Advertisement

The Family Chloroflexaceae

  • Satoshi Hanada
  • Beverly K. Pierson

Introduction

The first multicellular filamentous anoxygenic phototrophic bacterium was discovered in thermal environments (Pierson and Castenholz, 1971) and was soon described as a new genus and species with the name of “Chloroflexus aurantiacus” (Pierson and Castenholz, 1974a). The organism showed gliding motility and contained pigment-bearing vesicles called “chlorosomes.” Chlorosomes are generally observed in green sulfur bacteria that are strictly anaerobic phototrophs sensitive to oxygen. The pigment-bearing vesicles in Chloroflexus aurantiacus were very similar, both structurally and functionally, to those in green sulfur bacteria (Schmidt, 1980a). Aside from this pigment resemblance, however, significant differences were found between the filamentous organism and green sulfur bacteria. In addition, this new phototroph apparently differed in many phenotypic characteristics from purple bacteria, which is another type of anoxygenic photosynthetic bacteria. Therefore, the new...

Keywords

Purple Bacterium Green Sulfur Bacterium Hypersaline Environment Evaporation Pond Blue Copper Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Avissar, Y. J., J. G. Ormerod, and S. I. Beale. 1989 Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups Arch. Microbiol. 151 513–519PubMedCrossRefGoogle Scholar
  2. Baker, E. N. 1988 Structure of azurin from Alcaligenes denitrificans: Refinement at 1.8 å resolution and comparison of the two crystallographically independent molecules J. Molec. Biol. 203 1071–1095PubMedCrossRefGoogle Scholar
  3. Becker, M., V. Nagarajan, D. Middendorf, W. W. Parson, J. E. Martin, and R. E. Blankenship. 1991 Temperature-dependence of the initial electoron-transfer kinetics in photosynthetic reaction centers of Chloroflexus aurantiacus Biochem. Biophys. Acta. 1057 299–312CrossRefGoogle Scholar
  4. Blankenship, R. E., R. Feick, B. C. Bruce, C. Kirmaier, D. Holten, and R. C. Fuller. 1983 Primary photochemistry in the facultative green photosynthetic bacterium Chloroflexus aurantiacus J. Cell. Biol. 22 251–261Google Scholar
  5. Blankenship, R. E., L. J. Mancino, R. Feick, R. C. Fuller, J. Machnicki, H. A. Frank, C. Kirmaier, and D. Holten. 1984 Primary photochemistry and pigment composition of reaction centers isolated from the green photosynthetic bacterium Chloroflexus aurantiacus In: C. Sybesma (Ed.) Advances in Photosynthesis Research M. Nijhoff/Dr. W. Junk The Hague, The Netherlands 203–206Google Scholar
  6. Blankenship, R. E. 1992 Origin and early evolution of photosynthesis Photosynth. Res. 33 91–111PubMedCrossRefGoogle Scholar
  7. Bond, C. S., R. E. Blankenship, H. C. Freeman, J. M. Guss, M. J. Maher, F. M. Selvaraj, M. C. Wilce, and K. M. Willingham. 2001 Crystal structure of auracyanin, a “blue” copper protein from the green thermophilic photosynthetic bacterium Chloroflexus aurantiacus J. Molec. Biol. 306 47–67PubMedCrossRefGoogle Scholar
  8. Boomer, S. M., B. K. Pierson, R. Austinhirst, and R. W. Castenholz. 2000 Characterization of novel bacteriochlorophyll-a-containing red filaments from alkaline hot springs in Yellowstone National Park Arch. Microbiol. 174 152–161PubMedCrossRefGoogle Scholar
  9. Boomer, S. M., D. P. Lodge, B. E. Dutton, and B. K. Pierson. 2002 Molecular characterization of novel red green nonsulfur bacteria from five distinct hot spring communities in Yellowstone National Park Appl. Environ. Microbiol. 68 346–355PubMedCrossRefGoogle Scholar
  10. Borrego, C. M., J. Garcia-Gil, X. P. Cristina, X. Vila, and C. A. Abella. 1998 Occurrence of new bacteriochlorophyll d forms in natural populations of green photosynthetic sulfur bacteria FEMS Microbiol. Ecol. 26 257–267CrossRefGoogle Scholar
  11. Brock, T. D. 1978 Thermophilic Microorganisms and Life at High Temperatures Springer-Verlag New York, NYCrossRefGoogle Scholar
  12. Brune, D. C., G. H. King, A. Infosino, T. Steiner, M. L. W. Thewalt, and R. E. Blankenship. 1987 Antenna organization in green photosynthetic bacteria. 2: Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus Biochemistry 26 8652–8658PubMedCrossRefGoogle Scholar
