Skip to main content

Geobotanical prospecting

  • Reference work entry
General Geology

Part of the book series: Encyclopedia of Earth Science ((EESS))

Botanical methods of prospecting involve the use of vegetation in searching for ore deposits. Although these methods have been used for several centuries, there is much confusion about terminology because there are two distinct methods of botanical prospecting. Geobotanical methods are visual and rely mainly on an interpretation of the plant cover to detect morphological changes or plant associations typical of certain types of geologic environments or of ore deposits within these environments. Biogeochemical methods (see Biogeochemistry), which have been used only since the 1940s, involve chemical analysis of the plant cover to detect mineralization.

Geobotanical methods were first used in Roman times when vegetation was employed in the search for subterranean water. Later the Russian botanist Karpinsky (1841)became the first man to study thoroughly the relationship between plant communities and their geologic substrate. A number of books have appeared on the subject of geobotanical...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aery, N. C., 1977, Studies on the geobotany of Zawar Mines, Geobios 4, 225–228.

    Google Scholar 

  • Bazilevskaya, N. A., and Z. A. Sibireva, 1950, Change in the color of the corolla in Eschscholtzia californica under the influence of microelements (in Russian), Bull. Glav. Bot. Sad. Leningrad 6, 32–38.

    Google Scholar 

  • Brooks, R. R., 1972, Geobotany and Biogeochemistry in Mineral Exploration. New York: Harper & Row, 292p.

    Google Scholar 

  • Brooks, R. R., 1977, Copper and cobalt uptake by Haumaniastrum species, Plants and Soil 48, 541–545.

    Google Scholar 

  • Brooks, R. R., 1979, Indicator plants for mineral prospecting—A critique, J. Geochem. Explor. 12, 67–78.

    Google Scholar 

  • Brooks, R. R., 1983, Biological Methods of Prospecting for Minerals. New York: Wiley, 322p.

    Google Scholar 

  • Brooks, R. R., 1987, Serpentine and Its Vegetation: A Multidisciplinary Approach. Portland, Ore.: Dioscorides Press, 454p.

    Google Scholar 

  • Brooks, R. R., and F. Malaisse, 1985, The Heavy Metal Flora of Southcentral Africa: A Multidisciplinary Approach. Rotterdam: Balkema, 199p.

    Google Scholar 

  • Brooks, R. R., and C. C. Radford, 1978, An evaluation of background and anomalous copper and zinc concentrations in the “Copper Plant” Polycarpaea spirostylis and other Australian species of the genus, Australasian Inst. Mining and Metallurgy Proc. 68, 33–37.

    Google Scholar 

  • Brooks, R. R., J. Lee, and T. Jaffreà, 1974, Some New Zealand and New Caledonian plant accumulators of nickel, Jour. Ecology 62, 493–499.

    Google Scholar 

  • Brooks, R. R., J. A. McCleave, and E. K. Schofield, 1977, Cobalt and nickel uptake by the Nyssaceae, Taxon 26, 197–201.

    Google Scholar 

  • Brooks, R. R., R. S. Morrison, R. D. Reeves, T. R. Dudley, and Y. Akman, 1979a, Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae), Royal Soc. [London] Proc. 203B, 287–403.

    Google Scholar 

  • Brooks, R. R., J. M. Trow, and B. Bølviken, 1979b, Biogeochemical anomalies in Fennoscandia: A study of copper, lead and nickel levels in Melandrium dioicum and Viscaria alpina, Jour. Geochem. Explor. 11, 73–87.

    Google Scholar 

  • Brooks, R. R., R. D. Reeves, R. S. Morrison, and F. Malaisse, 1980, Belgium Royal Soc. Botany Bull. 113, 166–172.

    Google Scholar 

  • Buyalov, N. I. and A. M. Shvyryaeva, 1961, Geobotanical method in prospecting for salts of boron, Internat. Geology Rev. 10, 619–625.

    Google Scholar 

  • Cannon, H. L., 1957, Description of indicator plants and methods of botanical prospecting for uranium deposits on the Colorado Plateau, U.S. Geol. Survey Bull. 1030-M, 399–516.

    Google Scholar 

  • Cannon, H. L., 1960, Botanical prospecting for ore deposits, Science 132, 591–598.

    Google Scholar 

  • Cannon, H. L., 1964, Geochemistry of rocks and related soils and vegetation in the Yellow Cat area, Grand County, Utah, U.S. Geol. Survey Bull. 1176, 1–127.

    Google Scholar 

  • Cannon, H. L., 1971, Use of plant indicators in ground water surveys, geologic mapping, and mineral prospecting, Taxon 20, 227–256.

    Google Scholar 

  • Cannon, H. L., 1979, Advances in botanical methods of prospecting. Part I: Advances in geobotanical methods of prospecting, Canada Geol. Survey Econ. Geology Rept. 31, 377–397.

    Google Scholar 

  • Cannon, H. L. and W. H. Starrett, 1956, Botanical prospecting for uranium on La Ventura Mesa, Sandoval County, New Mexico, U.S. Geol. Survey Bull. 1009-M, 391–407.

    Google Scholar 

  • Chaffee, M. A. and C. W., Gale, III, 1976, The California poppy (Eschscholtzia mexicana) as a copper indicator plant—A new example, Jour. Geochem. Explor. 5, 59–63.

    Google Scholar 

  • Chikishev, A. G., 1965, Plant Indicators of Soils, Rocks and Subsurface Waters. New York: Consultants Bureau, 209p.

    Google Scholar 

  • Cole, M. M., 1965, Biogeography in the service of man, inaugural lecture, Bedford College, London.

    Google Scholar 

  • Cole, M. M., 1971, The importance of environment in biogeographical/geobotanical and biogeochemical investigations, Canadian Inst. Mining and Metallurgy Spec. Vol. 11, 414–425.

    Google Scholar 

  • Cole, M. M., 1973, Geobotanical and biogeochemical investigations in the sclerophyllous woodland and shrub associations of the Eastern Goldfields area of Western Australia, with particular reference to the role of Hybanthus floribundus (Lindl.) F. Muell, as a nickel indicator and accumulator plant, Jour. Appl. Ecology 10, 269–320.

    Google Scholar 

  • Duvigneaud, P., 1959, Plant cobaltophytes in Upper Katanga (in Fr.), Belgium Royal Soc. Botany Bull. 91, 111–134.

    Google Scholar 

  • Duvigneaud, P., and S. Denayer-de-Smet, 1963, Copper and vegetation in Katanga (in French), Belgium Royal Soc. Botany Bull. 96, 93–231.

    Google Scholar 

  • Ernst, W., 1968, The Viola calaminaria association of Westphalia, a heavy metal community at Blankenrode in Westphalia (in German), Mitt. Flor-Soziol. Arbeitsgemeinschaft 13, 263–268.

    Google Scholar 

  • Ernst, W., 1969, Pollenanalytical evaluation of a heavy metal turf in Wales (in German), Vegetatio 18, 393–400.

    Google Scholar 

  • Greig-Smith, P., 1964, Quantitative Plant Ecology. London: Butterworths, 256p.

    Google Scholar 

  • Henwood, W. J., 1857, Notice of the copper turf of Merioneth, Edinburgh New Philos. Jour. 5, 61–63.

    Google Scholar 

  • Howard-Williams, C., 1970, The ecology of Becium homblei in Central Africa with special reference to metalliferous soils, Jour. Ecology 58, 745–763.

    Google Scholar 

  • Jaffré, T., 1977, Accumulation of manganese by species associated with ultrabasic terrain in New Caledonia (in French), Acad. Sci. Comptes Rendus 284D, 1573–1575.

    Google Scholar 

  • Jaffré, T., and M. Schmid, 1974, Accumulation of nickel in Psychotria douarrei in New Caledonia (in French), Acad. Sci. Comptes Rendus 278, 1727.

    Google Scholar 

  • Karpinsky, A. M., 1841, Can living plants be indicators of rocks and formations on which they grow and does their occurrence merit the particular attention of the specialist in structural geology? (in Russian), Zhur. Sadovodstva, Nos. 3 and 4.

    Google Scholar 

  • Mahalanobis, P. C., 1936, On the generalized distance in statistics, India Natl. Inst. Sci. Proc. 12, 49–55.

    Google Scholar 

  • Malaisse, F., J. Gregoire, R. R. Brooks, R. S. Morrison, and R. D. Reeves, 1978, Aeolanthus biformifolius: A hyperaccumulator of copper from Zaire, Science 199, 887–888.

    Google Scholar 

  • Malaisse, F., J. Gregoire, R. S. Morrison, R. R. Brooks, and R. D. Reeves, 1979, Copper and cobalt in vegetation of Fungurume, Shaba Province, Zaire, Oikos 33, 472–478.

    Google Scholar 

  • Malyuga, D. P., 1964, Biogeochemical Methods of Prospecting. New York: Consultants Bureau, 205p.

    Google Scholar 

  • Malyuga, D. P., N. S. Malashkina, and A. I. Makarova, 1959, Biogeochemical investigations at Kadzharan, Armenian SSR (in Russian), Geokhimiya, no. 5, 423–430.

    Google Scholar 

  • Minguzzi, C., and O. Vergnano, 1948, The content of nickel in the ash of Alyssum bertolonii Desv. (in Italian), Soc. Toscana Sci. Nat. Atti Mem. 55A, 49–77.

    Google Scholar 

  • Nesvetailova, N. G., 1961, Geobotanical investigations for prospecting for ore deposits, Internat. Geology Rev. 3, 609–618.

    Google Scholar 

  • Nicolls, O. W., D. M. J. Provan, M. M. Cole, and J. S. Tooms, 1965, Geobotany and geochemistry in mineral exploration in the Dugald River area, Cloncurry district, Australia, Australasian Inst. Mining and Metallurgy Trans. 74, 695–799.

    Google Scholar 

  • Nielsen, J. S., R. R. Brooks, C. R. Boswell, and N. J. Marshall, 1973, Statistical evaluation of geobotanical and biogeochemical data by discriminant analysis, Jour. Appl. Ecology 10, 251–258.

    Google Scholar 

  • Palou, R., X. de Gramont, J. Magny, and J. Carles, 1965, Two plant indicators of zinc-lead deposits in the Pyrenees, Soc. Hist. Nat. Toulouse Bull. 100, 465–468.

    Google Scholar 

  • Persson, H., 1948, Studies in “copper mosses,” Jour. Hattori Bot. Lab. 17, 1–18.

    Google Scholar 

  • Reeves, R. D., and R. R. Brooks, 1983, European species of Thlaspi L. (Cruciferae) as indicators of nickel and zine, Jour. Geochem. Exploration 18, 275–283.

    Google Scholar 

  • Rune, O., 1953, Plant life on serpentine and related rocks in the north of Sweden, Acta Phytogeogr. Suecica 31, 1–139.

    Google Scholar 

  • Se Sjue-Tszin, and Ban-Lian Sjuj, 1953, Elsholtzia haichowensis Sun—A plant that can reveal the presence of copper-bearing strata, Dichzhi Sjuozbao 32, 360–368.

    Google Scholar 

  • Severne, B. C., and R. R. Brooks, 1972, A nickel-accumulating plant from Western Australia, Planta 103, 91–94.

    Google Scholar 

  • Shacklette, H. T., 1962, Field observations of variations in Vaccinium uliginosum L., Canadian Field Naturalist 76, 162–167.

    Google Scholar 

  • Shacklette, H. T., 1964, Flower variation of Epilobium angustifolium L., Canadian Field Naturalist 78, 32–42.

    Google Scholar 

  • Shchapova, G. F., 1938, Benthic vegetation of the northeastern bays of the Caspian Sea (in Russian), Bot. Zhur. 23, 122–143.

    Google Scholar 

  • Venkatesh, V., 1964, Geobotanical methods of mineral prospecting in India, Indian Mineralogist 18, 101.

    Google Scholar 

  • Venkatesh, V., 1966, Geobotany in mineral exploration, Steel Mines Rev. 6, 3–5.

    Google Scholar 

  • Viktorov, S. V., Y. A. Vostokova, and D. D. Vyshivkin, 1964, Short Guide to Geobotanical Surveying. Oxford: Pergamon, 158p.

    Google Scholar 

Cross-references

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Van Nostrand Reinhold Company Inc.

About this entry

Cite this entry

Brooks, R.R. (1988). Geobotanical prospecting . In: General Geology. Encyclopedia of Earth Science. Springer, Boston, MA. https://doi.org/10.1007/0-387-30844-X_36

Download citation

  • DOI: https://doi.org/10.1007/0-387-30844-X_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-22499-8

  • Online ISBN: 978-0-387-30844-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics