Advertisement

Planetarytorus

  • Renée Prangé
Reference work entry
Part of the Encyclopedia of Earth Science book series (EESS)

Since the first observation of neutral sodium around the Jovian satellite Io (Brown, 1974), the subsequent identification of a neutral cloud extending along the orbit of Io, which followed it in its rotation around Jupiter (Matson et al. 1978), and the discovery of ionized sulfur and oxygen tori surrounding Io's orbit (Kupo, Meckler and Eviatar, 1976; Pilcher and Morgan, 1979), a significant number of planetary tori have been discovered in the vicinity of the satellites of the giant planets Jupiter, Saturn and Neptune. These tori may consist of either neutral or ionized species. They may completely surround the planet or may only consist of partial arcs; they may follow the satellite's orbit or lie in a different plane. However, planetary tori are found only around magnetized planets, with satellites embedded in the magnetosphere. This indicates that, despite this wide variety of morphological and physical differences, the planetary tori are a single class of planetary objects....

Bibliography

  1. Bagenal, F. (1989) Torus—magnetosphere coupling, in Time Variable Phenomena in the Jovian System (eds M. J.S. Belton, R. A. West and J. Rahe) Washington: NASA SP-494, pp. 196–210.Google Scholar
  2. Bagenal, F. and Sullivan J. D. (1981) Direct plasma measurements in the Io torus and inner magnetosphere of Jupiter. J. Geophys. Res. A, 86, 8447–66.Google Scholar
  3. Bagenal, F., Shemansky, D. E., McNutt, R. L., Jr et al. (1992) The abundance of O++ in the Jovian magnetosphere. Geophys. Res. Lett, 19, 79–82.Google Scholar
  4. Barbosa, D. D. (1987) Titan's atomic nitrogen torus: inferred properties and consequences for the Saturnian aurora. Icarus, 72, 53–61.Google Scholar
  5. Barbosa, D. D. and Eviatar, A. (1986) Planetary fast neutral emission and effects on the solar wind: a cometary exosphere analog. Astrophys. J., 310, 927–36.Google Scholar
  6. Barbosa, D. D. and Kivelson, M. G. (1983) Dawn—dusk asymmetry of the Io plasma torus. Geophys. Res. Lett., 10, 210–3.Google Scholar
  7. Barker, E. S., Cazes, S. Emerich, C. et al. (1980) Lyman alpha observations in the vicinity of Saturn with Copernicus. Astrophys. J., 242, 383–94.Google Scholar
  8. Broadfoot, A. L., et al. (1981) Extreme ultraviolet observations from Voyager 1 encounter with Saturn. Science, 212, 206–11.Google Scholar
  9. Broadfoot, A. L., et al. (1989) Ultraviolet spectrometer observations of Neptune and Triton. Science, 246, 1459–66.Google Scholar
  10. Brown, R. A. (1974) Optical line emission from Io, in Exploration of the Planetary System (eds A. Woszczyk and C. Iwaniszewska) Boston: Reidel, pp. 527–31.Google Scholar
  11. Delitsky, M. L., Eviatar, A. and Richardson J. D. (1989) A predicted Triton plasma torus in Neptune's magnetosphere. Geophys. Res. Lett., 16, 215–8.Google Scholar
  12. Eviatar, A., Kennel, C. F. and Neugebauer, M. (1987) Possible origins of the variability in Jupiter's outer magnetosphere. Geophys. Res. Lett., 5, 287–9.Google Scholar
  13. Eviatar, A., Podolak M. and Richardson, J. D. (1990) Atomic and molecular hydrogen from Titan in the Kronian magnetosphere. J. Geophys. Res. A, 95, 21007–16.Google Scholar
  14. Flynn, B., Mendillo, M. and Baumgardner, J. (1992) Observations and modeling of the Jovian remote neutral sodium. Icarus, 99, 115–30.Google Scholar
  15. Gehrels, N. and Stone, E. C. (1983) Energetic oxygen and sulfur ions in the Jovian magnetosphere and their contribution to the auroral excitation. J. Geophys. Res. A, 88, 5537–50.Google Scholar
  16. Goertz, C. K. (1980) Proton aurora on Jupiter's nightside. Geophys. Res. Lett., 7, 365–8.Google Scholar
  17. Goertz, C. K. and Ip, W. H. (1984) A dawn—dusk electric field in the magnetosphere of Jupiter. Planet Space Sci. 32, 179–85.Google Scholar
  18. Gombosi, T. I. (1992) Mass loading at Titan and comets, in Symposium on Titan, (ed. B. Kaldeich) Paris: ESA SP-338, pp. 255–61.Google Scholar
  19. Hill, T. W. and Dessler, A. J. (1990) Convection in Neptune's magnetosphere. Geophys. Res. Lett., 17, 1677–80.Google Scholar
  20. Howell, R. R. and Sinton, W. M. (1989) Io and Europa: the observational evidence for variability, in Time Variable Phenomena in the Jovian System (eds M. J.S. Belton, R. A. West and J. Rahe). Washington: NASA SP-494, pp. 47–62.Google Scholar
  21. Huang, T. S. and Siscoe, G. L. (1987) Types of planetary tori. Icarus, 70, 366–78.Google Scholar
  22. Ip, W. H. (1992) Plasma interaction of Titan with the Saturnian magnetosphere: a review of critical issues, in Symposium on Titan (ed. B. Kaldeich). Paris: ESA SP-338, pp. 243–53.Google Scholar
  23. Kupo, I., Meckler, Y. and Eviatar, A. (1976) Detection of ionized sulfur in the Jovian magnetosphere. Ap. J. Lett., 205, L51–3.Google Scholar
  24. Lazarus, A. J. and McNutt, R. L., Jr (1983) Low-energy plasma ion observation in Saturn's magnetosphere. J. Geophys. Res. A, 88, 8831–46.Google Scholar
  25. Matson, D. L., Goldberg, B. A., Johnson, T. V. and Carlson, R. W. (1978) Images of Io's sodium cloud. Science, 199, 531–3.Google Scholar
  26. McDonough, T. R. and Brice, N. M. (1973) A Saturnian gas ring and the recycling of Titan's atmosphere. Icarus, 20, 136–45.Google Scholar
  27. McNutt, R. L., Jr (1991) The magnetospheres of the outer planets. Rev. Geophys. Suppl. US National Report to IUGG, 985–97.Google Scholar
  28. Morgan, J. S. (1985) Models of the Io torus. Icarus, 63, 243–65.Google Scholar
  29. Pilcher, C. B. and Morgan, J. S. (1979) Detection of singly ionized oxygen around Jupiter. Science, 205, 297–8.Google Scholar
  30. Prangé, R. (1991) Jovian UV aurorae, IR aurorae, and particle precipitation: a common origin? Astron. Astrophys., 251, L15–8.Google Scholar
  31. Reiner, M. J., Fainberg, J., Stone, R. G. et al. (1993) Source characteristics of Jovian narrow-band kilometric radio emissions. J. Geophys. Res. A, 98, 13163–76.Google Scholar
  32. Richardson, J. D., and Eviatar, A. (1988) Observational and theoretical evidence for anisotropies in Saturn's magnetosphere. J. Geophys. Res. A, 93, 7297–306.Google Scholar
  33. Richardson, J. D., Eviatar, A. and Siscoe G. L. (1986) Satellite tori at Saturn. J. Geophys. Res. A, 91, 8749–55.Google Scholar
  34. Richardson, J. D., Belcher, J. W., Zhang, M. and McNutt R. L. Jr (1991) Low-energy ions near Neptune. J. Geophys. Res. A, 96, 18993–9011.Google Scholar
  35. Schneider, N. M., Smyth, W. H. and McGrath, M. A. (1989) Io's atmosphere and neutral clouds, in Time Variable Phenomena in the Jovian System (eds M. J.S. Belton, R. A. West and J. Rahe). Washington: NASA SP-494, pp. 75–99.Google Scholar
  36. Shemansky, D. E., and Hall D. T. (1992) The distribution of atomic hydrogen in the magnetosphere of Saturn. J. Geophys. Res. A, 97, 41143–61.Google Scholar
  37. Shemansky, D. E., Matheson, P. Hall, D. T. et al. (1993) Detection of the hydroxyl radical in the Saturn magnetosphere. Nature, 363, 329–31.Google Scholar
  38. Siscoe, E. C. and Summers, D. (1981) Centrifugally driven diffusion of Iogenic plasma. J. Geophys. Res. A, 86, 8480–4.Google Scholar
  39. Sittler, E. C., Ogilvie, K. W. and Scudder, J. D. (1983) Survey of low-energy plasma electrons in Saturn's magnetosphere: Voyager 1 and 2. J. Geophys. Res. A, 88, 8847–70.Google Scholar
  40. Smith, R. A. and Strobel, D. (1985) Energy partitioning in the Io plasma torus. J. Geophys. Res. A, 90, 9469–93.Google Scholar
  41. Smith, R. A., Bagenal, F., Cheng, A. F. and Strobel, D. F. (1988) On the energy crisis in the Io plasma torus. Geophys. Res. Lett, 15, 545–8.Google Scholar
  42. Smyth, W. H. and Combi, M. R. (1988) A general model for Io's neutral clouds. II Application to the sodium cloud. Astrophys. J., 328, 888–981.Google Scholar
  43. Spencer, J. F. and Schneider, N. M. (1996) Io on the eve of the Galileo mission. Ann. Rev. Earth Planet Sci., 24, 125–90.Google Scholar
  44. Strobel, D. F. (1989) Energetics, luminosity, and spectroscopy of Io's torus, in Time Variable Phenomena in the Jovian System (eds M. J.S. Belton, R. A. West and J. Rahe). Washington: NASA SP-494, pp. 183–94.Google Scholar
  45. Strobel, D. F. and Shemansky D. E. (1982) EUV emission from Titan's upper atmosphere: Voyager 1 encounter. J. Geophys. Res., 87, 1361–8.Google Scholar
  46. Thomas, N. (1992) Optical observations of Io's neutral clouds and plasma torus. Surv. Geophys., 13, 91–164.Google Scholar
  47. Thorne, R. M. (1983) Microscopic plasma processes in the Jovian magnetosphere, in Physics of the Jovian Magnetosphere (ed. A. J. Dessler). New York: Cambridge University Press, pp. 454–80.Google Scholar
  48. Vasyliunas, V. M. (1986) The convection-dominated magnetosphere of Uranus. Geophys. Res. Lett., 13, 621–3.Google Scholar
  49. Weiser, H., Vitz, R. C. and Moos, H. W. (1977). Detection of Lyman α emission from the Saturnian disk and from the ring system. Science, 127, 755–7.Google Scholar

Copyright information

© Chapman & Hall 1997

Authors and Affiliations

  • Renée Prangé

There are no affiliations available

Personalised recommendations