The Phylum Verrucomicrobia: A Phylogenetically Heterogeneous Bacterial Group

  • Heinz Schlesner
  • Cheryl Jenkins
  • James T. Staley


General Phylogeny and Taxonomy

The Verrucomicrobia were proposed as a new division within the bacterial domain by Hedlund et al. (1997) and more recently ranked as a phylum (Garrity and Holt, 2001). They represent a distinct lineage within the phylogenetic trees and contain a number of environmental species as well as a small number of cultured species assigned to four genera (Table 1): Verrucomicrobium (Fig. 1a, b), Prosthecobacter (Fig. 2), Opitutus and Victivallis.

Table 1.

Characteristics differentiating the genera of the phylum Verrucomicrobia.



Cell morphology



Oxygen requirement

G+C (mol%)




Rods with numerous fimbrated prosthecae

Light yellow

Aerobic and fermentative


Schlesner, 1987


Freshwater; Raw sewage

Fusiform shaped cells with 1 polar prostheca

White or yellow

Obligate aerobe


Staley et al., 1976


Rice paddy soil

Coccoid dwarf cells (0.4–0.6 µm)





Anaerobic Digester Trace Element Solution Vitamin Solution Strict Anaerobe Rice Paddy Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Albrecht, W., A. Fischer, J. Smida, and E. Stackebrandt. 1987 Verrucomicrobium spinosum, a eubacterium representing an ancient line of descent System. Appl. Microbiol. 10 57–62CrossRefGoogle Scholar
  2. Bano, N., and J. T. Hollibaugh. 2002 Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean Appl. Environ. Microbiol. 68 505–518PubMedCrossRefGoogle Scholar
  3. Bomar, D., and E. Stackebrandt. 1987 5S rRNA sequences from Nitrobacter winogradskyi, Caulobacter crescentus, Stella humosa and Verrucomicrobium spinosum Nucleic Acids Res. 25 9597CrossRefGoogle Scholar
  4. Bornemann, J., and E. W. Triplett. 1997 Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation Appl. Environ. Microbiol. 63 2647–2653Google Scholar
  5. Brambilla, E., H. Hippe, A. Hagelstein, B. J. Tindall, and E. Stackebrandt. 2001 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica Extremophiles 5 23–33PubMedCrossRefGoogle Scholar
  6. Chin, K.-J., D. Hahn, U. Hengtsmann, W. Liesack, and P. H. Janssen. 1999 Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms Appl. Environ. Microbiol. 65 5042–5049PubMedGoogle Scholar
  7. Chin, K.-J., W. Liesack, and P. H. Janssen. 2001 Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division “Verrucomicrobia” isolated from rice paddy soil Int. J. Syst. Bacteriol. 51 1965–1968Google Scholar
  8. Cho, J.-C., and S.-J. Kim. 2000 Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input Appl. Environ. Microbiol. 66 956–965PubMedCrossRefGoogle Scholar
  9. Christner, B. C., B. H. Kvitko 2nd, and J. N. Reeve. 2003 Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole Extremophiles 7 177–183PubMedGoogle Scholar
  10. Cohen-Bazire, G., W. R. Sistrom, and R. Y. Stanier. 1957 Kinetic studies of pigment synthesis by non-sulphur purple bacteria J. Cell. Comp. Physiol. 49 25–68CrossRefGoogle Scholar
  11. Coomans, A., T. T. M. Vandekerckhove, and M. Claeys. 2000 Transovarial transmission of symbionts in Xiphinema brevicollum (Nematoda: Longidoridae) Nematology 2 455–461Google Scholar
  12. Crump, B. C., E. V. Armbrust, and J. A. Baross. 1999 Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean Appl. Environ. Microbiol. 65 3192–3204PubMedGoogle Scholar
  13. DeBont, J. A. M., J. T. Staley, and H. S. Pankratz. 1970 Isolation and description of a non-motile, fusiform, stalked bacterium, a representative of a new genus Ant. v. Leeuwenhoek 36 397–407CrossRefGoogle Scholar
  14. Dojka, M. A., P. Hugenholtz, S. K. Haack, and N. R. Pace. 1998 Microbial diversity in a hydrocarbon-and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation Appl. Environ. Microbiol. 64 3869–3877PubMedGoogle Scholar
  15. Elshahed, M. S, J. M. Senko, F. Z. Najar, S. M. Kenton, B. A. Roe, T. A. Dewers, J. R. Spear, and L. R. Krumholz. 2003 Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring Appl. Environ. Microbiol. 69 5609–5621PubMedCrossRefGoogle Scholar
  16. Felske, A., and A. D. L. Akkermans. 1998 Prominent occurrence of ribosomes from an uncultured bacterium of the Verrucomicrobiales-cluster in grassland soils Lett. Appl. Microbiol. 26 219–223PubMedCrossRefGoogle Scholar
  17. Freitag, T. E., and J. I. Prosser. 2003 Community structure of ammonia-oxidizing bacteria within anoxic marine sediments Appl. Environ. Microbiol. 69 1359–1371PubMedCrossRefGoogle Scholar
  18. Garrity, M. G., and J. G. Holt. 2001 The road map to the manual In: D. R. Boone and R. W. Castenholz Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York NY 119–162CrossRefGoogle Scholar
  19. Glöckner, F. O., E. Zaichikov, N. Belkova, L. Denissova, J. Pernthaler, A. Pernthaler, and R. Amann. 2002 Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria Appl. Environ. Microbiol. 66 5053–5065CrossRefGoogle Scholar
  20. Gorlenko, V. M. 1970 A new phototrophic green sulphur bacterium: Prosthecochloris aestuarii nov. gen. nov. spec Z. Allgem. Mikrobiol. 10 147–149CrossRefGoogle Scholar
  21. Gorlenko, V. M., and E. V. Lebedeva. 1971 New green sulphur bacteria with appendages [in Russian, with English summary] Mikrobiologya 40 1035–1039Google Scholar
  22. Gremion, F., A. Chatzinotas, and H. Harms. 2003 Comparative 16S rDNA and 16S rRNA sequence analysis indicates that actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil Environ. Microbiol. 5 896–907PubMedCrossRefGoogle Scholar
  23. Hedlund, B. P., J. J. Gosink, and J. T. Staley. 1996 Phylogeny of Prosthecobacter fusiformis, the fusiform caulobacters: Members of a recently discovered division of the Bacteria Int. J. Syst. Bacteriol. 46 960–966PubMedCrossRefGoogle Scholar
  24. Hedlund, B. P., J. J. Gosink, and J. T. Staley. 1997 Verrucomicrobia div. nov., a new division of the Bacteria containing three new species of Prosthecobacter Ant. v. Leeuwenhoek 72 29–38CrossRefGoogle Scholar
  25. Hengstmann, U., K.-J. Chin, P. H. Janssen, and W. Liesack. 1999 Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil Appl. Environ. Microbiol. 65 5050–5058PubMedGoogle Scholar
  26. Henrici, A. T., and D. E. Johnson. 1935 Studies of freshwater bacteria. II: Stalked bacteria, a new order of Schizomycetes J. Bacteriol. 30 61–93PubMedGoogle Scholar
  27. Hiorns, W. D., B. A. Methé, S. A. Nierzwicki-Bauer, and J. P. Zehr. 1997 Bacterial diversity in Adirondack Mountain lakes as revealed by 16S rRNA gene sequences Appl. Environ. Microbiol. 63 2957–2960PubMedGoogle Scholar
  28. Hirsch, P., M. Müller, and H. Schlesner. 1977 Aquatic Microbiology Academic Press London UK Society for Applied Bacteriology Symposium Series 6 107–133Google Scholar
  29. Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998a Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity J. Bacteriol. 180 4765–4774PubMedGoogle Scholar
  30. Hugenholtz, P., C. Pitulle, K. L. Hershberger, and N. R. Pace. 1998b Novel division level bacterial diversity in a Yellowstone hot spring J. Bacteriol. 180 366–376PubMedGoogle Scholar
  31. Humayoun, S. B., N. Bano, and J. T. Hollibaugh. 2003 Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in Californa Appl. Environ. Microbiol. 69 1030–1042PubMedCrossRefGoogle Scholar
  32. Janssen, P. H., A. Schumann, E. Mörschel, and F. A. Rainey. 1997 Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil Appl. Environ. Microbiol. 63 1382–1388PubMedGoogle Scholar
  33. Janssen, P. H., P. S. Yates, B. E. Grinton, P. M. Taylor, and M. Sait. 2002 Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia Appl. Environ. Microbiol. 68 2391–2396PubMedCrossRefGoogle Scholar
  34. Jenkins, C., R. Samudrala, I. Anderson, B. P. Hedlund, G. Petroni, N. Michailova, N. Pinel, R. Overbeek, G. Rosati, and J. T. Staley. 2002 Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter PNAS 99 17049–17054PubMedCrossRefGoogle Scholar
  35. Juretschko, S., A. Loy, S. Lehner, and M. Wagner. 2002 The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach System. Appl. Microbiol. 25 84–99CrossRefGoogle Scholar
  36. Lee, S.-Y., J. Bollinger, D. Bezdicek, and A. Ogram. 1996 Estimation of the abundance of an uncultured soil bacterial strain by competitive quantitative PCR method Appl. Environ. Microbiol. 62 3787–3793PubMedGoogle Scholar
  37. Liesack, W., and E. Stackebrandt. 1992 Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment J. Bacteriol. 174 5072–5078PubMedGoogle Scholar
  38. Lopez-Garcia, P., F. Gaill, and D. Moreira. 2002 Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila Environ. Microbiol. 4 204–215PubMedCrossRefGoogle Scholar
  39. Lyman, J., and R. H. Fleming. 1940 Composition of sea water J. Marine Res. (Sears Foundation) 3 134–146Google Scholar
  40. Madrid, V. M., G. T. Taylor, M. I. Scranton, and A. Y. Chistoserdov. 2001 Phylogenetic diversity of bacterial and archaeal communities in the anoxic zone of the Cariaco Basin Appl. Environ. Microbiol. 67 1663–1674PubMedCrossRefGoogle Scholar
  41. McCaig, A. E., L. A. Glover, and J. I. Prosser. 1999 Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures Appl. Environ. Microbiol. 65 1721–1730PubMedGoogle Scholar
  42. O’Farrell, K. A., and P. H. Janssen. 1999 Detection of Verrucomicrobia in a pasture soil by PCR-mediated amplification of 16S rRNA genes Appl. Environ. Microbiol. 65 4280–4284PubMedGoogle Scholar
  43. Petroni, G., S. Spring, K.-H. Schleifer, F. Verni, and G. Rosati. 2000 Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia Proc. Natl. Acad. Sci. USA 97 1813–1817PubMedCrossRefGoogle Scholar
  44. Poindexter, J. S., and J. T. Staley. 1989 Prosthecobacter In: J. T. Staley, M. Bryant, and N. Pfennig (Eds.) Bergey’s Manual of Systematic Bacteriology, 1st ed. Williams and Wilkins Baltimore MD 3 1942–1945Google Scholar
  45. Ravenschlag, K., K. Sahm, J. Pernthaler, and R. Amann. 1999 High bacterial diversity in permanently cold marine sediments Appl. Environ. Microbiol. 65 3982–3989PubMedGoogle Scholar
  46. Rheims, H., F. A. Rainey, and E. Stackebrandt. 1996a A molecular approach to search for diversity among bacteria in the environment J. Indust. Microbiol. 17 159–169CrossRefGoogle Scholar
  47. Rheims, H., C. Sproer, F. A. Rainey, and E. Stackebrandt. 1996b Molecular biological evidence for the occurrence of uncultured members of the actinomycete line of descent in different environments and geographical locations Microbiology 142 2863–2870PubMedCrossRefGoogle Scholar
  48. Rosati, G., P. Lenzi, and V. Franco. 1993 “Epixenisomes”: Peculiar epibionts of the protozoon ciliate Euplotidium itoi. Do their cytoplasmic tubules consist of tubulin? Micron 24 465–471CrossRefGoogle Scholar
  49. Rosati, G., M. A. Giambelluca, M. Grossi, and A. Morelli. 1997 Epixenosomes, peculiar epibionts of the ciliate Euplotidium itoi: involvement of membrane receptors and the adenylate cyclase-cyclic AMP system in the ejecting process Protoplasma 197 57–63CrossRefGoogle Scholar
  50. Rosati, G., G. Petroni, S. Quochi, L. Modeo, and V. Franco. 1999 Epixenosomes: peculiar epibionts of the hypotrich ciliate Euplotidium itoi defend their host against predators J. Euk. Microbiol. 46 278–282CrossRefGoogle Scholar
  51. Sakai, T., K. Ishizuka, and I. Kato. 2003 Isolation and characterization of a fucoidan-degrading marine bacterium Mar. Biotechnol. 5 409–416PubMedCrossRefGoogle Scholar
  52. Salzman, N. H., H. de Jong, Y. Paterson, H. J. M. Harmsen, G. W. Welling, and N. A. Bos. 2002 Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria Microbiology 148 3651–3660PubMedGoogle Scholar
  53. Schäfer, H., P. Servais, and G. Muyzer. 2000 Successional changes in the genetic diversity of a marine bacterial assemblage during confinement Arch. Microbiol. 173 138–145PubMedCrossRefGoogle Scholar
  54. Schlesner, H. 1986 Pirella marina sp. nov., a budding, peptidoglycan-less bacterium from brackish water System. Appl. Microbiol. 8 177–180CrossRefGoogle Scholar
  55. Schlesner, H. 1987 Verrucomicrobium spinosum gen. nov., sp. nov.: a fimbriated prosthecate bacterium System. Appl. Microbiol. 10 54–56CrossRefGoogle Scholar
  56. Schlesner, H. 1992 The genus verrucomicrobium In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer The Prokaryotes Springer-Verlag New York NY IV 3806–3808Google Scholar
  57. Sittig, M., and H. Schlesner. 1993 Chemotaxonomic investigation of various prosthecate and/or budding bacteria System. Appl. Microbiol. 16 92–103CrossRefGoogle Scholar
  58. Staley, J. T. 1968 Prosthecomicrobium and Ancalomicrobium: New freshwater prosthecate bacteria J. Bacteriol. 95 1921–1942PubMedGoogle Scholar
  59. Staley, J. T., J. A. M. DeBont, and K. DeJonge. 1976 Prosthecobacter fusiformis nov. gen. et sp., the fusiform caulobacter Ant. v. Leeuwenhoek 42 333–342CrossRefGoogle Scholar
  60. Staley, J. T.. 1992 The genera: prosthecomicrobium, ancalomicrobium and prosthecobacter In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes Springer-Verlag New York NY III 2160–2166Google Scholar
  61. Stams, A. J. M., J. B. van Dijk, C. Dijkema and C. M. Plugge. 1993 Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria Appl. Environ. Microbiol. 59 1114–1119PubMedGoogle Scholar
  62. Suau, A., R. Bonnet, M. Sutren, J.-J. Godon, G. R. Gibson, M. D. Collins, and J. Doré. 1999 Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut Appl. Environ. Microbiol. 65 4799–4807PubMedGoogle Scholar
  63. Sullivan, C. W., and A. C. Palmisano. 1984 Sea ice microbial communities: distribution, abundance, and diversity of ice bacteria in McMurdo Sound, Antarctica, in 1980 Appl. Environ. Microbiol. 47 788–795PubMedGoogle Scholar
  64. Tanner, M. A., C. L. Everett, W. J. Coleman, M. M. Yang, and D. C. Youvan. 2000 Complex microbial communities inhabiting sulfide-rich black mud from marine coastal environments Biotechnology 8 1–16Google Scholar
  65. Ueda, T., Y. Suga, and T. Matsuguchi. 1995 Molecular phylogenetic analysis of a soil microbial community in a soy bean field Eur. J. Soil Sci. 46 415–421CrossRefGoogle Scholar
  66. Urakawa, H., K. Kita-Tsukamoto, and K. Ohwada. 1999 Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis Microbiology 145 3305–3315PubMedGoogle Scholar
  67. Vandekerckhove, T. T. M., A. Willems, M. Gillis, and A. Coomans. 2000 Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda, Longidoridae) J. Syst. Evol. Microbiol. 50 2197–2205CrossRefGoogle Scholar
  68. Vasilyeva, L. V. 1985 Stella, a new genus of soil prosthecobacteria, with proposals for Stella humosa sp. nov. and Stella vacuolata sp. nov Int. J. Syst. Bacteriol. 35 518–521CrossRefGoogle Scholar
  69. Ward-Rainey, N., F. A. Rainey, H. Schlesner, and E. Stackebrandt. 1995 Assignment of hitherto unidentified 16S rDNA species to a main line of descent within the domain Bacteria Microbiology 141 3247–3250CrossRefGoogle Scholar
  70. Ward-Rainey, N., F. A. Rainey, and E. Stackebrandt. 1997 The presence of a dnaK (HSP70) multigene family in members of the orders Planctomycetales and Verrucomicrobiales J. Bacteriol. 179 6360–6366PubMedGoogle Scholar
  71. Wise, M. G., J. V. McArthur, and L. J. Shimkets. 1997 Bacterial diversity of a Carolina bay as determined by 16S rRNA gene analysis: Confirmation of novel taxa Appl. Environ. Microbiol. 63 1505–1514PubMedGoogle Scholar
  72. Zoetendal, E. G., C. M. Plugge, A. D. Akkermans, and W. M. de Vos. 2003 Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces Int. J. Syst. Evol. Microbiol. 53 211–215PubMedCrossRefGoogle Scholar
  73. Zwart, G., R. Huismans, M. P. van Agterveld, Y. van de Peer, P. De Rijk, H. Eenhoorn, G. Muyzer, E. J. van Hannen, H. J. Gons, and H. J. Laanbroek. 1998 Divergent members of the bacterial division Verrucomicrobiales in a temperate freshwater lake FEMS Microbiol. Ecol. 25 159–169Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Heinz Schlesner
  • Cheryl Jenkins
  • James T. Staley

There are no affiliations available

Personalised recommendations