  13. Castenholz, R. W. 1973 The possible photosynthetic use of sulfide by the filamentous phototrophic bacteria of hot springs Limnol. Oceanogr. 18 863–876CrossRefGoogle Scholar
  14. Castenholz, R. W. 1982 Motility and taxes In: N. G. Carr and B. A. Whitton (Eds.) The Biology of Cyanobacteria University of California Press Los Angeles, CA 413–439Google Scholar
  15. Castenholz, R. W. 1984 Composition of hot spring microbial mats: A summary In: Y. Cohen, R. W. Castenholz, and H. O. Halvorson (Eds.) Microbial Mats: Stromatolites Alan R. Liss New York, NY 101–119Google Scholar
  16. Castenholz, R. W. 1988a Culturing methods (cyanobacteria) In: L. Packer and A. N. Glazer (Eds.) Methods in Enzymology: Cyanobacteria Academic Press San Diego, CA 68–93CrossRefGoogle Scholar
  17. Castenholz, R. W. 1988b The green sulfur and nonsulfur bacteria of hot springs In: J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. Trüper (Eds.) Green Photosynthetic Bacteria Plenum Press New York, NY 243–255CrossRefGoogle Scholar
  18. Castenholz, R. W., and B. K. Pierson. 1995 Ecology of thermophilic anoxygenic phototrophs In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht, The Netherlands 87–103Google Scholar
  19. Castenholz, R. W. 2001 Class I: “Chloroflexi” In: D. R. Boone, R. W. Castenholz, and G. M. Garrity (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York, NY 1 427Google Scholar
  20. D’Amelio, E. D., Y. Cohen, and D. J. Des Marais. 1987 Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats Arch. Microbiol. 147 213–220PubMedCrossRefGoogle Scholar
  21. D’Amelio, E. D., Y. Cohen, and D. J. Des Marais. 1989 Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Gueerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt In: Y. Cohen and E. Rosenberg (Eds.) Microbial Mats: Physiological Ecology of Benthic Microbial Communities American Society for Microbiology Washington, DC 97–113Google Scholar
  22. Dubinina, G. A., and V. M. Gorlenko. 1975 New filamentous photosynthetic green bacteria containing gas vacuoles Microbiology 44 452–458Google Scholar
  23. Ehrenreich, A., and F. Widdel. 1994 Anaerobic oxidation of ferrous iron by purple bacteria, a new-type of phototrophic metabolism Appl. Environ. Microbiol. 60 4517–4526PubMedGoogle Scholar
  24. Eisenreich, W., G. Strauss, U. Werz, G. Fuchs, and A. Bacher. 1993 Retrobiosynthetic analysis of carbon fixation in the phototrophic eubacterium Chloroflexus aurantiacus FEBS Eur. J. Biochem. 215 619–632CrossRefGoogle Scholar
  25. Feick, R. G., M. Fitzpatrick, and R. C. Fuller. 1982 Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus J. Bacteriol. 150 905–915PubMedGoogle Scholar
  26. Garcia-Pichel, F., M. Mechling, and R. W. Castenholz. 1994 Diel migrations of microorganisms within a benthic, hypersaline mat community Appl. Environ. Microbiol. 60 1500–1511PubMedGoogle Scholar
  27. Garcia-Pichel, F., U. Nübel, and G. Muyzer. 1998 The phylogeny of unicellular, extremely halotolerant cyanobacteria Arch. Microbiol. 169 469–482PubMedCrossRefGoogle Scholar
  28. Garrity, G. M., and J. G. Holt. 2001 Phylum BVI: Chloroflexi phy. nov In: D. R. Boone, R. W. Castenholz, and G. M. Garrity (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York, NY 1 427CrossRefGoogle Scholar
  29. Gich, F., J. Garcia-Gil, and J. Overmann. 2001 Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes Arch. Mikrobiol. 177 1–10Google Scholar
  30. Giovannoni, S. J., N. P. Revsbech, D. M. Ward, and R. W. Castenholz. 1987 Obligately phototrophic Chloroflexus: primary production in anaerobic hot spring microbial mats Arch. Microbiol. 147 80–87CrossRefGoogle Scholar
  31. Gorlenko, V. M. 1976 Characteristics of filamentous phototrophic bacteria from freshwater lakes Microbiology 44 682–684Google Scholar
  32. Gorlenko, V. M., and T. A. Pivovarova. 1977 On the belonging of bluegreen alga Oscillatoria coerulescens Gicklhorn, 1921 to a new genus of Chlorobacteria Oscillochloris nov. gen Izv. Akad. Nauk SSSR, Ser. Biol. 3 396–409Google Scholar
  33. Gorlenko, V. M., and S. A. Korotkov. 1979a Morphological and physiological features of the new filamentous gliding green bacterium Oscillochloris trichoides nov. comb Izv. Acad. Nauk. Uzb. SSSR Ser. Biol. 5 848–857Google Scholar
  34. Gorlenko, V. M., and S. I. Lokk. 1979b Vertical distribution and characteristics of the species composition of microorganisms from some stratified Estonian lakes Mikrobiologiya 48 351–359Google Scholar
  35. Gorlenko, V. M. 1988 Ecological niches of green sulfur and gliding bacteria In: J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. Trüper (Eds.) Green Photosynthetic Bacteria Plenum Press New York, NY 257–267CrossRefGoogle Scholar
  36. Gorlenko, V. M. 1989a Genus “Oscillochloris.” In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 1703–1706Google Scholar
  37. Gorlenko, V. M., and B. K. Pierson. 2001 Genus II: Chloronema In: D. R. Boone, R. W. Castenholz, and G. M. Garrity (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York, NY 1 437–438Google Scholar
  38. Gruber, T. M. and D. A. Bryant. 1997 Molecular systematic studies of Eubacteria, using 70-type sigma factors of group 1 and group 2 J. Bacteriol. 179 1734–1747PubMedGoogle Scholar
  39. Gruber, T. M., and D. A. Bryant. 1998a Characterization of the group 1 and group 2 sigma factors of the green sulfur bacterium Chlorobium tepidum and the green non-sulfur bacterium Chloroflexus aurantiacus Arch. Microbiol. 170 285–296PubMedCrossRefGoogle Scholar
  40. Gruber, T. M., J. A. Eisen, K. Gish, and D. A. Bryant. 1998b Phylogenetic relationships of Chlorobium tepidum and Chloroflexus aurantiacus based upon their RecA sequences FEMS Microbiol. Lett. 162 53–60PubMedCrossRefGoogle Scholar
  41. Gupta, R. S., T. Mukhtar, and B. Singh. 1999 Evolutionary relationships among photosynthetic prokarytoes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum, and proteobacteria): Implications regarding the origin of photosynthesis Molec. Microbiol. 32 893–906CrossRefGoogle Scholar
  42. Halfen, L. N., B. K. Pierson, and G. W. Francis. 1972 Carotenoids of a gliding organism containing bacteriochlorophylls Arch. Mikrobiol. 82 240–246CrossRefGoogle Scholar
  43. Hanada, S., A. Hiraishi, K. Shimada, and K. Matsuura. 1995a Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell agregates by active gliding movement Int. J. Syst. Bacteriol. 45 676–681PubMedCrossRefGoogle Scholar
  44. Hanada, S., A. Hiraishi, K. Shimada, and K. Matsuura. 1995b Isolation of Chloroflexus sp. and related thermophilic photosynthetic bacteria from hot springs using an improved isolation procedure J. Gen. Appl. Microbiol. 41 119–130CrossRefGoogle Scholar
  45. Hanada, S., K. Shimada, and K. Matsuura. 2002b Active and energy-dependent rapid formation of cell aggregates in the thermophilic photosynthetic bacterium Chloroflexus aggregans FEMS Microbiol. Lett. 208 275–279PubMedCrossRefGoogle Scholar
  46. Hanada, S., S. Takaichi, M. K., and N. K. 2002b Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium which lacks chlorosomes Int. J. Syst. Evol. Microbiol. 52 187–193PubMedCrossRefGoogle Scholar
  47. Heda, G. D., and M. T. Madigan. 1986 Utilization of amino acids and lack of diazotrophy in the thermophilic anoxygenic phototroph Chloroflexus aurantiacus J. Gen. Microbiol. 132 2469–2473Google Scholar
  48. Heising, S., L. Richter, W. Ludwig, and B. Schink. 1999 Chlorobium ferrooxidans sp nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp strain Arch. Microbiol. 172 116–124PubMedCrossRefGoogle Scholar
  49. Holo, H., and R. Sirevåg. 1986 Autotrophic growth and CO2 fixation of Chloroflexus aurantiacus Arch. Microbiol. 145 173–180CrossRefGoogle Scholar
  50. Holo, H. 1989 Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate Arch. Microbiol. 151 252–256CrossRefGoogle Scholar
  51. Ivanovsky, R. N., E. N. Krasil’nikova, and Y. G. Fal. 1993 A pathway of the autotrophic CO2 fixation in Chloroflexus aurantiacus Arch. Microbiol. 159 257–264CrossRefGoogle Scholar
  52. Ivanovsky, R. N., Y. I. Fal, I. A. Berg, N. V. Ugolkova, E. N. Krasilnikova, O. I. Keppen, L. M. Zakharchuc, and A. M. Zyakun. 1999 Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6 Microbiology 145 1743–1748PubMedCrossRefGoogle Scholar
  53. Jürgens, U. J., J. Meiszner, U. Fischer, W. A. König, and J. Weckesser. 1987 Ornithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f. thiosulfatophilum Arch. Microbiol. 148 72–76CrossRefGoogle Scholar
  54. Jørgensen, B. B., and D. C. Nelson. 1988 Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland Microb. Ecol. 16 133–147CrossRefGoogle Scholar
  55. Kaulen, H., and J.-H. Klemme. 1983 No evidence of covalent modification of glutamine synthetase in the thermophilic phototrophic bacterium Chloroflexus aurantiacus FEMS Microbiol. Lett. 20 75–79CrossRefGoogle Scholar
  56. Kenyon, C. N., and A. M. Gray. 1974 Preliminary analysis of lipids and fatty acids of green bacteria and Chloroflexus aurantiacus J. Bacteriol. 120 131–138PubMedGoogle Scholar
  57. Keppen, O. I., N. V. Lebedeva, O. Y. Troshina, and Y. V. Rodionov. 1989 The nitrogenase activity of a filamentous phototrophic green bacterium Mikrobiologiya 58 520–521Google Scholar
  58. Keppen, O. I., O. I. Baulina, A. M. Lysenko, and E. N. Kondrat’eva. 1993 New green bacterium belonging to family Chloroflexaceae Mikrobiologiya 62 179–185Google Scholar
  59. Keppen, O. I., O. I. Baulina, and E. N. Kondratieva. 1994 Oscillochloris trichoides neotype strain DG-6 Photosynth. Res. 41 29–33CrossRefGoogle Scholar
  60. Keppen, O. I., T. P. Tourova, B. B. Kuznetsov, R. N. Ivanovsky, and V. M. Gorlenko. 2000 Proposal of Oscillochloridaceae fam. nov. on the basis of a phylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochloris and Oscillochloris trichoides in comparison with further new isolates Int. J. Syst. Evol. Microbiol. 50 1529–1537PubMedCrossRefGoogle Scholar
  61. Kern, M., and J.-H. Klemme. 1989 Inhibition of bacteriochlorophyll biosynthesis by gabaculin (3-amino,2,3-dihydrobenzoic acid) and presence of an enzyme of the C5-pathway of d-aminolevulinate synthesis in Chloroflexus aurantiacus Z. Naturforsch. 44c 77–80Google Scholar
  62. Kirmaier, C., D. Holten, R. Feick, and R. E. Blankenship. 1983 Picosecond measurements of the primary photochemical events in reaction centers isolated from the facultative green photosynthetic bacterium Chloroflexus aurantiacus: Comparison with the purple bacterium Rhodopseudomonas sphaeroides FEBS Lett. 158 73–78CrossRefGoogle Scholar
  63. Klemme, J.-H., G. Laakmann-Ditges, and J. Mertschuweit. 1988 Ammonia assimulation and amino acid metabolism in Chloroflexus aurantiacus In: J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. Trüper (Eds.) Green Photosynthetic Bacteria Plenum Press New York, NY 173–174CrossRefGoogle Scholar
  64. Klemme, J.-H. 1989 Organic nitrogen metabolism of phototrophic bacteria Ant. v. Leeuwenhoek 55 197–219CrossRefGoogle Scholar
  65. Knaff, D. B., R. M. Wynn, T. E. Redlinger, R. E. Blankenship, J. M. Foster, R. W. Shaw, and R. C. Fuller. 1988 Electron transport chains of phototrophically and chemotrophically grown Chloroflexus aurantiacus In: J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. Trüper (Eds.) Green Photosynthetic Bacteria Plenum Press New York, NY 145–147CrossRefGoogle Scholar
  66. Knudsen, E., E. Jantzen, K. Bryn, J. G. Ormerod, and R. Sirevåg. 1982 Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus Arch. Microbiol. 132 149–154CrossRefGoogle Scholar
  67. Kondrat’eva, E. N., and E. N. Krasil’nikova. 1988 Utilization of thiosulfate by Chloroflexus aurantiacus Microbiology 57 291–294Google Scholar
  68. Krasil’nikova, E. N., O. I. Keppen, V. M. Gorlenko, and E. N. Kondrat’eva. 1986 Growth of Chloroflexus aurantiacus on media with different organic compounds and pathways of their metabolism Microbiology 55 325–329Google Scholar
  69. Krasil’nikova, E. N. 1987a ATP Sulfurylase activity in Chloroflexus aurantiacus and other photosynthesizing bacteria as a function of temperature Microbiology 55 418–421Google Scholar
  70. Krasil’nikova, E. N., and E. N. Kondrat’eva. 1987b Growth of Chloroflexus aurantiacus under anaerobic conditions in the dark and the metabolism of organic substrates Microbiology 56 281–285Google Scholar
  71. Laakmann-Ditges, G., and J.-H. Klemme. 1986 Occurrence of two L-threonine (L-serine) dehydratases in the thermophile Chloroflexus aurantiacus Arch. Microbiol. 144 219–221CrossRefGoogle Scholar
  72. Laakmann-Ditges, G., and J.-H. Klemme. 1988 Amino acid metabolism in the thermophilic phototroph, Chloroflexus aurantiacus: properties and metabolic role of two L-threonine (L-serine) dehydratases Arch. Microbiol. 149 249–254CrossRefGoogle Scholar
  73. Løken, ø., and R. Sirevåg. 1982 Evidence for the presence of the glyoxylate cycle in Chloroflexus Arch. Microbiol. 132 276–279CrossRefGoogle Scholar
  74. Mack, E. E., and B. K. Pierson. 1988 Preliminary characterization of a temperate marine member of the Chloroflexaceae In: J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. Trüper (Eds.) Green Photosynthetic Bacteria Plenum Publishing New York, NY 237–241CrossRefGoogle Scholar
  75. Madigan, M. T., S. R. Petersen, and T. D. Brock. 1974 Nutritional studies on Chloroflexus, a filamentous photosynthetic, gliding bacterium Arch. Microbiol. 100 97–103CrossRefGoogle Scholar
  76. Madigan, M. T., and T. D. Brock. 1975 Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic gliding bacterium J. Bacteriol. 122 782–784PubMedGoogle Scholar
  77. Madigan, M. T., and T. D. Brock. 1977a CO2 fixation in photosynthetically-grown Chloroflexus aurantiacus FEMS Microbiol. Lett. 1 301–304CrossRefGoogle Scholar
  78. Malik, K. A. 1998 Preservation of Chloroflexus by deep-freezing and liquid-drying methods J. Microbiol. Meth. 32 73–77CrossRefGoogle Scholar
  79. McManus, J. D., D. C. Brune, J. Han, J. Sanders-Loehr, T. E. Meyer, M. A. Cusanovich, G. Tollin, and R. E. Blankenship. 1992 Isolation, characterization, and amino acid sequences of auracyanins, blue copper proteins from the green photosynthetic bacterium Chloroflexus aurantiacus J. Biol. Chem. 267 6531–6540PubMedGoogle Scholar
  80. Menendez, C., Z. Bauer, H. Huber, N. Gad’on, K. O. Stetter, and G. Fuchs. 1999 Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation J. Bacteriol. 181 1088–1098PubMedGoogle Scholar
  81. Mulkidjanian, A., G. Venturoli, A. Hochkoeppler, D. Zannoni, B. A. Melandri, and L. Drachev. 1998 Photosynthetic electrogenic events in native membranes of chloroflexus-aurantiacus—flash-induced charge displacements within the reaction-center cytochrome c(554) complex Photosynth. Res. 41 35–143Google Scholar
  82. Nozawa, T., and M. T. Madigan. 1991 Temperature and solvent effects on reaction centers from Chloroflexus aurantiacus and Chromatium tepidum J. Bacteriol. 110 588–594Google Scholar
  83. Nübel, U., M. M. Bateson, M. T. Madigan, M. Kuhl, and D. M. Ward. 2001 Diversity and distribution in hypersaline microbial mats of bacteria related to Chloroflexus spp Appl. Environ. Microbiol. 67 4365–4371PubMedCrossRefGoogle Scholar
  84. Oelze, J., and R. C. Fuller. 1983 Temperature dependence of growth and membrane-bound activities of Chloroflexus aurantiacus energy metabolism J. Bacteriol. 155 90–96PubMedGoogle Scholar
  85. Oelze, J., and R. C. Fuller. 1987 Growth rate and control of development of the photosynthetic apparatus in Chloroflexus aurantiacus Arch. Microbiol. 148 132–136CrossRefGoogle Scholar
  86. Oelze, J. 1992a Light and oxygen regulation of the synthesis of bacteriochlorophylls a and c in Chloroflexus aurantiacus J. Bacteriol. 174 5021–5026PubMedGoogle Scholar
  87. Oelze, J., and B. Söntgerath. 1992b Differentiation of the photosynthetic apparatus of Chloroflexus aurantiacus depending on growth with different amino acids Arch. Microbiol. 157 141–147Google Scholar
  88. Ohmori, K., M. Hirose, and M. Ohmori. 1992 Function of cAMP as a mat-forming factor in the cyanobacterium Spirulina platensis Plant Cell Physiol. 33 21–25Google Scholar
  89. Ovchinnikov, Y. A., N. G. Abdulaev, B. E. Shmukler, A. A. Zargarov, M. A. Kutuzov, I. N. Telezhinskaya, N. B. Levina, and A. S. Zolotarev. 1988a Photosynthetic reaction centre of Chloroflexus aurantiacus. II. Primary structure of M-subunit FEBS Lett. 232 364–368PubMedCrossRefGoogle Scholar
  90. Ovchinnikov, Y. A., N. G. Abdulaev, A. S. Zolotarev, B. E. Shmukler, A. A. Zargarov, M. A. Kutuzov, I. N. Telezhinskaya, and N. B. Levina. 1988b Photosynthetic reaction centre of Chloroflexus aurantiacus. I: Primary structure of L-subunit FEBS Lett. 231 237–242PubMedCrossRefGoogle Scholar
  91. Oyaizu, H., B. Devrunner-Vossbrinck, L. Mandelko, J. A. Studier, and C. R. Woese. 1987 The green non-sulfur bacteria: a deep branching in the eubacterial line of descent System. Appl. Microbiol. 9 47–53CrossRefGoogle Scholar
  92. Palmisano, A. C., S. E. Cronin, E. D. D’Amelio, E. Munoz, and D. J. Des Marais. 1989 Distribution and survival of lipophilic pigments in a laminated microbial mat community near Guerrero Negro, Mexico In: Y. Cohen and E. Rosenberg (Eds.) Microbial Mats: Physiological Ecology of Benthic Microbial Communities American Society for Microbiology Washington, DC 138–152Google Scholar
  93. Pentecost, A. 1995 The micribial ecology of some italian hot-spring travertines Microbios 81 45–58Google Scholar
  94. Pfennig, N. 1989 Multicellular filamentous green bacteria In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 3 1697–1707Google Scholar
  95. Pfennig, N., and H. G. Trüper. 1992 The family Chlomatiaceae In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York, NY 3200–3221Google Scholar
  96. Pierson, B. K., and R. W. Castenholz. 1971 Bacteriochlorophylls in gliding filamentous prokaryotes from hot springs Nature 223 25–27Google Scholar
  97. Pierson, B. K., and R. W. Castenholz. 1974a A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov Arch. Microbiol. 100 5–24PubMedCrossRefGoogle Scholar
  98. Pierson, B. K., and R. W. Castenholz. 1974b Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium Arch. Microbiol. 100 283–305CrossRefGoogle Scholar
  99. Pierson, B. K., and J. P. Thornber. 1983 Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-fl Proc. Natl. Acad. Sci. USA 80 80–84PubMedCrossRefGoogle Scholar
  100. Pierson, B. K., S. J. Giovannoni, and R. W. Castenholz. 1984a Physiological ecology of a gliding bacterium containing bacteriochlorophyll a Appl. Environ. Microbiol. 47 576–584PubMedGoogle Scholar
  101. Pierson, B. K., L. M. Keith, and J. G. Leovy. 1984b Isolation of pigmentation mutants of the green filamentous photosynthetic bacterium Chloroflexus aurantiacus J. Bacteriol. 159 576–584Google Scholar
  102. Pierson, B. K. 1985a Cytochromes in Chloroflexus aurantiacus grown with and without oxygen Arch. Microbiol. 143 260–265CrossRefGoogle Scholar
  103. Pierson, B. K., S. J. Giovannoni, D. A. Stahl, and R. W. Castenholz. 1985b Heliothrix oregonensis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a Arch. Microbiol. 142 164–167PubMedCrossRefGoogle Scholar
  104. Pierson, B. K., D. Valdez, M. Larsen, E. Morgan, and E. E. Mack. 1994 Chloroflexus-like organisms from marine and hypersaline environments: Distribution and diversity Photo. Res. 41 35–52CrossRefGoogle Scholar
  105. Pierson, B. K., and R. W. Castenholz. 1995 Taxonomy and physiology of filamentous anoxygenic phototrophs In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht, The Netherlands 31–47Google Scholar
  106. Pierson, B. K., and M. T. Parenteau. 2000 Phototrophs in high iron microbial mats: microstructure of mats in iron-depositing hot springs FEMS Microbiol. Lett. 32 181–196CrossRefGoogle Scholar
  107. Pierson, B. K. 2001 Family I: “Chloroflexaceae,” filamentous anoxygenic phototrophic bacteria In: D. R. Boone, R. W. Castenholz, and G. M. Garrity (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer-Verlag New York, NY 1 427–444Google Scholar
  108. Pivovarova, T. A., and V. M. Gorlenko. 1977 Fine structure of Chloroflexus aurantiacus var. mesophilus (Nom. prof.) grown in light under aerobic and anaerobic conditions Microbiology 46 276–282Google Scholar
  109. Schmidt, K. 1980a A comparative study on the composition of chlorosomes (chlorobium vesicles) and cytoplasimic membranes from Chloroflexus aurantiacus strain OK-70-fl and Chlorobium limicola f. thiosulfatophilum strain 6230 Arch. Microbiol. 124 21–31CrossRefGoogle Scholar
  110. Schmidt, K., M. Maarzahl, and F. Mayer. 1980b Development and pigmentation of chlorosomes in Chloroflexus aurantiacus strain Ok-70-fl Arch. Microbiol. 127 87–97CrossRefGoogle Scholar
  111. Shiozawa, J. A., F. Lottspeich, and R. Feick. 1987 The photochemical reaction center of Chloroflexus aurantiacus is composed of two structurally similar polypeptides Eur. J. Biochem. 167 595–600PubMedCrossRefGoogle Scholar
  112. Shiozawa, J. A., F. Lottspeich, D. Oesterhelt, and R. Feick. 1989 The primary structure of the Chloroflexus aurantiacus reaction-center polypeptides Eur. J. Biochem. 180 75–84PubMedCrossRefGoogle Scholar
  113. Shiozawa, J. A. 1995 A foundation for the genetic analysis of green sulfur, green filamentous and heliobacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht, The Netherlands 1159–1173Google Scholar
  114. Sugiura, M., M. Takano, S. Kawakami, T. K., and S. Hanada. 2001 Application of a portable spectrophotometer to microbial mat studies: Temperature dependence of the distribution of cyanobacteria and photosynthetic bacteria in hot spring water Microb. Environ. 16 255–261CrossRefGoogle Scholar
  115. Sirevåg, R., and R. W. Castenholz. 1979 Aspects of carbon metabolism in Chloroflexus Arch. Microbiol. 120 151–153CrossRefGoogle Scholar
  116. Speelmans, G., D. Hillenga, B. Poolman, and W. N. Konings. 1993 Application of thermostable reaction centers from Chloroflexus aurantiacus as a proton motive force generating system Biochim. Biophys. Acta 1142 269–276CrossRefGoogle Scholar
  117. Sprague, S. G., L. A. Staehelin, M. J. DiBartolomeis, and R. C. Fuller. 1981a Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus J. Bacteriol. 147 1021–1031PubMedGoogle Scholar
  118. Sprague, S. G., L. A. Staehelin, and R. C. Fuller. 1981b Semiaerobic induction of bacteriochlorophyll synthesis in the green bacterium Chloroflexus aurantiacus J. Bacteriol. 147 1032–1039PubMedGoogle Scholar
  119. Staehelin, L. A., J. R. Golecki, R. C. Fuller, and G. Drews. 1978 Visualization of the supramolecular architecture of chlorosomes (Chlorobium type Vesicles) in freeze-fractured cells of Chloroflexus aurantiacus Arch. Microbiol. 119 269–277CrossRefGoogle Scholar
  120. Stolz, J. F. 1983 Fine structure of the stratified microbiol community at Laguna Figueroa, Baja California, Mexico. I: Methods of in situ study of the laminated sediments Precambrian Res. 20 479–492CrossRefGoogle Scholar
  121. Stolz, J. F. 1984 Fine structure of the stratified microbiol community at Laguna Figueroa, Baja California, Mexico. II: Transmission electron microscopy as a diagnostic tool in studying microbial community in situ In: Y. Cohen, R. W. Castenholz, and H. O. Halvorson (Eds.) Microbial Mat: Stromatolites Alan R. Liss New York, NY 23–38Google Scholar
  122. Stolz, J. F. 1990 Distribution of phototrophic microbes in the flat laminated microbial mat at Laguna Figureoa, Baja, California, Mexico Biosystems 23 345–357PubMedCrossRefGoogle Scholar
  123. Strauss, G., W. Eisenreich, A. Bacher, and G. Fuchs. 1992 13C-NMR study of autotrophic CO2 fixation pathways in the sulfur-reducing Archaebacterium Thermoproteus neutrophilus and in the phototrophic Eubacterium Chloroflexus aurantiacus Eur. J. Biochem. 205 853–866PubMedCrossRefGoogle Scholar
  124. Strauss, G., and G. Fuchs. 1993 Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle FEBS Eur. J. Biochem. 215 633–643CrossRefGoogle Scholar
  125. Takaichi, S., K. Tsuji, K. Matsuura, and K. Shimada. 1995 A monocyclic carotenoid glucoside ester is a major carotenoid in the green filamentous bacterium Chloroflexus aurantiacus Plant Cell Physiol. 36 773–778Google Scholar
  126. Takaichi, S., T. Maoka, M. Yamada, K. Matsuura, Y. Haikawa, and S. Hanada. 2001 Absence of carotenes and presence of a tertiary methoxy group in a carotenoid from a thermophilic filamentous photosynthetic bacterium Roseiflexus castenholzii Plant Cell Physiol. 42 1355–1362PubMedCrossRefGoogle Scholar
  127. Trost, J. T., J. D. McManus, J. C. Freeman, B. L. Ramakrishna, and R. E. Blankenship. 1988 Auracyanin, a blue copper protein from the green photosynthetic bacterium chloroflexus-aurantiacus Biochemistry 7858–7863Google Scholar
  128. Trüper, H. G. 1976 Higher taxa of the phototrophic bacteria: Chloroflexaceae fam. nov., a family for the gliding, filamentous, phototrophic “green” bacteria Int. J. Syst. Bacteriol. 26 74–75CrossRefGoogle Scholar
  129. Tvermyr, M., B. E. Kristiansen, and T. Kristensen. 1998 Cloning, sequence analysis and expression in E-coli of the DNA polymerase I gene from Chloroflexus aurantiacus, a green nonsulfur eubacterium Genet. Anal. Tech. Appl. 14 75–83Google Scholar
  130. Van Dorssen, R. J., and J. Amesz. 1988 Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus. III: Energy transfer in whole cells Photosynth. Res. 15 177–189CrossRefGoogle Scholar
  131. Vasmel, H., and J. Amesz. 1983 Photoreduction of menaquinone in the reaction center of the green photosynthetic bacterium Chloroflexus aurantiacus Biochim. Biophys. Acta 724 118–122CrossRefGoogle Scholar
  132. Vasmel, H., J. Amesz, and A. J. Hoff. 1986 Analysis by exciton theory of the optical properties of the reaction center of Chloroflexus aurantiacus Biochim. Biophys. Acta 852 159–168CrossRefGoogle Scholar
  133. Venetskaya, S. L., and L. M. Gerasimenko. 1988 Electron-microscopic study of microorganisms in a halophilic cyanobacterial community Microbiology 57 377–383Google Scholar
  134. Wagner-Huber, R., R. Brunisholz, G. Frank, and H. Zuber. 1988 The BChlc/e-binding polypeptides from chlorosomes of green photosynthetic bacteria FEBS Lett. 239 8–12CrossRefGoogle Scholar
  135. Ward, D. M., M. J. Ferris, S. C. Nold, and M. M. Bateson. 1998 Natural view of microbial biodiversity within hot spring cyanobacterial mat communities Microbiol. Molec. Biol. Rev. 62 1353–1370Google Scholar
  136. Watanabe, Y., R. G. Feick, and J. A. Shiozawa. 1995 Cloning and sequencing of the genes encoding the light-harvesting B806-866 polypeptides and initial studies on the transcriptional organization of puf2B, puf2A and puf2C in Chloroflexus aurantiacus Arch. Microbiol. 163 124–130PubMedGoogle Scholar
  137. Wechsler, T., R. Brunisholz, F. Suter, R. C. Fuller, and H. Zuber. 1985a The complete amino acid sequence of a bacteriochlorophyll a binding polypeptide isolated from the cytoplasmic membrane of the green photosynthetic bacterium Chloroflexus aurantiacus FEBS Lett. 191 34–38CrossRefGoogle Scholar
  138. Wechsler, T., F. Suter, R. C. Fuller, and H. Zuber. 1985b The complete amino acid sequence of the bacteriochlorophyll c binding polypeptide from chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus FEBS Lett. 181 173–178CrossRefGoogle Scholar
  139. Wechsler, T. D., R. A. Brunisholz, G. Frank, F. Suter, and H. Zuber. 1987 The complete amino acid sequence of the antenna polypeptide B806-866-from the cytoplasmic membrane of the green bacterium Chloroflexus aurantiacus FEBS Lett. 210 189–194CrossRefGoogle Scholar
  140. Weller, R., M. M. Bateson, B. K. Heimbuch, Kopczynski, and D. M. Ward. 1992 Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat Appl. Environ. Microbiol. 58 3964–3969PubMedGoogle Scholar
  141. Widdel, F., and F. Bak. 1992 Gram-negative mesophilic sulfate-reducing bacteria In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York, NY 3352–3378Google Scholar
  142. Wittmershaus, B. P., D. C. Brune, and R. E. Blankenship. 1988 Energy transfer in Chloroflexus aurantiacus: Effects of temperature and anaerobic conditions In: H. Scheer and S. Schneider (Eds.) Photosynthetic Light-harvesting Systems Walter de Gruyter Press Berlin, Germany 543–554Google Scholar
  143. Wynn, R. M., T. E. Redlinger, J. M. Foster, R. E. Blankenship, R. C. Fuller, R. W. Shaw, and D. B. Knaff. 1987 Electron-transport chains of phototrophically and chemotrophically grown Chloroflexus aurantiacus Biochim. Biophys. Acta 891 216–226CrossRefGoogle Scholar
  144. Xiong, J., W. M. Fischer, K. Inoue, M. Nakahara, and C. E. Bauer. 2000 Molecular evidence for the early evolution of photosynthesis Science 289 724–1730CrossRefGoogle Scholar
  145. Zannoni, D., and W. J. Ingledew. 1985 A thermodynamic analysis of the plasma membrane electron transport components in photoheterotrophically grown cells of Chloroflexus aurantiacus FEBS Lett. 193 93–98CrossRefGoogle Scholar
  146. Zannoni, D. 1986 The branched respiratory chain of heterotrophically dark-grown Chloroflexus aurantiacus FEBS Lett. 198 119–124CrossRefGoogle Scholar
  147. Zannoni, D. 1987 The interplay between photosynthesis and respiration in facultative anoxygenic phototrophic bacteria In: S. Papa, B. Chance, and L. Ernster (Eds.) Cytochrome Systems Plenum Press New York, NY 575–583CrossRefGoogle Scholar
  148. Zannoni, D. 1995 Aerobic and anaerobic electron transport chains in anoxygenic phototrophic bacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht, The Netherlands 949–971Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Satoshi Hanada
  • Beverly K. Pierson

There are no affiliations available

Personalised recommendations