerbach S, Friedman JM (1996) Absence of mutations in the human OB gene in obese/diabetic subjects. Diabetes 45:679–682

    PubMed  CAS  Google Scholar 

  • Murakami T, Yamashita T, Iida M, Kuwajima M, Shima K (1997) A short form of leptin receptor performs signal transduction. Biochem Biophys Res Commun 231:26–29

    PubMed  CAS  Google Scholar 

  • Sarmiento U, Benson B, Kaufman S, Ross L, Qi M, Scully S, DiPalma C (1997) Morphologic and molecular changes induced by recombinant human leptin in the white and brown adipose tissues of C57BL/6 mice. Lab Invest 77:243–256

    PubMed  CAS  Google Scholar 

  • Scarpace PJ, Matheny M, Pollock BH, Tumer N (1997) Leptin increases uncoupling protein expression and energy expenditure. Am J Physiol (Endocrin Metab) 273:E226–E230

    CAS  Google Scholar 

  • Stephens TW, Caro JF (1998) To be lean or not to be lean. Is leptin the answer? Exp Clin Endocrin Diab 106:1–15

    CAS  Google Scholar 

  • Stephens TW, Basinski M, Birstow PK, Bue-Valleskey JM, Burgett SG, Craft L, Hale J, Hoffmann J, Hsuing HM, Kriauciuneas A, Mackelar W, Rosteck PR Jr. Schoner B, Smith D, Tinsley FC, Zhang X, Heiman M (1995) The role of neuropeptide Y in the antiobesity action of the obese gene product. Na-ture 377:530–532

    CAS  Google Scholar 

  • Strosberg D, Issad T (1999) The involvement of leptin in humans revealed by mutations in the leptin and leptin receptor genes. Trends Pharmacol Sci 20:227–230

    PubMed  CAS  Google Scholar 

  • Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Woolf EA, Monroe CA, Tepper RI (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    PubMed  CAS  Google Scholar 

  • Trayhurn P, Hoggard N, Mercer JG, Rayner DV (1999) Leptin: Fundamental aspects. Int J Obes 23, Suppl 1:22–28

    CAS  Google Scholar 

  • Widdowson PS, Upton R, Buckingham R, Arch J, Williams G (1997) Inhibition of food response to intracerebroventricular injection of leptin is attenuated in rats with diet-induced obesity. Diabetes 46:1782–178

    PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    PubMed  CAS  Google Scholar 

References

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    PubMed  CAS  Google Scholar 

  • Frederich RC et al. (1995) Expression of ob mRNA and its encoded protein in rodents: Impact of nutrition and obesity. J Clin Invest 96:1658–1663

    PubMed  CAS  Google Scholar 

  • Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nature Med 1:1311–1314

    PubMed  CAS  Google Scholar 

  • Harris RBS, Ramsay TG, Smith SR, Bruch RC (1996) Early and late stimulation of ob mRNA expression in meal-fed and overfed rats. J Clin Invest 97:2020–2026

    PubMed  CAS  Google Scholar 

  • Karbowska J, Kochan Z, Zelewski L, Swierczynski J (1999) Tissue-specific effect of clofibrate on rat lipogenic enzyme gene expression. Eur J Pharmacol 370:329–336

    PubMed  CAS  Google Scholar 

  • Kochan Z, Karbowska J, Swierczynski J (1999) Effect of clofibrate on malic enzyme and leptin mRNA level in rat brown and white adipose tissue. Horm Metab Res 31:536–542

    Google Scholar 

  • Li H Y, Wang L L, Yeh R S (1999) Leptin-immunoreactivity in the central nervous system in normal and diabetic rats. NeuroReport 10:437–442

    PubMed  CAS  Google Scholar 

  • Richards MP, Ashwell CM, McMurtry JP (2000) Quantitative analysis of leptin mRNA using competitive reverse transcription polymerase chain reaction and capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 21:792–798

    PubMed  CAS  Google Scholar 

  • Shintani M, Nishimura H, Yonemitsu S, Masuzaki H, Ogawa Y, Hosoda K, Inuoe G, Yoshimasa Y, Nakao K (2000) Downregulation of leptin by free fatty acids in rat adipocytes: Effects of triacsin C, palmitate, and 2-bromopalmitate. Metab Clin Exp 49:326–330

    PubMed  CAS  Google Scholar 

  • Zachwieja JJ, Hendry SL, Smith SR, Harris RBS (1997) Voluntary wheel running decreases adipose tissue mass and expression of leptin mRNA in Osborne-Mendel rats. Diabetes 46:1159–1166

    PubMed  CAS  Google Scholar 

References

  • Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S, Kern PA, Friedman JM (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Med 1:1155–1161

    PubMed  CAS  Google Scholar 

  • McGregor GP, Desaga JF, Ehlenz K, Fishcher A, Heese F, Hegele A, Lämmer C, Peiser C, Lang RE (1996) Radioimmunological measurement of leptin in plasma of obese and diabetic human subjects. Endocrinology 137:1501–1504

    PubMed  CAS  Google Scholar 

  • Surwit RS, Petro AE, Parekh P, Collins S (1997) Low plasma leptin in response to dietary fat in diabetes-and obesity-prone mice. Diabetes 46:1516–1520

    PubMed  CAS  Google Scholar 

  • Van Heek M, Compton DS, France CF, Tedesco RP, Fawzi AB, Graziano MP, Sybertz EJ, Strader CD, Davis HR jr. (1997) Diet-induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Invest 99:385–390

    PubMed  Google Scholar 

  • Zachwieja JJ, Hendry SL, Smith SR, Harris RBS (1997) Voluntary wheel running decreases adipose tissue mass and expression of leptin mRNA in Osborne-Mendel rats. Diabetes 46:1159–1166

    PubMed  CAS  Google Scholar 

References

  • Billington CJ, Briggs JE, Grace M, Levine AS (1991) Effect of intracerebroventricular injection of neuropeptide Y on energy metabolism. Am J Physiol 260, Regul Integr Comp Physiol 29:R321–R327

    PubMed  CAS  Google Scholar 

  • Bischoff A, Avramidis P, Erdbrugger W, Munter K, Michel MC (1997) Receptor subtypes Y1 and Y5 are involved in the renal effects of neuropeptide Y. Br J Pharmacol 120:1335–1343

    PubMed  CAS  Google Scholar 

  • Blaze CA, Mannon PJ, Vigna SR, Kherani AR, Benjamin BA (1997) Peptide YY receptor distribution and subtype in the kidney: Effect on renal hemodynamics and function in rats. Am J Physiol 273: Renal Physiol 42:F545–F553

    PubMed  CAS  Google Scholar 

  • Britton KT, Southerland S, Van Uden E, Kirby D, Rivier J, Koob G (1997) Anxiolytic activity of NPY receptor agonists in the conflict test. Psychopharmacology 132:6–13

    PubMed  CAS  Google Scholar 

  • Broqua P, Wettstein JG, Rocher MN Gauthier-Martin B, Riviere PJM, Junien JL, Dahl SG (1996) Antinociceptive effects of neuropeptide Y and related peptides in mice. Brain Res 724:25–32

    PubMed  CAS  Google Scholar 

  • Chen C H, Stephens RL Jr., Rogers RC (1997) PYY and NPY: Control of gastric motility via action on Y1 and Y2 receptors in the dorsal vagal complex. Neurogastroenterol Motil 9:109–116

    PubMed  CAS  Google Scholar 

  • Criscione L, Rigollier P, Batzl-Hartmann C, Rueger H, Stricker-Krangrad A, Wyss P, Brunner L, Whitebread S, Yamaguchi Y, Gerald C, Heurich RO, Walker MW, Chiesi M, Schilling W, Hofbauer KG, Levens N (1998) Food intake in free-feeding and energy-deprived lean rats is mediated by the neuropeptide Y5 receptor. J Clin Invest 102:2136–2145

    PubMed  CAS  Google Scholar 

  • Erickson JC, Hollopeter G, Palmiter RD (1996) Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274:1704–1707

    PubMed  CAS  Google Scholar 

  • Gerald C, Walker MW, Criscione L, Gustafson EL, Batzl-Hartmann C, Smith KE, Vaysse P, Durkin MM; Laz TM, Linemeyer DL, Schaffhauser AO, Whitebread S, Hofbauer KG, Taber RI, Branchek TA, Weinshank RL (1996) A receptor subtype involved in neuropeptide Y-induced food intake. Nature 382:168–171

    PubMed  CAS  Google Scholar 

  • Goumain M, Voisin T, Lorinet AM, Balsubramaniam A, Laburthe M (1998) Pharmacological profile of the rat intestinal crypt peptide YY receptor vs. the recombinant Y5 receptor. Eur J Pharmacol 362:245–249

    PubMed  CAS  Google Scholar 

  • Hudspith MJ, Munglani R (1997) The therapeutic potential of neuropeptide Y in cardiovascular disease. Exper Opin Invest Drugs 6:437–445

    CAS  Google Scholar 

  • Iyengar S, Li DL, Simmons RMA (1999) Characterization of neuropeptide Y-induced feeding in mice: Do Y1-Y6 receptor subtypes mediate feeding? J Pharmacol Exp Ther 289:1031–1040

    PubMed  CAS  Google Scholar 

  • Kanatani A, Kanno T, Ishihara A, Hata M, Sakuraba A, Tanaka T, Tsuchiya Y, Mase T, Fukuroda T, Fukami T, Ihara M (1999) The novel neuropeptide Y Y1 receptor antagonist J-104870: A potent feeding suppressant with oral bioavailability. Biochem Biophys Res Commun 266:88–91

    PubMed  CAS  Google Scholar 

  • Kask A, Rago L, Harro J (1996) Anxiogenic-like effect of the neuropeptide Y Y1 receptor antagonist BIBP3226. Eur J Pharmacol 317:R3–R4

    PubMed  CAS  Google Scholar 

  • Kask A, Rago L, Harro J (1998) Evidence for involvement of neuropeptide Y receptors in the regulation of food intake: Studies with Y-1-selective antagonist BIBP3226. Br J Pharmacol 124:1507–1515

    PubMed  CAS  Google Scholar 

  • Kirby DA, Koerber SC, May JM, Hagaman C, Cullen MJ, Pelleymounter MA, Rivier JE (1995) Y1 and Y2 receptor selective neuropeptide Y analogues: Evidence for a Y1 receptor subclass. J Med Chem 38:4579–4586

    PubMed  CAS  Google Scholar 

  • Lambert PD, Wilding JPH, al Dokhayel AAM, Bohuon C, Comoy E, Gilbey SG, Bloom SR (1993) A role for neuropeptide Y, dynorphin, and noradrenaline in the central control of food intake after food deprivation. Endocrinology 133:29–33

    PubMed  CAS  Google Scholar 

  • Larhammar D (1996) Structural diversities for neuropeptide Y, peptide YY and pancreatic polypeptide. Regul Pept 65:165–174

    PubMed  CAS  Google Scholar 

  • Leibowitz SF (1994) Hypothalamic neuropeptide Y in regulation to energy balance. Ann NY Acad Sci 739:12–35

    PubMed  CAS  Google Scholar 

  • Lew MJ, Murphy R, Angus JA (1996) Synthesis and characterization of a selective peptide antagonist of neuropeptide Y vascu-lar postsynaptic receptors. Br J Pharmacol 117:1768–1772

    PubMed  CAS  Google Scholar 

  • Marsh DJ, Hollopeter G, Kafer KE, Palmiter RD (1998) Role of Y5 neuropeptide Y receptor in feeding and obesity. Nat Med 4:718–721

    PubMed  CAS  Google Scholar 

  • Matthews JE, Jansen M, Lyerly D, Cox R, Chen WJ, Koller KJ, Daniels AJ (1997) Pharmacological characterization and selectivity of the NPY antagonist GR231118 (1229U91) for different NPY receptors. Regul Pept 72:113–119

    PubMed  CAS  Google Scholar 

  • McCloskey MJD, Moriarty MJ, Tseng A, Shine J, Potter EK (1997) Activities of centrally truncated analogues of neuropeptide Y at Y1 and Y2 receptor subtypes in vivo. Neuropeptides 31:193–197

    PubMed  CAS  Google Scholar 

  • Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, Quirion R, Schwartz T, Westfall T (1998) XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY,, and pancreatic polypeptide receptors. Pharmacol Rev 50:143–150

    PubMed  CAS  Google Scholar 

  • Parker EM (1999) The role of central neuropeptide, neurotransmitter and hormonal systems in the regulation of body weight. Neurotransmiss 15:3–11

    Google Scholar 

  • Parker EM, Bajij CK, Balasubramaniam A, Burrier RE, Guzzi M, Hamud F, Mukhopadhyay G, Rudinski MS, Tao Z, Tice M, Xia L, Mullins DE, Salisbury BG (1998) GR23 1118 (1229U91) and other analogues of the C-terminus of neuropeptide Y are potent neuropeptide Y Y1 receptor antagonists and neuropeptide Y Y4 receptor agonists. Eur J Pharmacol 349:97–105

    PubMed  CAS  Google Scholar 

  • Playford RJ, Cox HM (1996) Peptide YY and neuropeptide Y: two peptides intimately involved in electrolyte homeostasis. Trends Pharmacol Sci 17:436–438

    PubMed  CAS  Google Scholar 

  • Schaffhauser AO, Stricker-Krongrad A, Brunner L, Cumin F, Gerald C, Whitebread S, Criscione L, Hofbauer KG (1997) Inhibition of food intake by neuropeptide Y Y5 receptor antisense oligodeoxynucleotides. Diabetes 46:1792–1798

    PubMed  CAS  Google Scholar 

  • Shigeri Y, Ishikawa M, Ishihara Y, Fujimoto M (1998) A potent nonpeptide neuropeptide Y Y1 receptor antagonist, a benzodiazepine derivative. Life Sci 63:151–160

    Google Scholar 

  • Small CJ, Morgan DGA, Meeran K, Heath MM, Gunn I, Edwards CMB, Gardiner J, Taylor GM, Hurley JD, Rossi M, Goldstone AP, O'Shea D, Smith DM, Ghatei MA, Bloom SR (1997) Peptide analogue studies of the hypothalamic neuropeptide Y receptor mediating pituitary adrenocorticotropic hormone release. Proc Natl Acad Sci USA 94:11686–11691

    PubMed  CAS  Google Scholar 

  • Souli A, Chariot J, Voisin T, Presset O, Tsocas A, Balasubramaniam A, Laburthe M, Roze C (1997) Several receptors mediate the antisecretory effects of peptide YY, neuropeptide Y and pancreatic polypeptide on VIP-induced fluid secretion in the rat jejunum in vivo. Peptides 18:551–557

    PubMed  CAS  Google Scholar 

  • Stanley BG, Magdalin W, Seirafi A, Nguyen MM, Leibowitz SF (1992) Evidence for neuropeptide Y mediation of eating produced by food deprivation and for a variant of the Y-1 receptor mediating this peptide's effect. Peptides 13:581–587

    PubMed  CAS  Google Scholar 

  • Stephens TW, Basinski M, Bristow PK, Bue-Valleskey JM, Rosteck PR, Schoner B, Smith D, Tinsley FC, Zhang X-Y, Heiman M (1995) The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377:530–532

    PubMed  CAS  Google Scholar 

  • Sundler P, Boettcher G, Ekblad E, Hakanson R (1993) PP, PYY and NPY: occurrence and distribution in the periphery. In: Colmers WF, Walestedt C (eds) The Biology of Neuropeptide Y and Related Peptides. Humana Press, Inc., pp 157–196

    Google Scholar 

  • Tadepalli AS, Harrington WW, Hashim MA, Matthews J, Leban JJ, Spaltenstein A, Daniels AJ (1996) Hemodynamic characterization of a novel neuropeptide Y receptor antagonist. J Cardiovasc Pharmacol 27:712–718

    PubMed  CAS  Google Scholar 

  • Wettstein JG, Early B, Junien JL, (1995) Central nervous system pharmacology of neuropeptide Y. Pharmacol Ther 65:397–414

    PubMed  CAS  Google Scholar 

  • Wieland HA, Engel W, Eberlein W, Rudolf K, Doods HN (1998) Subtype selectivity of the novel nonpeptide neuropeptide Y Y1 receptor antagonist BIBO 3304 and its effect on feeding in rodents. Br J Pharmacol 125:549–555

    PubMed  CAS  Google Scholar 

  • Wyss P, Stricker-Krongard A, Brunner L, Miller J, Crossthwaite A, Whitebread S, Criscione L (1998) The pharmacology of neuropeptide Y (NPY) receptor-mediated feeding in rats characterizes better Y5 than Y1, but not Y2 or Y4 subtypes. Regul Pept 75–76:363–371

    PubMed  Google Scholar 

  • Zarrinmayeh H, Nunes AM, Ornstein PL, Zimmermann DM, Arnold MB, Schober DA, Gackenheimer SL, Bruns RF, Hipskind BA, Britton TC, Cantrell BE, Gehlert DL (1998) Synthesis and evaluation of a series of novel 2-[(4-chlorophenoxy)methyl]benzimidazoles as selective neuropeptide Y Y1 receptor antagonists. J Med Chem 41:2709–2719

    PubMed  CAS  Google Scholar 

References

  • Bischoff A, Michel MC (1999) Emerging functions for neuropeptide Y5 receptors. Trends Pharmacol Sci 20:104–106

    PubMed  CAS  Google Scholar 

  • Dumont Y, Jacques D, Bouchard P, Quirion R (1998) Species differences in the expression and distribution of the neuropeptide YY1, Y2, Y4, and Y5 receptors in rodents, guinea pig, and primate brains. J Comp Neurol 402:372–384

    PubMed  CAS  Google Scholar 

  • Dumont Y, Cadieux A, Doods H, Pheng LH, Abounader R, Hamel E, Jacques D, Regoli D, Quirion J (2000a) BIIE0246, a potent and highly selective non-peptide neuropeptide Y Y2 receptor antagonist. Br J Pharmacol 129:1075–1088

    PubMed  CAS  Google Scholar 

  • Dumont Y, Cadieux A, Doods H, Fournier A, Quirion R (2000b) Potent and selective tools to investigate neuropeptide Y receptors in the central and peripheral nervous system: BIBO3304 (Y1) and CGP71683A (Y5). Can J Physiol Pharmacol 78:116–125

    PubMed  CAS  Google Scholar 

  • Feletou M, Nicolas JP, Rodriguez M, Beauverger P, Galizzi JP, Boutin JA, Dehault J (1999) NPY receptor subtype in the rabbit isolated ileum. Br J Pharmacol 127:795–801

    PubMed  CAS  Google Scholar 

  • Gehlert DR, Gackenheimer SL, Schober DA, Beavers L, Gadski R, Burnett JP, Mayne N, Lundell I, Larhammer D (1996) The neuropeptide Y Y1 receptor selective radioligand, [125I][Leu31, Pro34]peptide YY, is also a high affinity radioligand for human pancreatic polypeptide 1 receptors. Eur J Pharmacol 318:485–490

    PubMed  CAS  Google Scholar 

  • Gicquiaux H, Tschopl M, Doods HN, Bucher B (1996) Discrimination between neuropeptide Y and peptide YY in the rat tail artery by the neuropeptide Y1-selective antagonist BIBP3226. Br J Pharmacol 119:1313–1318

    PubMed  CAS  Google Scholar 

  • Hedge SS, Bonhaus DW, Stanley W, Eglen RM, Moy TM, Loeb M, Shetty SG, Desouza A, Krstenansky J Pharmacological evaluation of 1229U91, a novel high-affinity and selective neuropeptide Y Y1 receptor. J Pharmacol Exp Ther 275:1261–1266

    Google Scholar 

  • Marsh DJ, Hollopeter G, Kafer KE, Palmiter RD (1998) Role of Y5 neuropeptide Y receptor in feeding and obesity. Nat Med 4:718–721

    PubMed  CAS  Google Scholar 

  • Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, Quirion R, Schwartz T, Westfall T (1998) XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY,, and pancreatic polypeptide receptors. Pharmacol Rev 50:143–150

    PubMed  CAS  Google Scholar 

  • Parker EM, Babij CK, Balasubramaniam A, Burrier RE, Guzzi M, Hamud F, Mukhopadhyay G, Rudinski MS, Tao Z, Tice M, Xia L, Mullins DE, Salisbury BG (1998) GR231118 (1229U91) and other analogues of the C-terminus of neuropeptide Y are potent neuropeptide Y Y1 receptor antagonists and neuropeptide Y Y4 receptor agonists. Eur J Pharmacol 349:97–105

    PubMed  CAS  Google Scholar 

  • Pheng LH, Regoli D (1998) Bioassays for NPY receptors: Old and new. Regul Pept 75–76:79–87

    PubMed  Google Scholar 

  • Pheng LH, Quirion R, Iyengar S, Fournier A, Regoli D (1997) The rabbit ileum; A sensitive and selective preparation for the neuropeptide Y Y5 receptor. Eur J Pharmacol 333:R3–R5

    PubMed  CAS  Google Scholar 

  • Primus RJ, Yevich E, Gallagher DW (1998) In vitro autoradiography of GTP γ[35S] binding at activated NPY receptor subtypes in adult rat brain. Mol Brain Res 58:74–82

