Skip to main content

Planetary torus

  • Reference work entry
Encyclopedia of Planetary Science

Part of the book series: Encyclopedia of Earth Science ((EESS))

Since the first observation of neutral sodium around the Jovian satellite Io (Brown, 1974), the subsequent identification of a neutral cloud extending along the orbit of Io, which followed it in its rotation around Jupiter (Matson et al. 1978), and the discovery of ionized sulfur and oxygen tori surrounding Io's orbit (Kupo, Meckler and Eviatar, 1976; Pilcher and Morgan, 1979), a significant number of planetary tori have been discovered in the vicinity of the satellites of the giant planets Jupiter, Saturn and Neptune. These tori may consist of either neutral or ionized species. They may completely surround the planet or may only consist of partial arcs; they may follow the satellite's orbit or lie in a different plane. However, planetary tori are found only around magnetized planets, with satellites embedded in the magnetosphere. This indicates that, despite this wide variety of morphological and physical differences, the planetary tori are a single class of planetary objects....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Bagenal, F. (1989) Torus—magnetosphere coupling, in Time Variable Phenomena in the Jovian System (eds M. J.S. Belton, R. A. West and J. Rahe) Washington: NASA SP-494, pp. 196–210.

    Google Scholar 

  • Bagenal, F. and Sullivan J. D. (1981) Direct plasma measurements in the Io torus and inner magnetosphere of Jupiter. J. Geophys. Res. A, 86, 8447–66.

    Google Scholar 

  • Bagenal, F., Shemansky, D. E., McNutt, R. L., Jr et al. (1992) The abundance of O++ in the Jovian magnetosphere. Geophys. Res. Lett, 19, 79–82.

    Google Scholar 

  • Barbosa, D. D. (1987) Titan's atomic nitrogen torus: inferred properties and consequences for the Saturnian aurora. Icarus, 72, 53–61.

    Google Scholar 

  • Barbosa, D. D. and Eviatar, A. (1986) Planetary fast neutral emission and effects on the solar wind: a cometary exosphere analog. Astrophys. J., 310, 927–36.

    Google Scholar 

  • Barbosa, D. D. and Kivelson, M. G. (1983) Dawn—dusk asymmetry of the Io plasma torus. Geophys. Res. Lett., 10, 210–3.

    Google Scholar 

  • Barker, E. S., Cazes, S. Emerich, C. et al. (1980) Lyman alpha observations in the vicinity of Saturn with Copernicus. Astrophys. J., 242, 383–94.

    Google Scholar 

  • Broadfoot, A. L., et al. (1981) Extreme ultraviolet observations from Voyager 1 encounter with Saturn. Science, 212, 206–11.

    Google Scholar 

  • Broadfoot, A. L., et al. (1989) Ultraviolet spectrometer observations of Neptune and Triton. Science, 246, 1459–66.

    Google Scholar 

  • Brown, R. A. (1974) Optical line emission from Io, in Exploration of the Planetary System (eds A. Woszczyk and C. Iwaniszewska) Boston: Reidel, pp. 527–31.

    Google Scholar 

  • Delitsky, M. L., Eviatar, A. and Richardson J. D. (1989) A predicted Triton plasma torus in Neptune's magnetosphere. Geophys. Res. Lett., 16, 215–8.

    Google Scholar 

  • Eviatar, A., Kennel, C. F. and Neugebauer, M. (1987) Possible origins of the variability in Jupiter's outer magnetosphere. Geophys. Res. Lett., 5, 287–9.

    Google Scholar 

  • Eviatar, A., Podolak M. and Richardson, J. D. (1990) Atomic and molecular hydrogen from Titan in the Kronian magnetosphere. J. Geophys. Res. A, 95, 21007–16.

    Google Scholar 

  • Flynn, B., Mendillo, M. and Baumgardner, J. (1992) Observations and modeling of the Jovian remote neutral sodium. Icarus, 99, 115–30.

    Google Scholar 

  • Gehrels, N. and Stone, E. C. (1983) Energetic oxygen and sulfur ions in the Jovian magnetosphere and their contribution to the auroral excitation. J. Geophys. Res. A, 88, 5537–50.

    Google Scholar 

  • Goertz, C. K. (1980) Proton aurora on Jupiter's nightside. Geophys. Res. Lett., 7, 365–8.

    Google Scholar 

  • Goertz, C. K. and Ip, W. H. (1984) A dawn—dusk electric field in the magnetosphere of Jupiter. Planet Space Sci. 32, 179–85.

    Google Scholar 

  • Gombosi, T. I. (1992) Mass loading at Titan and comets, in Symposium on Titan, (ed. B. Kaldeich) Paris: ESA SP-338, pp. 255–61.

    Google Scholar 

  • Hill, T. W. and Dessler, A. J. (1990) Convection in Neptune's magnetosphere. Geophys. Res. Lett., 17, 1677–80.

    Google Scholar 

  • Howell, R. R. and Sinton, W. M. (1989) Io and Europa: the observational evidence for variability, in Time Variable Phenomena in the Jovian System (eds M. J.S. Belton, R. A. West and J. Rahe). Washington: NASA SP-494, pp. 47–62.

    Google Scholar 

  • Huang, T. S. and Siscoe, G. L. (1987) Types of planetary tori. Icarus, 70, 366–78.

    Google Scholar 

  • Ip, W. H. (1992) Plasma interaction of Titan with the Saturnian magnetosphere: a review of critical issues, in Symposium on Titan (ed. B. Kaldeich). Paris: ESA SP-338, pp. 243–53.

    Google Scholar 

  • Kupo, I., Meckler, Y. and Eviatar, A. (1976) Detection of ionized sulfur in the Jovian magnetosphere. Ap. J. Lett., 205, L51–3.

    Google Scholar 

  • Lazarus, A. J. and McNutt, R. L., Jr (1983) Low-energy plasma ion observation in Saturn's magnetosphere. J. Geophys. Res. A, 88, 8831–46.

    Google Scholar 

  • Matson, D. L., Goldberg, B. A., Johnson, T. V. and Carlson, R. W. (1978) Images of Io's sodium cloud. Science, 199, 531–3.

    Google Scholar 

  • McDonough, T. R. and Brice, N. M. (1973) A Saturnian gas ring and the recycling of Titan's atmosphere. Icarus, 20, 136–45.

    Google Scholar 

  • McNutt, R. L., Jr (1991) The magnetospheres of the outer planets. Rev. Geophys. Suppl. US National Report to IUGG, 985–97.

    Google Scholar 

  • Morgan, J. S. (1985) Models of the Io torus. Icarus, 63, 243–65.

    Google Scholar 

  • Pilcher, C. B. and Morgan, J. S. (1979) Detection of singly ionized oxygen around Jupiter. Science, 205, 297–8.

    Google Scholar 

  • Prangé, R. (1991) Jovian UV aurorae, IR aurorae, and particle precipitation: a common origin? Astron. Astrophys., 251, L15–8.

    Google Scholar 

  • Reiner, M. J., Fainberg, J., Stone, R. G. et al. (1993) Source characteristics of Jovian narrow-band kilometric radio emissions. J. Geophys. Res. A, 98, 13163–76.

    Google Scholar 

  • Richardson, J. D., and Eviatar, A. (1988) Observational and theoretical evidence for anisotropies in Saturn's magnetosphere. J. Geophys. Res. A, 93, 7297–306.

    Google Scholar 

  • Richardson, J. D., Eviatar, A. and Siscoe G. L. (1986) Satellite tori at Saturn. J. Geophys. Res. A, 91, 8749–55.

    Google Scholar 

  • Richardson, J. D., Belcher, J. W., Zhang, M. and McNutt R. L. Jr (1991) Low-energy ions near Neptune. J. Geophys. Res. A, 96, 18993–9011.

    Google Scholar 

  • Schneider, N. M., Smyth, W. H. and McGrath, M. A. (1989) Io's atmosphere and neutral clouds, in Time Variable Phenomena in the Jovian System (eds M. J.S. Belton, R. A. West and J. Rahe). Washington: NASA SP-494, pp. 75–99.

    Google Scholar 

  • Shemansky, D. E., and Hall D. T. (1992) The distribution of atomic hydrogen in the magnetosphere of Saturn. J. Geophys. Res. A, 97, 41143–61.

    Google Scholar 

  • Shemansky, D. E., Matheson, P. Hall, D. T. et al. (1993) Detection of the hydroxyl radical in the Saturn magnetosphere. Nature, 363, 329–31.

    Google Scholar 

  • Siscoe, E. C. and Summers, D. (1981) Centrifugally driven diffusion of Iogenic plasma. J. Geophys. Res. A, 86, 8480–4.

    Google Scholar 

  • Sittler, E. C., Ogilvie, K. W. and Scudder, J. D. (1983) Survey of low-energy plasma electrons in Saturn's magnetosphere: Voyager 1 and 2. J. Geophys. Res. A, 88, 8847–70.

    Google Scholar 

  • Smith, R. A. and Strobel, D. (1985) Energy partitioning in the Io plasma torus. J. Geophys. Res. A, 90, 9469–93.

    Google Scholar 

  • Smith, R. A., Bagenal, F., Cheng, A. F. and Strobel, D. F. (1988) On the energy crisis in the Io plasma torus. Geophys. Res. Lett, 15, 545–8.

    Google Scholar 

  • Smyth, W. H. and Combi, M. R. (1988) A general model for Io's neutral clouds. II Application to the sodium cloud. Astrophys. J., 328, 888–981.

    Google Scholar 

  • Spencer, J. F. and Schneider, N. M. (1996) Io on the eve of the Galileo mission. Ann. Rev. Earth Planet Sci., 24, 125–90.

    Google Scholar 

  • Strobel, D. F. (1989) Energetics, luminosity, and spectroscopy of Io's torus, in Time Variable Phenomena in the Jovian System (eds M. J.S. Belton, R. A. West and J. Rahe). Washington: NASA SP-494, pp. 183–94.

    Google Scholar 

  • Strobel, D. F. and Shemansky D. E. (1982) EUV emission from Titan's upper atmosphere: Voyager 1 encounter. J. Geophys. Res., 87, 1361–8.

    Google Scholar 

  • Thomas, N. (1992) Optical observations of Io's neutral clouds and plasma torus. Surv. Geophys., 13, 91–164.

    Google Scholar 

  • Thorne, R. M. (1983) Microscopic plasma processes in the Jovian magnetosphere, in Physics of the Jovian Magnetosphere (ed. A. J. Dessler). New York: Cambridge University Press, pp. 454–80.

    Google Scholar 

  • Vasyliunas, V. M. (1986) The convection-dominated magnetosphere of Uranus. Geophys. Res. Lett., 13, 621–3.

    Google Scholar 

  • Weiser, H., Vitz, R. C. and Moos, H. W. (1977). Detection of Lyman α emission from the Saturnian disk and from the ring system. Science, 127, 755–7.

    Google Scholar 

  • Io; Ionosphere; Magnetospheres of the outer planets; Plasma; Radio astronomy; Radio science; Ulysses mission; Voyager missions

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this entry

Cite this entry

Prangé, R. (1997). Planetary torus . In: Encyclopedia of Planetary Science. Encyclopedia of Earth Science. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4520-4_319

Download citation

  • DOI: https://doi.org/10.1007/1-4020-4520-4_319

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-06951-2

  • Online ISBN: 978-1-4020-4520-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics