Advertisement

Thermotogales

  • Robert Huber
  • Michael Hannig

Introduction

Members of the Thermotogales represent a very deep phylogenetic branch within the 16S rRNA gene tree. Within the order, members of the genus Thermotoga have an upper temperature border of growth at 90°C and represent, together with members of the order Aquificales, the bacteria with the highest growth temperatures known so far. Representatives of the Thermotogales are widespread and cosmopolitan, and they thrive mainly in volcanically or geothermally heated environments. Owing to their strictly organotrophic way of life, they are consumers of microbial biomaterial within high temperature ecosystems.

For the Thermotogales, the following order criteria are characteristic: thermophilic, nonsporeforming, rod-shaped cells with an outer sheath-like envelope (‘toga’); Gram-negative, but meso-diaminopimelic acid not present in the peptidoglycan; strictly anaerobic, fermentative bacteria; acetate, carbon dioxide, and hydrogen metabolites from glucose fermentation; inhibition of...

Keywords

Lateral Gene Transfer Hyperthermophilic Bacterium DSMZ Medium Inhibitory Hydrogen Trace Mineral Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Achenbach-Richter, L., R. Gupta, K. O. Stetter, and C. R. Woese. 1987 Were the original eubacteria thermophiles? Syst. Appl. Microbiol. 9 34–39PubMedCrossRefGoogle Scholar
  2. Akimkina, T., P. Ivanov, S. Kostrov, T. Sokolova, E. Bonch-Osmolovskaya, K. Firman, C. F. Dutta, and J. A. McClellan. 1999 A highly conserved plasmid from the extreme thermophile Thermotoga maritima MC24 is a member of a family of plasmids distributed worldwide Plasmid 42 236–240PubMedCrossRefGoogle Scholar
  3. Alain, K., V. T. Marteinsson, M. L. Miroshnichenko, E. A. Bonch-Osmolovskaya, D. Prieur, and J. L. Birrien. 2002 Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent Int. J. Syst. Evol. Bacteriol. 52 1331–1339Google Scholar
  4. Andrews, K. T., and B. K. C. Patel. 1996 Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia Int. J. Syst. Bacteriol. 46 265–269PubMedCrossRefGoogle Scholar
  5. Antoine, E., V. Cilia, J. R. Meunier, J. Guezennec, F. Lesongeur, and G. Barbier. 1997 Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern pacific ocean Int. J. Syst. Bacteriol. 47 1118–1123PubMedCrossRefGoogle Scholar
  6. Aravind, L., R. L. Tatusov, Y. I. Wolf, D. R. Walker, and E. V. Koonin. 1998 Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles Trends Genet. 14 442–444PubMedCrossRefGoogle Scholar
  7. Bachleitner, M., W. Ludwig, K. O. Stetter, and K.-H. Schleifer. 1989 Nucleotide sequence of the gene coding for the elongation factor Tu from the extremely thermophilic eubacterium Thermotoga maritima FEMS Microbiol. Lett. 48 115–120PubMedCrossRefGoogle Scholar
  8. Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979 Methanogens: reevaluation of a unique biological group Microbiol. Rev. 43 260–296PubMedGoogle Scholar
  9. Balk, M., J. Weijma, and J. M. Stams-Alfons. 2002 Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor Int. J. Syst. Evol. Bacteriol. 52 1361–1368Google Scholar
  10. Bazylinski, D. A., C. O. Wirsen, and H. W. Jannasch. 1989 Microbial utilization of naturally occuring hydrocarbons at the Guaymas Basin hydrothermal vent site Appl. Environ. Microbiol. 55 2832–2836PubMedGoogle Scholar
  11. Beck, P., and R. Huber. 1997 Detection of cell viability in cultures of hyperthermophiles FEMS Microbiol. Lett. 147 11–14CrossRefGoogle Scholar