    PubMed  CAS  Google Scholar 

  • Robin-Jagerschmidt C, Sylte I, Bihoreau C, Hendricksen L, Calvet A, Dahl SG, Bénicourt C (1998) The ligand binding site of NPY at the rat Y1 receptor investigated by site-directed mutagenesis and molecular modeling. Mol Cell Endocrinol 139:187–198

    PubMed  CAS  Google Scholar 

  • Savontaus E, Pesonen U, Rouru J, Huupponen R, Koulu M (1998) Effects of ZD7114, a selective β3-adrenoceptor agonist, on neuroendocrine mechanisms controlling energy balance. Eur J Pharmacol 374:265–274

    Google Scholar 

  • Wieland HA, Engel W, Eberlein W, Rudolf K, Doods HN (1998) Subtype selectivity of the novel nonpeptide neuropeptide Y Y1 receptor antagonist BIBO 3304 and its effect on feeding in rodents. Br J Pharmacol 125:549–555

    PubMed  CAS  Google Scholar 

  • Wyss P, Stricker-Krongard A, Brunner L, Miller J, Crossthwaite A, Whitebread S, Criscione L (1998) The pharmacology of neuropeptide Y (NPY) receptor-mediated feeding in rats characterizes better Y5 than Y1, but not Y2 or Y4 subtypes. Regul Pept 75–76:363–371

    PubMed  Google Scholar 

References

  • Cai XJ, Widdowson PJ, Harrold J, Wilson S, Buckingham RE, Arch JRS, Tadayyon M, Clapham JC, Wilding J, Williams G (1999) Hypothalamic orexin expression. Modulation by blood glucose and feeding. Diabetes 48:2132–2137

    PubMed  CAS  Google Scholar 

  • Chen C-T, Hwang L-L, Chang J-K, Dun NJ (2000) Pressor effects of orexins injected intracisternally and to the rostral ventrolateral medulla of anesthetized rats. Am J Physiol 278; Regul Integr Comp Physiol 47:R692–R897

    Google Scholar 

  • Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, Sakurai T, Yanagisawa M, Nakazato M (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA 96:748–753

    PubMed  CAS  Google Scholar 

  • DeLecea L, Sutcliffe JG (1999) The hypocretins/orexins: Novel hypothalamic neuropeptides involved in different physiological systems. Cell Mol Life Sci 56:473–480

    CAS  Google Scholar 

  • Dube MG, Kalra SP, Kalra PS (1999) Food intake elicited by central administration of orexins/hypocretins: Identification of hypothalamic sites of action. Brain Res 842:473–477

    PubMed  CAS  Google Scholar 

  • Evans ME, Harries M, Patel S, Benham CD (1999) Orexin-A depolarizes neurons in the rat locus coeruleus brain slice in vitro. J Physiol 515:121P

    Google Scholar 

  • Ida T, Nakahara K, Katayama T, Murakami M, Nakazato M (1999) Effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y, on the various behavioral activities of rats. Brain Res 821:526–529

    PubMed  CAS  Google Scholar 

  • Jain MR, Horvath TL, Kalra PS, Kalra SP (2000) Evidence that NPY Y1 receptors are involved in stimulation of feeding by orexins (hypocretins) in sated rats. Regul Pept 87:19–24

    PubMed  CAS  Google Scholar 

  • Mondal MS, Nakazato M, Date Y, Murakami N, Yanagisawa M, Matsukura S (1999) Widespread distribution of orexin in the rat brain and its regulation upon fasting. Biochem Biophys Res Commun 256:495–499

    PubMed  CAS  Google Scholar 

  • Novak KW, Mackowiak P, Switonska MM; Fabis M, Malendowicz LK (2000) Acute orexin effects on insulin secretion in the rat: In vivo and in vitro studies. Life Sci 66:449–454

    Google Scholar 

  • Parker EM (1999) The role of central neuropeptide, neurotransmitter and hormonal systems in the regulation of body weight. Neurotransmiss 15:3–11

    Google Scholar 

  • Piper DC, Upton N, Smith MI, Hunter AJ (2000) The novel neuropeptide, orexin A, modulates the sleep-wake cycle of rats. Eur J Neurosci 12:726–730

    PubMed  CAS  Google Scholar 

  • Pu S, Jain MR, Kalra PS, Kalra SP (1998) Orexins, a novel family of hypothalamic neuropeptides, modulate pituitary luteinizing hormone secretion in an ovarian steroid-dependent manner. Regul Pept 78:133–136

    PubMed  CAS  Google Scholar 

  • Sakurai T (1999) Orexin and orexin receptors: implication of feeding behavior. Regul Pept 85:25–30

    PubMed  CAS  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JRS, Buckingham RB, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu W-S, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: A family of hypothalamic neuropeptides an G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    PubMed  CAS  Google Scholar 

  • Shirasaka T, Nakazato M, Matsukura S, Takasaki M, Kannan H (1999) Sympathetic and cardiovascular actions of orexins in conscious rats. Am J Physiol 277; Regul Integr Comp Physiol 46:R1780–R1785

    Google Scholar 

  • Smart D (1999) Orexins: A new family of neuropeptides. Br J Anaesth 83:695–697

    PubMed  CAS  Google Scholar 

  • Smart D, Jerman JC, Brough SJ, Rushton SL, Murdock PR, Jewitt F, Elshourbagy NA, Ellis JC, Middlemiss DN, Brown F (1999) Characterization of recombinant orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR. Br J Pharmacol 128:1–3

    PubMed  CAS  Google Scholar 

  • Tamura T, Irahara M, Tezuka M, Kiyokawa M, Aono T (1999) Orexins, orexigenic hypothalamic neuropeptides, suppress the pulsatile secretion of luteinizing hormone in ovarectomized female rats. Biochem Biophys Res Commun 264:759–762

    PubMed  CAS  Google Scholar 

  • Van den Pol AN, Gao XB, Obrietan K, Kilduff TS, Belousov AB (1999) Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/orexin. J Neurosci 18:7962–7971

    Google Scholar 

  • Yamada H, Okumura T, Motomura W, Kobayashi Y, Kohgo Y (2000) Inhibition of food intake by central injection of anti-orexin antibody in fasted rats. Biochem Biophys Res Commun 267:527–531

    PubMed  CAS  Google Scholar 

References

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JRS, Buckingham RB, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu W-S, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: A family of hypothalamic neuropeptides an G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    PubMed  CAS  Google Scholar 

  • Smart D, Jerman JC, Brough SJ, Rushton SL, Murdock PR, Jewitt F, Elshourbagy NA, Ellis JC, Middlemiss DN, Brown F (1999) Characterization of recombinant orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR. Br J Pharmacol 128:1–3

    PubMed  CAS  Google Scholar 

  • Sullivan E, Tucker EM, Dale IL (1999) Measurement of [Ca2+] using the fluorometric imaging plate reader (FLIRP). In: Lambert DG (ed) Calcium Signaling Protocols. Humana Press, NJ, pp 125–136

    Google Scholar 

  • Takigawa M, Sakurai T, Kasuya Y, Abe Y, Masaski T, Goto K (1995) Molecular identification of guanine-nucleotide-binding regulatory proteins which couple to endothelin receptors. Eur J Biochem 228:102–108

    PubMed  CAS  Google Scholar 

References

  • Mondal MS, Nakazato M, Date Y, Murakami N, Handa R, Sakata T, Matsukura S (1999) Characterization of orexin A and orexin B in the microdissected brain nuclei and their contents in two obese rat models. Neurosci Lett 273:45–48

    PubMed  CAS  Google Scholar 

  • Mitsuma T, Hirooka Y, Kayama M, Mori Y, Yokoi Y, Rhue N, Ping J, Izumi M, Ikai R, Adachi K, Nogimori T (2000) Radioimmunoassay for orexin A. Life Sci 66:897–904

    PubMed  CAS  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JRS, Buckingham RB, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu W-S, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: A family of hypothalamic neuropeptides an G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    PubMed  CAS  Google Scholar 

References

  • Akabayashi A, Koenig JI, Watanabe Y, Alexander JT, Leibowitz SF (1994) Galanin-containing neurons in the paraventricular nucleus: A neurochemical marker for fat ingestion and body weight gain. Proc Natl Acad Sci 91:10375–10379

    PubMed  CAS  Google Scholar 

  • Ahtaridis SA, Katoch SS, Moreland RS (1998) Mechanism of galanin-induced contraction of longitudinal smooth muscle of the rat jejunum. Am J Physiol 274; Gastrointest Liver Physiol 37:G306–G313

    PubMed  CAS  Google Scholar 

  • Arletti R, Benelli A, Cavazzuti E, Bertolini A (1997) Galantide improves social memory in rats. Pharmacol Res 35:317–319

    PubMed  CAS  Google Scholar 

  • Baltazar ET, Kitamura N, Hondo E, Narreto EC, Yamada J (2000) Galanin-like immunoreactive endocrine cells in bovine pancreas. J Anat 196:285–291

    PubMed  CAS  Google Scholar 

  • Bartfai T, Bedecs K, Land T, Langel Ü, Bertorelli R, Girotti P, Consolo S, Xu X (1991) M-15: High-affinity chimeric peptide that blocks the neuronal actions of galanin in the hippocampus, locus coeruleus, and spinal cord. Proc Natl Acad Sci USA 88:10961–10965

    PubMed  CAS  Google Scholar 

  • Burazin TCD, Gundlach AL (1998) Inducible galanin and GalR2 receptor system in motor neuron injury and regeneration. J Neurochem 71:879–882

    PubMed  CAS  Google Scholar 

  • Cai A, Bowers RC, Moore JP Jr., Hyde JF (1998) Function of galanin in the anterior pituitary of estrogen-treated Fischer 344 rats: Autocrine and paracrine regulation of prolactin secretion. Endocrinology 139:2452–2458

    PubMed  CAS  Google Scholar 

  • Ceresini G, Sgoifo A, Freddi M, Musso E, Parmigiani S, DelRio G, Valenti G (1998) Effects of galanin and the galanin receptor antagonist galantide on plasma catecholamine levels during a psychosocial stress in rats. Neuroendocrinology 67:67–72

    PubMed  CAS  Google Scholar 

  • Crawley JN, Austin MC, Fiske SM, Martin B, Consolo S, Berthold M, Langel U, Fisone G, Bartfai T (1990) Activity of centrally administered galanin fragments on stimulation of feeding behavior and on galanin receptor binding in the rat hypothalamus. J Neurosci 10:3695–3700

    PubMed  CAS  Google Scholar 

  • Diaz-Cabiale Z, Narvaez JA, Finnman UB, Bellido I, Ögren SO Fuxe K (2000) Galanin-(1-16) modulates 5-HT1A receptors in the ventral limbic cortex of the rat. NeuroReport 11:515–519

    PubMed  CAS  Google Scholar 

  • Ekblad E, Håkanson R, Sundler F, Wahlestedt C (1989) Galanin: neuromodulatory and direct contrac tile effects in smooth muscle preparations. Br J Pharmacol 86:241–246

    Google Scholar 

  • Koshiyama H, Hato Y, Inoue T, Muarkami Y, Yanaihara N, Imura H (1987) Central galanin stimulates pituitary prolactin secretion in rats: possible involvement of hypothalamic vasoactive intestinal polypeptide. Neurosci Lett 7:49–54

    Google Scholar 

  • Finn PD, Clifton DK, Steiner RA (1998) The regulation of galanin gene expression in gonadotropin-releasing hormone neurons. Mol Cell Endocrinol 140:137–142

    PubMed  CAS  Google Scholar 

  • Fisone G, Langel U, Carlquist M, Bergman T, Consolo S, Höckfelt T (1989) Galanin receptor and its ligands in the rat hippocampus. Eur J Biochem 181:269–276

    PubMed  CAS  Google Scholar 

  • Gleason TC, Dreiling JL, Crawley JN (1999) Rat strain differences in response to galanin in the Morris water test. Neuropeptides 33:265–270

    PubMed  CAS  Google Scholar 

  • Kakuyama H, Mochizuki T, Iguchi K, Yamabe K, Hosoe H, Hoshino M, Yanaihara M (1997) Ala6,D-Tryp8]galanin(1–5)ol is a potent galanin antagonist on insulin release. Biomed Res Japan 18:49–56

    CAS  Google Scholar 

  • Kasa P, Farkas Z, Forgon M, Papp H, Balaspiri L (1998) Effects of different galanins on the release of acetylcholine in the various areas of rat brain. Ann New York Acad Sci 863:435–437

    CAS  Google Scholar 

  • Kask K, Berthold M, Bourne J, Andell S, 'Langel Ü, Bartfai T (1995) Binding and agonist/antagonist actions of M35, galanin(1–13)-bradykinin(2–9)amide chimeric peptide, in Rin m5F insulinoma cells. Regul Rept 59:341–348

    CAS  Google Scholar 

  • Katoh T, Ohmori O (2000) Studies on the total synthesis of Sch 202596, an antagonist of the galanin subtype GalR1: Synthesis of geodin, the spirocoumarone subunit of Sch 202596. Tetrahedron Lett 41:465–469

    CAS  Google Scholar 

  • Kerr BJ, Cafferty WBJ, Gupta YK, Bacon A, Wynick D, McMahon SB, Thompson SWN (2000) Galanin knockout mice reveal nociceptive deficits following peripheral nerve injury. Eur J Neurosci 12:793–802

    PubMed  CAS  Google Scholar 

  • Kisfalvi I Jr., Burghardt B, Balint A, Zelles T, Vizi ES, Varga G (2000) Antisecretory effects of galanin and its putative antagonists M15, M35, and C7 in the rat stomach. J Physiol Paris 94:37–42

    PubMed  CAS  Google Scholar 

  • Koegler FH, York DA, Bray GA (1999) The effects on feeding of galanin and M40 when injected into the nucleus of the solitary tract, the lateral parabrachial nucleus, and the third ventricle. Physiol Behav 67:259–267

    PubMed  CAS  Google Scholar 

  • Korolkiewicz R, Rekowski P, Szyk A, Kato S, Yasuhiro T, Kubomi M, Tashima K, Takeuchi K (1998) Effect of diabetes mellitus on the contractile activity of carbachol and galanin in isolated gastric fundus strips of rats. Pharmacology 57:65–78

    PubMed  CAS  Google Scholar 

  • Leibowitz SF, Kim T (1992) Impact of a galanin antagonist on exogenous galanin and natural patterns of fat ingestion. Brain Res 599:148–152

    PubMed  CAS  Google Scholar 

  • Leonharst U, Siegel EG, Köhler H, Barthel M, Tytko A, Nebendahl K, Creutzfeldt W (198) Galanin inhibits glucose-induced insulin release in vitro. Horm Metab Res 21:100–101

    Google Scholar 

  • Lindskog S, Ahren B, Land T, Langel Ü, Bartfai T (1992) The novel high-affinity antagonist, galantide, blocks the galanin-mediated inhibition of glucose-induced insulin secretion. Eur J Pharmacol 210:183–188

    PubMed  CAS  Google Scholar 

  • Ma W, Bisby MA (1999) Increase of galanin mRNA in lumbar dorsal root ganglion neurones of adult rats after partial sciatic nerve ligation. Neurosci Lett 262:195–198

    PubMed  CAS  Google Scholar 

  • McDonald TJ, Dupre J, Tatemoto K, Greenberg GR, Rasziuk J, Mutt V (1985) Galanin inhibits insulin secretion and induces hyperglycemia in dogs. Diabetes 34:192–196

    PubMed  CAS  Google Scholar 

  • McDonald MP, Crawley JN (1997) Galanin-acetylcholine interactions in rodent memory tasks and Alzheimer's disease. J Psychiatry Neurosci 22:303–317

    PubMed  CAS  Google Scholar 

  • McDonald MP, Williard LB, Wenk GL, Crawley JN (1998a) Coadministration of galanin antagonist M40 with a muscarinic M1 agonist improves delayed nonmatching to position choice accuracy in rats with cholinergic lesions. J Neurosci 18:5078–5085

    PubMed  CAS  Google Scholar 

  • McDonald MP, Gleason TC, Robinson JK, Crawley JN (1998b) Galanin inhibits performance on rodent memory tasks. Ann New Acad Sci 863:305–322

    CAS  Google Scholar 

  • Melander T, Hökfelt T, Rökaeus Å (1986) Distribution of galaninlike immunoreactivity in the rat central nervous system. J Comp Neurol 248:475–517

    PubMed  CAS  Google Scholar 

  • Murakami Y, Kato Y, Koshiyama H, Inoue T, Yanaihara N, Imura H (1987) Galanin stimulates growth hormone (GH) secretion via GH-releasing factor (GRF) in conscious rats. Eur J Pharmacol 136:415–418

    PubMed  CAS  Google Scholar 

  • Niiro M, Nishimura J; Hirano K, Nakano H, Kanaide H (1998) Mechanism of galanin-induced contraction in the rat myometrium. Br J Pharmacol 124:1623–1632

    PubMed  CAS  Google Scholar 

  • Nordström Ö, Melander T, Höckfelt T, Bartfai T, Goldstein M (1987) Evidence for an inhibitory effect of the peptide galanin on dopamine release from the rat medial eminence. Neurosci Lett 73:21–26

    PubMed  Google Scholar 

  • Ögren SO, Schott PA, Kehr J, Misane T, Razani H (1999) Galanin and learning. Brain Res 848:174–182

    PubMed  Google Scholar 

  • Ohtaki T, Kumano S, Ishibashi Y, Ogi K, Matsui H, Harada M, Kitada C, Kurokawa T, Onda H, Fujino M (1999) Isolation and cDNA of a novel galanin-like peptide (GALP) from porcine hypothalamus. J Biol Chem 274:37041–37045

    PubMed  CAS  Google Scholar 

  • Ottlecz A, Snyder GD, McCann SM (1988) Regulatory role of galanin in control of hypothalamic-anterior pituitary function. Proc Natl Acad Sci USA 85:9861–9865

    PubMed  CAS  Google Scholar 

  • Park JJ, Baum MJ (1999) Intracerebroventricular infusion of the galanin antagonist M40 attenuates heterosexual partner preference in ferrets. Behav Neurosci 113:391–400

    PubMed  CAS  Google Scholar 

  • Parker EM (1999) The role of central neuropeptide, neurotransmitter and hormonal systems in the regulation of body weight. Neurotransmiss 15:3–11

    Google Scholar 

  • Pooga M, Jureus A, Rezaei K, Hasanvan H, Saar K, Kask K, Kjellen P, Land T, Halonen J, Maeorg U, Uri A, Solyom S, Bartfai T, Langel Ü (1998) Novel galanin receptor ligands. J Pept Res 51:65–74

    PubMed  CAS  Google Scholar 

  • Pramanik A, Ögren SO (1992) Galanin-evoked acetylcholine release in the rat striatum is blocked by the putative galanin antagonist M15. Brain Res 574:317–319

    PubMed  CAS  Google Scholar 

  • Sahu A, Xu B, Kalra SP (1994) Role of galanin in stimulation of pituitary luteinizing hormone secretion as revealed by a specific receptor antagonist, galantide. Endocrinology 134:529–536

    PubMed  CAS  Google Scholar 

  • Skofitsch G, Jacobowitz DM (1985) Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 6:509–546

    PubMed  CAS  Google Scholar 

  • Tatemoto K, Rökaeus Å, Jörnvall H, McDonald TJ, Mutt V (1983) Galanin, a novel biologically active peptide from porcine intestine. FEBS Lett 164:124–128

    PubMed  CAS  Google Scholar 

  • Todd JF, Small CJ, Akinsanya KO, Stanley SA, Smith DM, Bloom SR (1998) Galanin is a paracrine inhibitor of gonadotroph function in the female rat. Endocrinology 139:4222–4229

    PubMed  CAS  Google Scholar 

  • Tsuda K, Yokoo H, Goldstein M (1989) Neuropeptide Y and galanin in norepinephrine release in hypothalamic slices. Hypertension 14:81–86

    PubMed  CAS  Google Scholar 

  • Wang J, Akabayashi A, Hi J-Y, Dourmashkin J, Alexander JT, Silva I, Lighter J, Leibowitz SF (1998) Hypothalamic galanin: Control by signals from fat metabolism Brain Res 804:7–20

    PubMed  CAS  Google Scholar 

  • Wang D, Lundeberg T, Yu L-C (2000) Antinociceptive role of galanin in periaqueductal grey of rats with experimentally induced mononeuropathy. Neuroscience 96:767–771

    PubMed  CAS  Google Scholar 

  • Wynick D, Small CJ, Bacon A, Holmes FE, Norman M, Ormandy CJ, Kilic E, Kerr NCH, Ghatei M, Talamantes F, Bloom SR, Pachnis V (1998) Galanin regulates prolactin release and lactotroph proliferation. Proc Natl Acad Sci USA 95:12671–12676

    PubMed  CAS  Google Scholar 

  • Xu X-J, Wiesenfeld-Hallin Z, Langel Ü, Bedecs K, Bartfai T (1995) New high affinity peptide antagonists to the spinal galanin receptor. Br J Pharmacol 116:2076–2080

    PubMed  CAS  Google Scholar 

  • Xu X-J, Andell S, Bartfai T, Wiesenfeld-Hallin Z (1996) Fragments of the galanin message-associated peptide (GMAP) modulate the spinal reflex in rat. Eur J Pharmacol 318:301–306

    PubMed  CAS  Google Scholar 

  • Yu L-C, Lundeberg S, An H, Wang F-X, Lundeberg T (1999) Effects of intrathecal galanin on nociceptive response in rats with mononeuropathy. Life Sci 64:1145–1153

    PubMed  CAS  Google Scholar 

  • Zachariou V, Parikh K, Picciotto MR (1999) Centrally administered galanin blocks morphine place preference in the mouse. Brain Res 831:33–42

    PubMed  CAS  Google Scholar 

References

  • Ahmad S, O'Donnell D, Payza K, Ducharma J, Menard D, Brown W, Schmidt R, Wahlestedt C, Shen SH, Walker P (1998) Cloning and evaluation of the role of rat GALR-2, a novel subtype of galanin receptor, on the control of pain reception. Ann New York Acad Sci 863:108–119

    CAS  Google Scholar 

  • Bloomquist BT, Beauchamp MR, Zhelnin L, Brown SE, Gore-Willse AR, Gregor P, Cornfield LJ (1998) Cloning and expression of the human galanin receptor GalR2. Biochem Biophys Res Commun 243:474–479

    PubMed  CAS  Google Scholar 

  • Branchek TA, Smith KE, Gerald C, Walker MW (2000) Galanin receptor subtypes. Trends Pharmacol Sci 21:109–116

    PubMed  CAS  Google Scholar 

  • Fathi Z, Battaglino PM, Iben LG, Li H, Baker E, Zhang D, McGovern R, Lahle CD, Sutherland GR, Iismaa TP, Dickinson KEJ, Antal-Zimanyi I (1998) Molecular characterization, pharmacological properties and chromosomal localization of the human GALR2 receptor. Mol Brain Res 58:156–169

    PubMed  CAS  Google Scholar 

  • Habert-Ortoli E, Aminranoff B, Loquet I, Laburthe M, Mayaux JF (1994) Molecular cloning of a functional human galanin receptor. Proc Natl Acad Sci USA 91:9780–9783

    PubMed  CAS  Google Scholar 

  • Kolakowski LF Jr., O'Neill GP, Howard AD, Broussard SR, Sullivan KA, Feighner SD, Sawzdargo M, Nguyen T, Kargman S, Shiao L-L, Hreniuk DL, Tan CP, Evans J, Abramovitz M, Chateauneuf A, Coulombe N, Ng G, Johnson MP, Tharian A, Khoshbouei H, George SR, Smith RG, O'Dowd BF (1998) Molecular characterization and expression of cloned human galanin receptors GALR2 and GALR3. J Neurochem 71:2239–2251

    PubMed  CAS  Google Scholar 

  • Lee DK, Nguyen T, O'Neill GP, Cheng R, Liu Y, Howard AD, Coulombe N, Tan CP, Tang-Nguyen AT, George SR, O'Dowd BF (1999) Discovery of a receptor related to the galanin receptors. FEBS Lett 446:103–107

    PubMed  CAS  Google Scholar 

  • Pang L, Hashemi T, Lee-H JJ, Maguire M, Graziano MP; Bayne M, Hawes B, Wong G, Wang S (1998) The mouse GalR2 receptor: Genomic organization, cDNA cloning, and functional characterization. J Neurochem 71:2252–2259

    PubMed  CAS  Google Scholar 

  • Parker EM, Izzarelli DG, Nowak HP, Mahle CD, Iben LG, Wang J, Goldstein ME (1995) Cloning and characterization of the rat GALR1 galanin receptor from Rin14B insulinoma cells. Mol Brain Res 34:179–189

    PubMed  CAS  Google Scholar 

  • Saar K, Valkna A, Soomets U, Rezaei K, Zorko M, Zilmer M, Langel Ü (1997) Role of the third cytoplasmatic loop in signal transduction by galanin receptors. Biochem Soc Transact 25:1036–1040

    CAS  Google Scholar 

  • Smith KE, Walker MW, Artymyshyn R, Bard J, Borowsky B, Tamm JA, Yoa W-J, Vaysse PJ-J, Brancheck TA, Walker MW, Jones KA (1998) Cloned human and rat GAL3 receptors: Pharmacology and activation of G-protein inwardly rectifying K+ channels. J Biol Chem 273:23321–23326

    PubMed  CAS  Google Scholar 

  • Sullivan KA, Shiao L-L, Cascieri MA (1997) Pharmacological characterization and tissue distribution of the human and rat GALR1 receptors. Biochem Biophys Res Commun 233:823–828

    PubMed  CAS  Google Scholar 

  • Wang S, Parker EM (1998) Galanin receptor subtypes as potential therapeutic targets. Expert Opin Ther Pat 8:1225–1235

    CAS  Google Scholar 

  • Wang S, Hashemi T, He C, Strader C, Bayne M (1997) Molecular cloning and pharmacological characterization of a new galanin receptor subtype. Mol Pharmacol 52:337–343

    PubMed  CAS  Google Scholar 

References

  • Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrin Metab 11:327–332

    CAS  Google Scholar 

  • Antras J, Lasnier F, Pairault J (1991) Adipsin gene expression in 3T3-F442A adipocytes is posttranscriptionally down-regulated by retinoic acid. J Biol Chem 266:1157–1161

    PubMed  CAS  Google Scholar 

  • Choy LN, Rosen BS, Spiegelman BM (1992) Adipsin and an endogenous pathway of complement from adipose cells. J Biol Chem 267:12736–12741

    PubMed  CAS  Google Scholar 

  • Cianflone K, Maslowska M, Sniderman AD (1999) Acylation stimulating protein (ASP) an adipocyte autocrine: new directions. Sem Cell Dev Biol 10:31–34

    CAS  Google Scholar 

  • Cook KS, Min HY, Johnson D, Chaplinsky RJ, Flier JS, Hunt CR, Spiegelman BM (1987) Adipsin: a circulating serine protease homologue secreted by adipose tissue and sciatic nerve. Science 237:402–405

    PubMed  CAS  Google Scholar 

  • Dugail I, Quignard-Boulange A, le Liepvre X, Lavau M (1990) Impairment of adipsin expression is secondary to the onset of obesity in db/db mice. J Biol Chem 265:1831–1833

    PubMed  CAS  Google Scholar 

  • Flier JS, Cook KS, Usher P, Spiegelman BM (1987) Severely impaired adipsin expression in genetic and acquired obesity. Science 237:405–408

    PubMed  CAS  Google Scholar 

  • Johnson PA, Greenwood MRC, Horwitz BA, Stern JS (1991) Animal models of obesity: Genetic aspects. Annu Rev Nutr 11:325–352

    PubMed  CAS  Google Scholar 

  • Kitagawa K, Rosen SB, Spiegelman BM, Lienhard GE, Tanner LI (1998) Insulin stimulates acute release of adipsin from 3T3-L1 adipocytes. Biochem Biophys Acta 1014:83–89

    Google Scholar 

  • Lwell BB, Flier JS (1990) Differentiation dependent biphasic regulation of adipsin gene expression by insulin and insulin-like growth factor-1 in 3T3-F442A adipocytes. Endocrinology 127:2898–2906

    Google Scholar 

  • Lowell BB, Napolitano A, Usher P, Dulloo AG, Rosen BS, Spiegelman BM, Flier JS (1990) Reduced adipsin expression in murine obesity: effect of age and treatment with the sympathomimetic-thermogenic drug mixture ephedrine and caffeine. Endocrinology 126:1514–1520

    PubMed  CAS  Google Scholar 

  • Miner JL, Byatt CA, Baile CA, Krivi GG (1993) Adipsin expression and growth rate in rats as influenced by insulin and somatotropin. Physiol Behav 54:207–212

    PubMed  CAS  Google Scholar 

  • Murray I, Sniderman AD, Cianflone K (1999) Enhanced triglyceride clearance with intraperitoneal human acylation stimulating protein in C5BL/6 mice. Am J Physiol 277:E474–E480

    PubMed  CAS  Google Scholar 

  • Murray I, Havel PJ, Sniderman AD, Cianflone K (2000) Reduced body weight, adipose tissue, and leptin levels despite increased energy intake in female mice lacking acylation-stimulating protein. Endocrinology 141:1041–1049

    PubMed  CAS  Google Scholar 

  • Moustaid N, Lasnier F, Hainque B, Quignard-Boulange A, Pairault J (1990) Analysis of gene expression during adipogenesis in 3T3-F442A preadipocytes: insulin and dexamethasone control. J Cell Biochem 42:243–254

    PubMed  CAS  Google Scholar 

  • Napolitano A, Lowell BB, Damm D, Leibel RL, Ravussin E, Jimerson DC, Lesem MD, Van Dyke DC, Daly PA, Chatis P (1994) Concentrations of adipsin in blood and rates of adipsin secretion by adipose tissue in humans with normal, elevated and diminished adipose tissue mass. Int J Obes Relat Metab Disord 18:213–218

    PubMed  CAS  Google Scholar 

  • Peake PW, O'Grady S, Pussell BA, Charlesworth JA (1997) Detection and quantification of the control proteins of the alternative pathway of complement in 3T3-L1 adipocytes. Eur J Clin Invest 27:922–927

    PubMed  CAS  Google Scholar 

  • Rosen BS, Cook KS, Yaglom J, Groves DL, Volanikis JE, Damm D, White T, Spiegelman BM (1989) Adipsin and complement factor D activity: an immune-related defect in obesity. Science 23:1483–1487

    Google Scholar 

  • Shillabeer G, Hornford J, Forden JM, Wong NC, Russell JC, Lau DC (1992) Fatty acid synthase and adipsin mRNA levels in obese and lean JCR:LAS-cp rats: effect of diet. J Lipid Res 33:31–39

    PubMed  CAS  Google Scholar 

  • Sniderman AD, Cianflone K (1994) The adipsin-ASP pathway and regulation of adipocyte function. Ann Med 26:388–393

    PubMed  CAS  Google Scholar 

  • Spiegelman BM, Lowell B, Napolitano A, Dubuc P, Barton D, Francke U, Groves DL, Cook KS, Flier JS (1989) Adrenal glucocorticoids regulate adipisin gene expression in genetically obese mice. J Biol Chem 264:1811–1815

    PubMed  CAS  Google Scholar 

  • Spurlock ME, Hahn KJ, Miner JL (1996) Regulation of adipsin and body composition in the monosodium glutamate (MSG)-treated mouse. Physiol Behav 60:1217–1221

    PubMed  CAS  Google Scholar 

  • Takahashi M, Arita Y, Yamagata K, Matsukawa Y, Okutomi K, Horie M, Shimomura I, Hotta K, Kuriyama H, Kihara S, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (2000) Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obese Relat Metab Disord 24:861–868

    CAS  Google Scholar 

  • Van Harmelen V, Reynisdottir S, Cianflone K, Degerman E, Hoffstedt J, Nisell K, Sniderman A, Arner P (1999) Mechanisms involved in the regulation of free fatty acid release from isolated human fat cells by acylation-stimulating protein and insulin. J Biol Chem 274:18243–18251

    PubMed  Google Scholar 

  • White RT, Damm D, Hancock N, Rosen BS, Lowell BE, Usher P, Flier S, Spiegelman BM (1992) Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J Biol Chem 267:9210–9213

    PubMed  CAS  Google Scholar 

References

  • Dugail I, Le Liepvre X, Quignard-Boulangé A, Pairault J, Lavau M (1989) Adipsin mRNA amounts are not decreased in the genetically obese Zucker rat. Biochem J 257:917–919

    PubMed  CAS  Google Scholar 

  • Dugail I, Quignard-Boulangé A, Le Liepvre X, Lavau M (1990) Impairment of adipsin gene expression is secondary to the onset of obesity in db/db mice. J Biol Chem 265:1831–1833

    PubMed  CAS  Google Scholar 

  • Flier JS, Cook KS, Usher P, Spiegelman BM (1987) Severely impaired adipsin expression in genetic and acquired obesity. Science 237:405–408

    PubMed  CAS  Google Scholar 

  • Lowell BB, Napolitano A, Usher P, Dulloo AG, Rosen BS, Spiegelman BM, Flier JS (1990) Reduced adipsin expression in murine obesity: Effect of age and treatment with the sympathomimetic-thermogenic drug mixture ephedrine and caffeine. Endocrinology 126:1514–1520

    PubMed  CAS  Google Scholar 

  • Miner JL, Byatt JC, Baile CA, Krivi GG (1993) Adipsin gene expression and growth in rats as influenced by insulin and somatotropin. Physiol Behav 54:207–212

    PubMed  CAS  Google Scholar 

  • Napolitano A, Lowell BB, Damm D, Leibel RL, Ravussin E, Jimerson DC, Lesem MD, Van Dyke DC, Daly PA, Chatis P, White RL, Spiegelman BM, Flier JS (1994) Concentrations of adipsin in blood and rates of adipsin secretion by adipose tissue in humans with normal, elevated and diminished adipose tissue mass. Intern J Obesity 18:213–218

    CAS  Google Scholar 

  • Platt KA, Claffey KP, Wilkison WO, Spiegelman BM, Ross SR (1994) Independent regulation of adipose tissue specificity and obese response of the adipsin promoter in transgenic mice. J Biol Chem 269:28558–28562

    PubMed  CAS  Google Scholar 

  • Spiegelman BM, Lowell B, Napolitano A, Dubuc P, Barton D, Francke U, Groves DL, Cook KS, Flier JS (1989) Adrenal glucocorticoids regulate adipsin gene expression in obese mice. J Biol Chem 264:1811–1815

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this entry

Cite this entry

Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (2002). Anti-obesity activity1 . In: Vogel, H.G., Vogel, W.H., Schölkens, B.A., Sandow, J., Müller, G., Vogel, W.F. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29837-1_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-29837-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42396-6

  • Online ISBN: 978-3-540-29837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics