Skip to main content

Primes in Arithmetic Progressions and other Sequences

  • Reference work entry
  • 2398 Accesses

1 § VIII.1 Dirichlet’s theorem on arithmetic progressions

  1. 1)

    For k>0 and l, integers such that (k, l)=1, the arithmetic progression kn+l, n=1, 2, …, contains infinitely many primes.

    G.L. Dirichlet. Beweis des Satzes daß jede unbegrenzte arithmetische Progression deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Faktor sind unendlich viele Primzahlen enthält. Werke, Leipzig: G. Reimer, 1889, I, pp. 313–342, (Original 1837).

    Remarks.

    1. (i)

      An elementary proof was given by Mertens.

      P. Mertens. Wiener Sitzungsb. 106 (1897), 254–282.

    2. (ii)

      The first new “elementary proof” of Dirichlet’s theorem was published by Selberg.

      A. Selberg. An elementary proof of Dirichlet’s theorem about primes in arithmetic progression. Ann. Math. 50 (2) (1947), 297–304.

      See also

      H.N. Shapiro. On primes in arithmetic progression, (II). Ann. Math. 52 (1950), 231–243.

  2. 2)

    If k is a power of an odd prime and l is a non-residue mod k, (k, l)=1, then there exist infinitely many primes in the arithmetic...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this entry

Cite this entry

(2006). Primes in Arithmetic Progressions and other Sequences. In: Handbook of Number Theory I. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3658-2_8

Download citation

Publish with us

Policies and ethics