The Genus Thermomicrobium

  • Jerome J. Perry


Thermomicrobium roseum (ATCC 27502), the sole representative of a phylogenetically distinct branch of the eubacteria, is an obligate thermophile originally isolated from the effluent of a hot spring in Yellowstone National Park, WY (Jackson et al., 1973). The grouping of T. roseum with the green nonsulfur (GNS) bacteria is based on ribosomal RNA sequence comparisons (Oyaizu et al., 1987). The sequence of 5S rRNA from T. roseum (Van den Eynde et al., 1990) affirms that it should be clustered with Chloroflexus. Herpetosiphon and Chloroflexus, the other representatives in this branch, are markedly different phenotypically from T. roseum (for a review see Kristjansson and Alfredsson, 1992). Although the GNS bacteria share some common ribosomal characters, they are the progeny of a deep phylogenetic divergence (Gibson et al., 1985); Herpetosiphon is a mesophile and more rapidly evolving than either Chloroflexus or Thermomicrobium. The deepest branching in eubacterial evolution...


Methyl Viologen Deionized Distil Water Diaminopimelic Acid Muramic Acid Substrate Utilization Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Achenbach-Richter, A., R. Gupta, K. O. Stetter, and C. R. Woese. 1987 Were the original eubacteria thermophiles? System. Appl. Microbiol. 9 34–39CrossRefGoogle Scholar
  2. Allen, M. B. 1959 Studies with Cyanidium caldarium, an anomously pigmented chlorophyte Arch. Microbiol. 32 270–277Google Scholar
  3. Allgood, G. S., and J. J. Perry. 1985a Paraquat toxicity and effect of hydrogen peroxide on thermophilic bacteria J. Free Rad. Biol. Med. 1 233–237CrossRefGoogle Scholar
  4. Allgood, G. S., and J. J. Perry. 1985b Oxygen defense systems in obligately thermophilic bacteria Can. J. Microbiol. 31 1006–l010PubMedCrossRefGoogle Scholar
  5. Allgood, G. S., and J. J. Perry. 1986 Effect of methyl viologen and oxygen concentration on thermophilic bacteria J. Basic Microbiol. 26 379–382CrossRefGoogle Scholar
  6. Castenholz, R. W. 1969 Thermophilic blue-green algae and the thermal environment Bacteriol. Rev. 33 476–504PubMedGoogle Scholar
  7. Gibson. J., W. Ludwig, E. Stackebrandt, and C. R. Woese. 1985 The phylogeny of the green photosynthetic bacteria: Absence of a close relationship between Chlorobium and Chloroflexus System. Appl. Microbiol. 6 152–156CrossRefGoogle Scholar
  8. Gribaldo, S., V. Lumia, R. Creti, E.C. deMacario, A. Sanangelantoni, and P. Cammarano. 1999 Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 to suggest a novel outlook on phylogenies inferred from this protein J. Bacteriol. 181 434–443PubMedGoogle Scholar
  9. Gupta, R. S., K. Bustard, M. Falah, and D. Singh. 1997 Sequencing of heat shock protein 70 (DnaK) homologs from Deinococcus proteolyticus and Thermomicrobium roseum and their integration in a protein-based phylogeny of prokaryotes J. Bacteriol. 179 345–357PubMedGoogle Scholar
  10. Haas, E. S., and J. W. Brown. 1998 Evolutionary variation in bacterial RNase P RNAs Nucleic Acids Res. 26 4093–4099PubMedCrossRefGoogle Scholar
  11. Hamana, K., S. Matsuzaki, M. Niitsu, and K. Samejima. 1990 Pentamines and hexaamine are present in a thermophilic eubacterium, Thermomicrobium roseum FEMS Microbiol. Lett. 68 31–34CrossRefGoogle Scholar
  12. Jackson, T. J., R. F. Ramaley, and W. G. Meinschein. 1973 Thermomicrobium, a new genus of extremely thermophilic bacteria Int. J. Syst. Bacteriol. 23 28–36CrossRefGoogle Scholar
  13. Kristjansson, J. K., and G. A. Alfredsson. 1992 The heterotrophic, thermophilic genera Thermomicrobium, Rhodothermus, Saccharococcus, Acidothermus, and Scotothermus In: J. K. Kristjansson (Ed.) Thermophilic Bacteria CRC Press Boca Raton FL 63–76Google Scholar
  14. Merkel, G. J., S.S. Stapleton, and J. J. Perry. 1978 Isolation and peptidoglycan of Gram-negative hydrocarbon-utilizing thermophilic bacteria J. Gen. Microbiol. 109 141–148CrossRefGoogle Scholar
  15. Merkel. G. J., D. R. Durham, and J. J. Perry. 1980 The atypical celI wall composition of Thermomicrobium roseum Can. J. Microbiol. 26 556–559PubMedCrossRefGoogle Scholar
  16. Oyaizu, H., D. Debrunner-Vossbrinck, L. Mandelco. J. A. Studier, and C. R. Woese. 1987 The green non-sulfur bacteria: A deep branching in the eubacterial line of descent System. Appl. Microbiol. 9 47–53CrossRefGoogle Scholar
  17. Phillips, W. E., and J. J. Perry. 1976 Thermomicrobium fosteri sp. nov., a hydrocarbon-utilizing obligate thermophile Int. J. System. Bacteriol. 26 220–225CrossRefGoogle Scholar
  18. Pond, J. L., T. A. Langworthy, and G. Holzer. 1986 Long-chain diols: a new class of membrane lipids from a thermophilic bacterium Science 231 1134–1136PubMedCrossRefGoogle Scholar
  19. Pond, J. L., and T. A. Langworthy. 1987 Effect of growth temperature on the long-chain diols and fatty acids of Thermomicrobium roseum J. Bacteriol. 169 1328–1330PubMedGoogle Scholar
  20. Ramaley, R. F., F. R. Turner, L. E. Malick, and R. B. Wilson. 1978 The morphology and surface structure of some extremely thermophilic bacteria found in slightly alkaline hot springs In: S. M. Friedman (Ed.) Biochemistry of Thermophily Academic Press New York NY 89–102CrossRefGoogle Scholar
  21. Van den Eynde, H., Y. Van de Peer, J. Perry, and R. De Wachter. 1990 5S rRNA sequences of representatives of the genera Chlorobium, Prosthecochloris, Thermomicrobium, Cytophaga, Flavobacterium, Flexibacter, and Saprospira, and a discussion of the evolution of eubacteria in general J. Gen. Microbiol. 136 11–18PubMedCrossRefGoogle Scholar
  22. Wait, R., L. Carreto, M. F. Nobre, A. M. Ferreira, and M. S. Da Costa. 1997 Characterization of long-chain 1,2-diols in Thermus species and demonstration that Thermus strains contain both glycerol-linked and diol-linked glycolipids J. Bacteriol. 179 6154–6162PubMedGoogle Scholar
  23. Zeng, Y. B., D. M. Ward, S. C. Brassell, and G. Eglinton. 1992 Biogeochemistry of hot spring environments 3: Apolar and polar lipids in the biologically active layers of a cyanobacterial mat Chem. Geol. 95 347–360CrossRefGoogle Scholar
  24. Zarilla, K. A., and J. J. Perry. 1986 Deoxyribonucleic acid homology and other comparisons among obligately thermophilic hydrocarbonoclastic bacteria, with a proposal for Thermoleophilum minutum sp. nov Int. J. Syst. Bacteriol. 36 13–16CrossRefGoogle Scholar
  25. Zarilla, K. A., and J. J. Perry. 1987 Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore forming bacteria System. Appl. Microbiol. 9 258–264CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jerome J. Perry

There are no affiliations available

Personalised recommendations