Skip to main content

Functional Genomics, the Systematic Analysis of the Function of All Genes and Gene Products in Parallel

  • Reference work entry
Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine
  • 141 Accesses

Definition

Functional genomics is the systematic study of gene products and their functions in biological processes. Functional genomics deals with gene knockouts and their phenotypic characterization, gene expression profiles (mRNA or protein levels) in different tissues of an organism, the sub‐cellular location of proteins, three‐dimensional protein structure, post‐translational modification and processing of proteins, protein‐protein interactions, and many more functional aspects of gene products that can be assayed systematically and at high throughput.

Structural Genomics: Structure‐to‐Function Approaches

Introduction

In a sense, life can be considered a ‘computational’ process: The organism ‘computes’ its phenotype from the information in its genome, modulated by the environment as well as by some random components. This ‘computation’ is carried out by a complex network of processes, involving many of the genes and gene products of the organism. These networks have evolved over...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature409:860–921

    Article  PubMed  CAS  Google Scholar 

  2. Waterston RH, Lindblad‐Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  3. Gibbs RA, Weinstock GM, Metzker ML et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    Article  PubMed  CAS  Google Scholar 

  4. Aparicio S, Chapman J, Stupka E et al (2002) Whole‐genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310

    Article  PubMed  CAS  Google Scholar 

  5. Dehal P, Satou Y, Campbell RK et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  6. The C. elegans sequencing consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Google Scholar 

  7. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  8. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  9. Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 Genes. Science 274 :546, 563–567

    Article  Google Scholar 

  10. Wood V, Gwilliam R, Rajandream MA et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–80

    Article  PubMed  CAS  Google Scholar 

  11. Wiemann S, Weil B, Wellenreuther R et al (2001) Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. Genome Res 11:422–435

    Article  PubMed  CAS  Google Scholar 

  12. FANTOM Consortium; RIKEN Genome Exploration Research Group Phase I & II Team (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573

    Google Scholar 

  13. Lennon G, Auffray C, Polymeropoulos M et al (1996) The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics 33:151–152

    CAS  Google Scholar 

  14. Quackenbush J, Liang F, Holt I et al (2000) The TIGR gene indices: reconstruction and representation of expressed gene sequences. Nucleic Acids Res 28:141–145

    Article  PubMed  CAS  Google Scholar 

  15. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  PubMed  CAS  Google Scholar 

  16. Kapranov P, Cawley SE, Drenkow J et al (2002) Large‐scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919

    Article  PubMed  CAS  Google Scholar 

  17. Hellmann I, Zollner S, Enard W et al (2003) Selection on human genes as revealed by comparisons to chimpanzee cDNA. Genome Res 13:831–837

    Article  PubMed  CAS  Google Scholar 

  18. Panopoulou G, Hennig S, Groth D et al (2003) New evidence for genome‐wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 13:1056–1066

    Article  PubMed  Google Scholar 

  19. McLysaght A, Hokamp K, Wolfe KH (2002) Extensive genomic duplication during early chordate evolution. Nat Genet 31:200–204

    Article  PubMed  CAS  Google Scholar 

  20. Meier‐Ewert S, Lange J, Gerst H et al (1998) Comparative gene expression profiling by oligonucleotide fingerprinting. Nucleic Acids Res 26:2216–2223

    Article  PubMed  CAS  Google Scholar 

  21. Panopoulou G, Hennig S, Groth D et al (2003) New evidence for genome‐wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 13:1056–1066

    Article  PubMed  Google Scholar 

  22. Poustka AJ, Groth D, Hennig S et al (2003) Generation, annotation, evolutionary analysis, and database integration of 20,000 unique sea urchin EST clusters. Genome Res 13:2736–2746

    Article  PubMed  Google Scholar 

  23. Clark MD, Hennig S, Herwig R et al (2001) An oligonucleotide fingerprint normalized and expressed sequence tag characterized zebrafish cDNA library. Genome Res 11:1594–1602

    Article  PubMed  Google Scholar 

  24. Herwig R, Schulz B, Weisshaar B et al (2002) Construction of a ‘unigene’ cDNA clone set by oligonucleotide fingerprinting allows access to 25 000 potential sugar beet genes. Plant J 32:845–857

    Article  PubMed  Google Scholar 

  25. Velculescu VE, Zhang L, Vogelstein B et al (1995) Serial analysis of gene expression. Science 270:484–487

    Article  PubMed  CAS  Google Scholar 

  26. Brenner S, Johnson M, Bridgham J et al (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    Article  PubMed  CAS  Google Scholar 

  27. Modrek B, Lee C (2003) A genomic view of alternative splicing. Nat Genet 30:13–19

    Article  CAS  Google Scholar 

  28. Brown CJ, Hendrich BD, Rupert JL et al (1992) The human XIST gene: analysis of a 17 kb inactive X‐specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542

    Article  PubMed  CAS  Google Scholar 

  29. Juan V, Crain C, Wilson C (2000) Evidence for evolutionarily conserved secondary structure in the H19 tumor suppressor RNA. Nucleic Acids Res 28:1221–1227

    Article  PubMed  CAS  Google Scholar 

  30. Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467

    Article  PubMed  CAS  Google Scholar 

  31. Couzin J (2002) Breakthrough of the year. Small RNAs make big splash. Science 298:2296–2297

    CAS  Google Scholar 

  32. Numata K, Kanai A, Saito R et al (2003) Identification of putative noncoding RNAs among the RIKEN mouse full‐length cDNA collection. Genome Res 13:1301–1306

    Article  PubMed  CAS  Google Scholar 

  33. Mattick JS, Gagen MJ (2001) The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol 18:1611–1630

    PubMed  CAS  Google Scholar 

  34. H Lehrach, R Drmanac, J Hoheisel et al (1990) Hybridization fingerprinting in genome mapping and sequencing. Genome Analysis 1: Genetic and Physical Mapping, Cold Spring Harbor Laboratory Press, 39–81

    Google Scholar 

  35. Lennon GG, Lehrach H (1991) Hybridization analyses of arrayed cDNA libraries. Trends Genet 7:314–317

    PubMed  CAS  Google Scholar 

  36. Lockhart DJ, Dong H, Byrne MC et al (1996) Expression monitoring by hybridization to high‐density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    Article  PubMed  CAS  Google Scholar 

  37. Wodicka L, Dong H, Mittmann M et al (1997) Genome‐wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15:1359–1367

    Article  PubMed  CAS  Google Scholar 

  38. Hughes TR, Mao M, Jones AR et al (2001) Expression profiling using microarrays fabricated by an ink‐jet Oligonucleotide synthesizer. Nat Biotechnol 19:342–347

    Article  PubMed  CAS  Google Scholar 

  39. Kampa D, Cheng J, Kapranov P et al (2004) Novel RNAs identified from an in‐depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 14:331–342

    Article  PubMed  CAS  Google Scholar 

  40. Gillespie JW, Ahram M, Best CJ et al (2001) The role of tissue microdissection in cancer research. Cancer J 7:32–39

    PubMed  CAS  Google Scholar 

  41. Neidhardt L, Gasca S, Wertz K et al (2000) Large‐scale screen for genes controlling mammalian embryogenesis, using high‐throughput gene expression analysis in mouse embryos. Mech Dev 98:77–94

    Article  PubMed  CAS  Google Scholar 

  42. Gitton Y, Dahmane N, Baik S et al (2002) HSA21 expression map initiative. A gene expression map of human chromosome 21 orthologues in the mouse. Nature 420:586–590

    CAS  Google Scholar 

  43. Carsona JP, Thaller C, Eichele G (2002) A transcriptome atlas of the mouse brain at cellular resolution. Current Opinion in Neurobiology 12:562–565

    Article  Google Scholar 

  44. Kumar A, Harrison PM, Cheung KH et al (2002) An integrated approach for finding overlooked genes in yeast. Nat Biotechnol 20:58–63

    Article  PubMed  CAS  Google Scholar 

  45. Huh WK, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  PubMed  CAS  Google Scholar 

  46. Simpson JC, Wellenreuther R, Poustka A, Pepperkok R, Wiemann S. (2000) Systematic subcellular localization of novel proteins identified by large‐scale cDNA sequencing. EMBO Rep. 1:287–92.

    Article  PubMed  CAS  Google Scholar 

  47. Ziauddin Sabatini (2001) Microarrays of cells expressing defined cDNAs. Nature 411:107–110

    Article  PubMed  CAS  Google Scholar 

  48. Yoshikawa T, Uchimura E, Kishi M et al (2004) Transfection microarray of human mesenchymal stem cells and on‐chip siRNA gene knockdown. J Control Release 96:227–232

    Article  PubMed  CAS  Google Scholar 

  49. Doetschman T, Gregg RG, Maeda N et al (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–578

    Article  PubMed  CAS  Google Scholar 

  50. Thomas KR, Capecchi MR (1987) Site‐directed mutagenesis by gene targeting in mouse embryo‐derived stem cells. Cell 51:503–512

    Article  PubMed  CAS  Google Scholar 

  51. Gossler A, Joyner AL, Rossant J et al (1989) Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244:463–465

    Article  PubMed  CAS  Google Scholar 

  52. Skarnes WC, von Melchner H, Wurst W et al (2004) A public gene trap resource for mouse functional genomics. Nat Genet 36:543–544

    Article  PubMed  CAS  Google Scholar 

  53. Till BJ, Reynolds SH, Greene EA et al (2003) Large‐scale discovery of induced point mutations with high‐throughput TILLING. Genome Res 13:524–530

    Article  PubMed  CAS  Google Scholar 

  54. Zan Y, Haag JD, Chen KS et al (2003) Production of knockout rats using ENU mutagenesis and a yeast‐based screening assay. Nat Biotechnol 21:645–651

    Article  PubMed  CAS  Google Scholar 

  55. Yandell MD, Edgar LG, Wood WB (1994) Trimethylpsoralen induces small deletion mutations in Caenorhabditis elegans. Proc Natl Acad Sci USA 91:1381–1385

    Article  PubMed  CAS  Google Scholar 

  56. Jansen G, Hazendonk E, Thijssen KL et al (1997) Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nat Genet 17:119–121

    Article  PubMed  CAS  Google Scholar 

  57. Hrabe de Angelis MH, Flaswinkel H, Fuchs H et al (2000) Genome‐wide, large‐scale production of mutant mice by ENU mutagenesis. Nat Genet 25:444–447

    Article  PubMed  CAS  Google Scholar 

  58. Nolan PM, Peters J, Strivens M et al (2000) A systematic, genome‐wide, phenotype‐driven mutagenesis programme for gene function studies in the mouse. Nat Genet 25:440–443

    Article  PubMed  CAS  Google Scholar 

  59. Haffter P, Granato M, Brand M et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    PubMed  CAS  Google Scholar 

  60. Furutani‐Seiki M, Sasado T, Morinaga C et al (2004) A systematic genome‐wide screen for mutations affecting organogenesis in Medaka, Oryzias latipes. Mech Dev 121:647–658

    Article  PubMed  CAS  Google Scholar 

  61. Chen Y, Yee D, Dains K et al (2000) Genotype‐based screen for ENU‐induced mutations in mouse embryonic stem cells. Nat Genet 24:314–317

    Article  PubMed  CAS  Google Scholar 

  62. Munroe RJ, Bergstrom RA, Zheng QY et al (2000) Mouse mutants from chemically mutagenized embryonic stem cells. Nat Genet 24:318–321

    Article  PubMed  CAS  Google Scholar 

  63. Vivian JL, Chen Y, Yee D et al (2002) An allelic series of mutations in Smad2 and Smad4 identified in a genotype‐based screen of N‐ethyl‐N‐ nitrosourea‐mutagenized mouse embryonic stem cells. Proc Natl Acad Sci USA 99:15542–15547

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The concepts expressed in this review have been the result of many discussions with many people. I would particularly like to thank Bernhard Herrmann, Marie‐Laure Yaspo, Steffen Hennig, Patricia Ruiz, Claudia Falter, Ralf Herwig, Heinz Himmelbauer, Marc Sultan, Zoltan Konthur, Dominique Vanhecke, Michal Janitz, Ilaria Piccini, Sylvia Krobitsch, Günther Zehetner, Andreas Hewelt and Christoph Wierling for contributions and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lehrach .

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this entry

Cite this entry

Lehrach, H. (2005). Functional Genomics, the Systematic Analysis of the Function of All Genes and Gene Products in Parallel. In: Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29623-9_5184

Download citation

Publish with us

Policies and ethics