  12. Belkin, S., C. O. Wirsen, and H. W. Jannasch. 1986 A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent Appl. Environ. Microbiol. 51 1180–1185PubMedGoogle Scholar
  13. Bilwes, A. M., L. A. Alex, B. R. Crane, and M. I. Simon. 1999 Structure of CheA, a signal-transducing histidine kinase Cell 96 131–141PubMedCrossRefGoogle Scholar
  14. Blamey, J., S. Mukund, and M. W. W. Adams. 1994 Properties of a thermostable 4Fe-ferredoxin from the hyperthermophilic bacterium Thermotoga maritima FEMS Microbiol. Lett. 121 165–170PubMedCrossRefGoogle Scholar
  15. Brochier, C., and H. Phillipe. 2002 A non-hyperthermophilic ancestor for bacteria Nature 417 244PubMedCrossRefGoogle Scholar
  16. Brosius, J., T. J. Dull, D. D. Sleeter, and H. F. Noller. 1981 Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli J. Molec. Biol. 148 107–127PubMedCrossRefGoogle Scholar
  17. Brown, P. N., C. P. Hill, and D. F. Blair. 2002 Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG EMBO J. 21 3225–3234PubMedCrossRefGoogle Scholar
  18. Carballeira, N. M., M. Reyes, A. Sostre, H. Huang, M. F. J. M. Verhagen, and M. W. W. Adams. 1997 Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritima J. Bacteriol. 179 2766–2768PubMedGoogle Scholar
  19. Chen, C.-C., R. Adolphson, J. F. D. Dean, K.-E. L. Eriksson, M. W. W. Adams, and J. Westpheling. 1997 Release of lignin from kraft pulp by a hyperthermophilic xylanase from Thermotoga maritima Enz. Microb. Technol. 20 39–45CrossRefGoogle Scholar
  20. Childers, S. E., M. Vargas, and K. M. Noll. 1992 Improved methods for cultivation of the extremely thermophilic bacterium Thermotoga neapolitana Appl. Environ. Microbiol. 58 3949–3953PubMedGoogle Scholar
  21. Cordell, C., R. E. Anderson, and J. Löwe. 2001 Crystal structure of the bacterial cell division inhibitor MinC EMBO J. 20 2454–2461PubMedCrossRefGoogle Scholar
  22. Darimont, B., and R. Sterner. 1994 Sequence, assembly and evolution of a primordial ferredoxin from Thermotoga maritima EMBO J. 13 1772–1781PubMedGoogle Scholar
  23. Davey, M. E., W. A. Wood, R. Key, K. Nakamura, and D. A. Stahl. 1993a Isolation of three species of Geotoga and Petrotoga: Two new genera, representing a new lineage in the bacterial line of descent distantly related to the “Thermotogales” Syst. Appl. Microbiol. 16 191–200CrossRefGoogle Scholar
  24. Davey, M. E., W. A. Wood, R. Key, K. Nakamura, and D. A. Stahl. 1993b Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 47 Int. J. Syst. Bacteriol. 43 864–865CrossRefGoogle Scholar
  25. Davey, M. E., B. J. MacGregor, and D. A. Stahl. 2001a Genus III: Geotoga In: D. R. Boone and R. W. Castenholz (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York NY 1 377–381Google Scholar
  26. Davey, M. E., B. J. MacGregor and D. A. Stahl. 2001b Genus IV: Petrotoga In: D. R. Boone and R. W. Castenholz (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York NY 1 372–385Google Scholar
  27. De Rosa, M., A. Gambacorta, R. Huber, V. Lanzotti, B. Nicolaus, K. O. Stetter, and A. Trincone. 1988 A new 15,16-dimethyl-30-glyceroloxytriacontanoic acid from lipids of Thermotoga maritima J. Chem. Soc. Chem. Commun. 1300–1301Google Scholar
  28. Engel, A. M., Z. Cejka, A. Lupas, F. Lottspeich, and W. Baumeister. 1992 Isolation and cloning of Omp alpha, a coiled-coil protein spanning the periplasmic space of the ancestral eubacterium Thermotoga maritima EMBO J. 11 4369–4378PubMedGoogle Scholar
  29. Engel, A. M., M. Brunen, and W. Baumeister. 1993 The functional properties of Omp beta, the regularely arrayed porin of the hyperthermophilic bacterium Thermotoga maritima FEMS Microbiol. Lett. 109 231–236Google Scholar
  30. Fardeau, M. L., B. Ollivier, B. K. C. Patel, M. Magot, P. Thomas, A. Rimbault, F. Rocchiccioli, and J. L. Garcia. 1997 Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well Int. J. Syst. Bacteriol. 47 1013–1019PubMedCrossRefGoogle Scholar
  31. Fitz-Gibbon, S. T., and C. H. House. 1999 Whole genome-based phylogenetic analysis of free-living microorganisms Nucleic Acids Res. 27 4218–4222PubMedCrossRefGoogle Scholar
  32. Friedrich, A. B., and G. Antranikian. 1996 Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales Appl. Environ. Microbiol. 62 2875–2882PubMedGoogle Scholar
  33. Friedrich, A. B., and G. Antranikian. 1999 Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 68 Int. J. Syst. Bacteriol. 49 1–3CrossRefGoogle Scholar
  34. Galperin, M. Y., K. M. Noll, and A. H. Romano. 1996 The glucose transport system of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana Appl. Environ. Microbiol. 62 2915–2918PubMedGoogle Scholar
  35. Gluch, M. F., D. Typke, and W. Baumeister. 1995 Motility and thermotactic responses of Thermotoga maritima J. Bacteriol. 177 5473–5479PubMedGoogle Scholar
  36. Grassia, G. S., K. M. McLean, P. Glenat, J. Bauld, and A. J. Sheehy. 1996 A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs FEMS Microbiol. Ecol. 21 47–58CrossRefGoogle Scholar
  37. Gupta, R. S., and E. Griffiths. 2002 Critical issues in bacterial phylogeny Theor. Pop. Biol. 61 423–434CrossRefGoogle Scholar
  38. Harriott, O. T., R. Huber, K. O. Stetter, P. W. Betts, and K. M. Noll. 1994 A cryptic miniplasmid from the hyperthermophilic bacterium Thermotoga sp. strain RQ7 J. Bacteriol. 176 2759–2762PubMedGoogle Scholar
  39. Huber, R., T. A. Langworthy, H. König, M. Thomm, C. R. Woese, U. B. Sleytr, and K. O. Stetter. 1986 Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C Arch. Microbiol. 144 324–333CrossRefGoogle Scholar
  40. Huber, R., C. R. Woese, T. A. Langworthy, H. Fricke, and K. O. Stetter. 1989a Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the “Thermotogales” Syst. Appl. Microbiol. 12 32–37CrossRefGoogle Scholar
  41. Huber, R., C. R. Woese, T. A. Langworth, H. Fricke, and K. O. Stetter. 1989b Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 31 Int. J. Syst. Bacteriol. 39 495–497CrossRefGoogle Scholar
  42. Huber, R., C. R. Woese, T. A. Langworthy, J. K. Kristjansson, and K. O. Stetter. 1990 Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales” Arch. Microbiol. 154 105–111CrossRefGoogle Scholar
  43. Huber, R., C. R. Woese, T. A. Langworth, J. K. Kristjansson, and K. O. Stetter. 1991 Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 36 Int. J. Syst. Bacteriol. 41 178–179CrossRefGoogle Scholar
  44. Huber, R., and K. O. Stetter. 1992a Hyperthermophilic and extremely thermophilic bacteria In: J. K. Kristjansson (Ed.) Thermophilic Bacteria CRC Press Boca Raton FL 185–194Google Scholar
  45. Huber, R., and K. O. Stetter. 1992b The order Thermotogales In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes Springer-Verlag New York NY 3809–3815Google Scholar
  46. Huber, R., S. Burggraf, T. Mayer, S. M. Barns, P. Rossnagel, and K. O. Stetter. 1995 Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis Nature 376 57–58PubMedCrossRefGoogle Scholar
  47. Huber, R. 1999 Die Laserpinzette als Basis für Einzelzellkultivierungen BIOspektrum 5 289–291Google Scholar
  48. Huber, R. and K. O. Stetter. 1999 Thermotogales [{http://www.els.net}Embryonic Encyclopedia of Life Sciences] Nature Publishing Group London UKGoogle Scholar
  49. Huber, R., H. Huber, and K. O. Stetter. 2000 Towards the ecology of hyperthermophiles: Biotopes, new isolation strategies and novel metabolic properties FEMS Microbiol. Rev. 24 615–623PubMedCrossRefGoogle Scholar
  50. Huber, R., and K. O. Stetter. 2001a Discovery of hyperthermophilic microorganisms In: M. W. W. Adams and R. M. Kelly (Eds.) Methods in Enzymology Academic Press San Diego CA 11–24Google Scholar
  51. Huber, R., and K. O. Stetter. 2001b Thermotogales In: D. R. Boone and R.W. Castenholz (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York NY 1 369–387Google Scholar
  52. Jannasch, H. W., R. Huber, S. Belkin, and K. O. Stetter. 1988 Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga Arch. Microbiol. 150 103–104CrossRefGoogle Scholar
  53. Jannasch, H. W., R. Huber, S. Belkin, and K. O. Stetter. 1989 Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 28 Int. J. Syst. Bacteriol. 39 93–94CrossRefGoogle Scholar
  54. Jannasch, H. W., C. O. Wirsen, and T. Hoaki. 1995 Isolation and cultivation of heterotrophic hyperthermophiles from deep-sea hydrothermal vents In: F.R. Robb and A.R. Place (eds.) Archaea: A Laboratory Manual, Protocol 1 Cold Spring Harbor Laboratory Press US 9–13Google Scholar
  55. Jeanthon, C., A. L. Reysenbach, S. L’Haridon, A. Gambacorta, N. R. Pace, P. Glénat, and D. Prieur. 1995 Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir Arch. Microbiol. 164 91–97PubMedCrossRefGoogle Scholar
  56. Jeanthon, C., A.-L. Reysenbach, S. L’Haridon, A. Gabacorta, N. R. Pace, P. Glénat, and D. Prieur. 2000 Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 76 Int. J. Syst. Evol. Bacteriol. 50 1699–1700Google Scholar
  57. Kyrpides, N. C., and G. J. Olsen. 1999 Archaeal and bacterial hyperthermophiles: Horizontal gene exchange or common ancestry? Trends Genet. 15 298–299PubMedCrossRefGoogle Scholar
  58. Lesley, S. A., P. Kuhn, A. Godzik, A. M. Deacon, I. Mathews, A. Kreusch, G. Spraggon, H. E. Klock, D. McMullan, T. Shin, J. Vincent, A. Robb, L. S. Brinen, M. D. Miller, T. M. McPhillips, M. A. Miller, D. Scheibe, J. M. Canaves, C. Guda, L. Jaroszewski, T. L. Selby, M. A. Elsliger, J. Wooley, S. S. Taylor, K. O. Hodgson, I. A. Wilson, P. G. Schultz, and R. C. Stevens. 2002 Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline Proc. Natl. Acad. Sci. USA 99 11664–11669PubMedCrossRefGoogle Scholar
  59. Leuschner, C., and G. Antranikian. 1994 Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms World J. Microbiol. Biotechnol. 11 95–114CrossRefGoogle Scholar
  60. L’Haridon S., A. L. Reysenbach, P. Glenat, D. Prieur, and C. Jeanthon. 1995 Hot subterranean biosphere in a continental oil reservoir Nature 377 223–224CrossRefGoogle Scholar
  61. L’Haridon S., M. L. Miroshnichenko, H. Hippe, M. L. Fardeau, O. E. Bonch, E. Stackebrandt, and C. Jeanthon. 2001 Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia Int. J. Syst. Evol. Bacteriol. 51 1327–1334Google Scholar
  62. L’Haridon S., M. L. Miroshnichenko, H. Hippe, M. L. Fardeau, E. A. Bonch-Osmolovskaya, E. Stackebrandt, and C. Jeanthon. 2002 Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in West Siberia Int. J. Syst. Evol. Bacteriol. 52 1715–1722Google Scholar
  63. Lien, T., M. Madsen, and F. A. Rainey. 1998 Petrotoga mobilis sp. nov., from a North Sea oil-production well Int. J. Syst. Bacteriol. 48 1007–1013PubMedCrossRefGoogle Scholar
  64. Logsdon, J. M., and D. M. Faguy. 1999 Thermotoga heats up lateral gene transfer Curr. Biol. 9 R747–R751PubMedCrossRefGoogle Scholar
  65. Londei, P., S. Altamura, R. Huber, K. O. Stetter, and P. Cammarano. 1988 Ribosomes of the extremely thermophilic eubacterium Thermotoga maritima are uniquely insensitive to the miscoding-inducing action of aminoglycoside antibiotics J. Bacteriol. 170 4353–4360PubMedGoogle Scholar
  66. Ludwig, W., J. Neumaier, N. Klugbauer, E. Brockmann, C. Roller, S. Jilg, K. Reetz, I. Schachtner, A. Ludvigsen, M. Bachleitner, U. Fischer, and K.-H. Schleifer. 1993 Phlogenetic relationships of Bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes Ant. v. Leeuwenhoek 64 285–305CrossRefGoogle Scholar
  67. Lupas, A., S. Müller, K. Goldie, A. M. Engel, A. Engel, and W. Baumeister. 1995 Model structure of the Omp alpha rod, a parallel four-stranded coiled coil from the hyperthermophilic eubacterium Thermotoga maritima J. Molec. Biol. 248 180–189PubMedCrossRefGoogle Scholar
  68. Malik, K. A. 1999 Preservation of some extremely thermophilic chemolithoautotrophic bacteria by deep-freezing and liquid-drying methods J. Microbiol. Meth. 35 177–182CrossRefGoogle Scholar
  69. Manca, M. C., B. Nicolaus, V. Lanzotti, A. Trincone, A. Gambacorta, J. Peter Katalinic, H. Egge, R. Huber, and K. O. Stetter. 1992 Glycolipids from Thermotoga maritima, a hyperthermophilic microorganism belonging to Bacteria domain Biochim. Biophys. Acta 1124 249–252PubMedCrossRefGoogle Scholar
  70. Martins, L. O., L. S. Carreto, M. S. Da Costa, and H. Santos. 1996 New compatible solutes related to di-myo-inositol-phosphate in members of the order Thermotogales J. Bacteriol. 178 5644–5651PubMedGoogle Scholar
  71. Nanavati, D., Noll, K. M., and A. H Romano. 2002 Periplasmic maltose-and glucose-binding protein activities in cell-free extracts of Thermotoga maritima Microbiology 148 3531–3537PubMedGoogle Scholar
  72. Nelson, K. E., R. A. Clayton, S. R. Gill, M. L. Gwinn, R. J. Dodson, D. H. Haft, E. K. Hickey, J. D. Peterson, W. C. Nelson, K. A. Ketchum, L. McDonald, T. R. Utterback, J. A. Malek, K. D. Linher, M. M. Garrett, A. M. Stewart, M. D. Cotton, M. S. Pratt, C. A. Phillips, D. Richardson, J. Heidelberg, G. G. Sutton, R. D. Fleischmann, J. A. Eisen, O. White, S. L. Salzberg, H. O. Smith, J. C. Venter, and C. M. Fraser. 1999 Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima Nature 399 323–329PubMedCrossRefGoogle Scholar
  73. Nelson, K. E., J. A. Eisen, and C. M. Fraser. 2001 Genome of Thermotoga maritima MSB8 In: M. W. W. Adams and R. M. Kelly (Eds.) Methods in Enzymology Academic Press San Diego CA 169–180Google Scholar
  74. Nesbø, C. L., S. L’Haridon, K. O. Stetter, and W. F. Doolittle. 2001 Phylogenetic analyses of two “archaeal” genes in Thermotoga maritima reveal multiple transfers between Archaea and Bacteria Molec. Biol. Evol. 18 362–375PubMedCrossRefGoogle Scholar
  75. Nesbø, C. L., K. E. Nelson, and W. F. Doolittle. 2002 Suppressive subtractive hybridization detects extensive genomic diversity in Thermotoga maritima J. Bacteriol. 184 4475–4488PubMedCrossRefGoogle Scholar
  76. Palm, P., C. Schleper, I. Arnold-Ammer, I. Holz, T. Meier, F. Lottspeich, and W. Zillig. 1993 The DNA-dependent RNA-polymerase of Thermotoga maritima; characterization of the enzyme and the DNA-sequence of the genes for the large subunits Nucleic Acids Res. 21 4904–4908PubMedCrossRefGoogle Scholar
  77. Patel, B. K. C., H. W. Morgan, and R. M. Daniel. 1985a Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium Arch. Microbiol. 141 121–127CrossRefGoogle Scholar
  78. Patel, B. K. C., H. W. Morgan, and R. M. Daniel. 1985b Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 19 Int. J. Syst. Bacteriol. 35 535–535CrossRefGoogle Scholar
  79. Rachel, R., A. M. Engel, R. Huber, K. O. Stetter, and W. Baumeister. 1990 A porin-type like protein is the major constituent of the cell envelope of the ancestral eubacterium Thermotoga maritima FEBS Lett. 262 64–68CrossRefGoogle Scholar
  80. Ramakrishnan, V., M. F. J. M. Verhagen, and M. W. W. Adams. 1997 Characterization of di-myo-inositol-1,1′-phospate in the hyperthermophilic bacterium Thermotoga maritima Appl. Environ. Microbiol. 63 347–350PubMedGoogle Scholar
  81. Ravot, G., M. Magot, M. L. Fardeau, B. K. C. Patel, G. Prensier, A. Egan, J. L. Garcia, and B. Ollivier. 1995 Thermotoga elfii sp. nov., a novel thermophilic bacterium from an african oil-producing well Int. J. Syst. Bacteriol. 45 308–314PubMedCrossRefGoogle Scholar
  82. Ravot, G., B. Ollivier, M. L. Fardeau, B. K. C. Patel, K. T. Andrews, M. Magot, and J. L. Garcia. 1996a L-alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea: A remnant of an ancestral metabolism? Appl. Environ. Microbiol. 62 2657–2659PubMedGoogle Scholar
  83. Ravot, G., B. Ollivier, B. K. C. Patel, M. Magot, and J. L. Garcia. 1996b Emended description of Thermosipho africanus as a carbohydrate-fermenting species using thiosulfate as an electron acceptor Int. J. Syst. Bacteriol. 46 321–323CrossRefGoogle Scholar
  84. Reysenbach, A.-L. 2001 Phylum BII: Thermotogae phy. nov In: D. R. Boone and R. W. Castenholz (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York NY 369CrossRefGoogle Scholar
  85. Rinker, K. D., and R. M. Kelly. 2000 Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima Biotechnol. Bioengin. 69 537–547CrossRefGoogle Scholar
  86. Schirmer, T. 1998 General and specific porins form bacterial outer membranes J. Struct. Biol. 121 101–109PubMedCrossRefGoogle Scholar
  87. Schleifer, K.-H., and W. Ludwig. 1989 Phylogenetic relationships among bacteria In: B. Fernholm, K. Bremer, and H. Jörnvall (Eds.) The Hierarchy of Life Elsevier Science Publishers Amsterdam The Netherlands 103–117Google Scholar
  88. Schröder, C., M. Selig, and P. Schönheit. 1994 Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: Involvement of the Embden-Meyerhof pathway Arch. Microbiol. 161 460–470Google Scholar
  89. Selig, M., K. B. Xavier, and H. Santos. 1997 Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga Arch. Microbiol. 167 217–232PubMedGoogle Scholar
  90. Stetter, K. O., and R. Huber. 1986 Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 22 Int. J. Syst. Bacteriol. 36 573–576CrossRefGoogle Scholar
  91. Stetter, K. O., R. Huber, E. Blöchl, M. Kurr, R. D. Eden, M. Fiedler, H. Cash, and I. Vance. 1993 Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs Nature 365 743–745CrossRefGoogle Scholar
  92. Stetter, K. O., and R. Huber. 2000 The role of hyperthermophilic prokaryotes in oil fields In: C.R. Bell, M. Brylinsky, P. Johnson-Green, (eds.) Micobial biosystems: New Frontiers Proceedings 8th ASM Proceedings of the 8th international symposium on microbial ecology Halifax Canada 369–375Google Scholar
  93. Swanson, R. V., M. G. Sanna, and M. I. Simon. 1996 Thermostable chemotaxis proteins from the hyperthermophilic bacterium Thermotoga maritima J. Bacteriol. 178 484–489PubMedGoogle Scholar
  94. Takahata, Y., M. Nishijima, T. Hoaki, and T. Maruyama. 2001 Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan Int. J. Syst. Evol. Bacteriol. 51 1901–1909Google Scholar
  95. Takai, K., and K. Horikoshi. 2000a Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan Extremophiles 4 9–17PubMedGoogle Scholar
  96. Takai, K., and K. Horikoshi. 2000b Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 76 Int. J. Syst. Evol. Bacteriol. 50 1699–1700Google Scholar
  97. Tiboni, O., R. Cantoni, R. Creti, P. Cammarano, and A. M. Sanangelantoni. 1991 Phylogenetic depth of Thermotoga maritima inferred from analysis of the fus gene: Amino acid sequence of elongation factor G and organization of the Thermotoga str operon J. Molec. Evol. 33 142–151PubMedCrossRefGoogle Scholar
  98. Van de Casteele, M., M. Demarez, C. Legrain, N. Glansdorff, and A. Piérard. 1990 Pathways of arginine biosynthesis in extreme thermophilic archaeo-and eubacteria J. Gen. Microbiol. 136 1177–1183CrossRefGoogle Scholar
  99. Van den Ent, F., and J. Löwe. 2000 Crystal structure of the cell division protein FtsA from Thermotoga maritima EMBO J. 19 5300–5307PubMedCrossRefGoogle Scholar
  100. Van den Ent, F., L. A. Amos, and J. Löwe. 2001 Prokaryotic origin of the actin cytoskeleton Nature 413 39–44PubMedCrossRefGoogle Scholar
  101. Vargas, M., and K. M. Noll. 1994 Isolation of auxotrophic and antimetabolite-resistant mutants of the hyperthermophilic bacterium Thermotoga neapolitana Arch. Microbiol. 162 357–361CrossRefGoogle Scholar
  102. Vargas, M., K. Kashefi, E. L. Blunt-Harris, and D. R. Lovley. 1998 Microbiological evidence for Fe(III) reduction on early Earth Nature 395 65–67PubMedCrossRefGoogle Scholar
  103. Wery, N., F. Lesongeur, P. Pignet, V. Derennes, M. A. Cambon-Bonavita, A. Godfroy, and G. Barbier. 2001 Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent Int. J. Syst. Evol. Bacteriol. 51 495–504Google Scholar
  104. Widdel, F., G. W. Kohringen, and F. Mayer. 1983 Studies of dissimilatory sulfate-reducing bacteria that dexompose fatty acids. III: Characterization of the filamentours gliding Desulfonema limicola gen. nov. and sp. nov. and Desulfonema magnum sp. nov Arch. Microbiol. 129 286–294CrossRefGoogle Scholar
  105. Windberger, E., R. Huber, A. Trincone, H. Fricke, and K. O. Stetter. 1989 Thermotoga thermarum and Thermotoga neapolitana occurring in African continental solfataric springs Arch. Microbiol. 151 506–512CrossRefGoogle Scholar
  106. Windberger, E., R. Huber, and K. O. Stetter. 1992 Validation of the publication of new names and new combinations previously effectively published outside the IJSB: List No. 41 Int. J. Syst. Bacteriol. 42 327–329CrossRefGoogle Scholar
  107. Woese, C. R. 1987 Bacterial evolution Microbiol. Rev. 51 221–271PubMedGoogle Scholar
  108. Wolin, E. A., M. J. Wolin, and R. S. Wolfe. 1963 Formation of methane by bacterial extracts J. Biol. Chem. 238 2882–2886PubMedGoogle Scholar
  109. Yu, J.-S., and K. M. Noll. 1997 Plasmid pRQ7 from the hyperthermophilic bacterium Thermotoga species strain RQ7 replicates by rolling-circle mechanism J. Bacteriol. 179 7161–7164PubMedGoogle Scholar
  110. Yu, J.-S., M. Vargas, C. Mityas, and K. M. Noll. 2001 Liposome-mediated DNA uptake and transient expression in Thermotoga Extremophiles 5 53–60PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Robert Huber
  • Michael Hannig

There are no affiliations available

Personalised recommendations