Advertisement

The Genus Thermus and Relatives

  • Milton S. Da Costa
  • Fred A. Rainey
  • M. Fernanda Nobre

Introduction

In 1969, Brock and Freeze described a thermophilic organism that they named Thermus aquaticus. Since then the bacteria of the genus Thermus have become the archetypal thermophilic bacteria even though other organisms have been described that grow at much higher temperatures. Not only are these organisms easy to grow, but some strains are transformable and are rapidly becoming the mainstays of molecular biology of thermophilic bacteria. The importance of these organisms to our knowledge of thermophilic lifestyles was recently reaffirmed by the complete genome sequencing of Thermus thermophilus HB27 (Henne et al., 2004).

This chapter should probably be entitled the “Family Thermaceae” or the “Order Thermales” as defined by us (da Costa and Rainey, 2001a; Rainey and da Costa, 2001), but we have decided to retain the title of the original chapter in The Prokaryotes as an indication of continuity and because the species of the genus Thermuscontinue to be the most studied...

Keywords

Compatible Solute Optimum Growth Temperature Geothermal Area Reduce Sulfur Compound Strain HB27 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Alfredsson, G. A., and J. K Kristjánsson. 1995 Ecology, distribution, and isolation of Thermus In: R. Sharp and R. A. D. Williams (Eds.) Thermus Species Plenum Press New York, NY 43–66CrossRefGoogle Scholar
  2. Balkwill, D. L., T. L. Kieft, T. Tsukuda, H. M. Kostandarithes, T. C. Onstott, S. Macnaughton, J. Bownas, and J. K. Fredrickson. 2004 Identification of iron-reducing Thermus strains as Thermus scotoductus Extremophiles 8 37–44PubMedCrossRefGoogle Scholar
  3. Bateson, M. M., K. J. Thibault, and D. M. Ward. 1990 Comparative analysis of 16S ribosomal RNA sequences of Thermus species Syst. Appl. Microbiol. 13 8–13CrossRefGoogle Scholar
  4. Battista, J. R., and F. A. Rainey. 2001 The genus Deinococcus In: D. R. Boone and R. W. Castenholz (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York, NY 1 396–403Google Scholar
  5. Becker, R. J., and M. J. Starzyk. 1984 Morphology and rotund body formation in Thermus aquaticus Microbios 41 115–129Google Scholar
  6. Beffa, T., M. Blanc, P.-F. Lyon, G. Vogt, M. Marchiani, J. L. Fischer, and M. Aragno. 1996 Isolation of Thermus strains from hot composts (60 to 80°C) Appl. Environ. Microbiol. 62 1723–1727PubMedGoogle Scholar
  7. Borges, N., A. Ramos, N. D. Raven, R. J. Sharp, and H. Santos. 2002 Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes Extremophiles 6 209–216PubMedCrossRefGoogle Scholar
  8. Brock, T. D., and H. Freeze. 1969 Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile J. Bacteriol. 98 289–297PubMedGoogle Scholar
  9. Brock, T. D., and M. R. Edwards. 1970 Fine structure of Thermus aquaticus, an extreme thermophile J. Bacteriol. 104 509–517PubMedGoogle Scholar
  10. Brock, T. D., and K. L. Boylen. 1973 Presence of thermophilic bacteria in laundry and domestic hot-water heater Appl. Microbiol. 25 72–76PubMedGoogle Scholar
  11. Brock, T. D. 1984 Genus Thermus In: N. R. Krieg and J. G. Holt (Eds) Bergey’s Manual of Systematic Bacteriology, 1st ed Williams & Wilkins Baltimore, MD 1 333–337Google Scholar
  12. Carreto, L., R. Wait, M. F. Nobre, and M. S. da Costa. 1996 Determination of the structure of a novel glycolipid from Thermus aquaticus 15004 and demonstration that hydroxy fatty acids are amide linked to glycolipids in Thermus spp J. Bacteriol. 178 6479–6486PubMedGoogle Scholar
  13. Castenholz, R. W. 1969 Thermophilic blue-green algae and the thermal environment Bacteriol. Rev. 33 476–504PubMedGoogle Scholar
  14. Castón, J. R., J. L. Carrascosa, M. A. de Pedro, and J. Berenguer. 1988 Identification of a crystalline surface layer on the cell envelope of the thermophilic eubacterium Thermus thermophilus FEMS Microbiol. Lett. 51 225–230CrossRefGoogle Scholar
  15. Chen, C., L. Lin, Q. Peng, K. Ben, and Z. Zhou. 2002b Meiothermus rosaceus sp nov isolated from Tengchong hot spring in Yunnan, China FEMS Microbiol. Lett. 216 263–268PubMedCrossRefGoogle Scholar
  16. Chen, M. Y., G. H. Lin, Y. T. Lin, and S. S. Tsay. 2002a Meiothermus taiwanensis sp. nov., a novel filamentous, thermophilic species isolated in Taiwan Int. J Syst. Evol. Microbiol. 52 1647–1654PubMedCrossRefGoogle Scholar
  17. Chung, A. P., F. Rainey, M. F. Nobre, J. Burghardt, and M. S. da Costa. 1997 Meiothermus cerbereus sp. nov., a new slightly thermophilic species with high levels of 3-hydroxy fatty acids Int. J. Syst. Bacteriol. 47 1225–1230PubMedCrossRefGoogle Scholar
  18. Chung, A. P., F. A. Rainey, M. Valente, M. F. Nobre, and M. S. da Costa. 2000 Thermus igniterrae sp. nov. and Thermus antranikianii sp. nov., two new species from Iceland Int. J. Syst. Evol. Microbiol. 50 209–217PubMedCrossRefGoogle Scholar
  19. Collins, M. D., and D. Jones. 1981 Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications Microbiol. Rev. 45 316–354PubMedGoogle Scholar
  20. da Costa, M. S., and F. A. Rainey. 2001a Thermaceae fam. nov In: D. R. Boone and R. W. Castenholz (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York, NY 1 403Google Scholar
  21. da Costa, M. S., M. F. Nobre, and F. A. Rainey. 2001b The genus Thermus In: D. R. Boone and R. W. Castenholz (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer-Verlag New York, NY 1 404–414Google Scholar
  22. Das, S. K., A. K. Mishra, B. J. Tindall, F. A. Rainey, and E. Stackebrandt. 1996 Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: Analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing Int. J. Syst. Bacteriol. 46 981–987PubMedCrossRefGoogle Scholar
  23. Degryse, E., N. Glansdorff, and A. Piérard. 1978 A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus Arch. Microbiol. 177 189–196CrossRefGoogle Scholar
  24. Denman, S., K. Hampson, and B. K. Patel. 1991 Isolation of strains of Thermus aquaticus from the Australian artesian basin and a simple and rapid procedure for the preparation of their plasmids FEMS Microbiol. Lett. 66 73–78PubMedCrossRefGoogle Scholar
  25. Donato, M. M., E. A. Seleiro, and M. S. da Costa. 1990 Polar lipid and fatty acid composition of strains of the genus Thermus Syst. Appl. Microbiol. 13 234–239CrossRefGoogle Scholar
  26. Donato, M. M., E. A. Seleiro, and M. S. da Costa. 1991 Polar lipid and fatty acid composition of strains of Thermu ruber Syst. Appl. Microbiol. 14 235–239CrossRefGoogle Scholar
  27. Embley, T. M., A.G. O’Donnel, R. Wait, and J. Rostron. 1987 Lipid and cell wall amino acid composition in the classification of members of the genus Deinococcus Syst. Appl. Microbiol. 10 20–27CrossRefGoogle Scholar
  28. Embley, T. M., R. H. Thomas, and R. A. D. Williams. 1993 Reduced thermophilic bias in the 16S rDNA sequence from Thermus ruber provides further support for a relationship between Thermus and Deinococcus Syst. Appl. Microbiol. 16 25–29CrossRefGoogle Scholar
  29. Empadinhas, N., L. Albuquerque, A. Henne, H. Santos, and M. S. da Costa. 2003 The bacterium Thermus thermophilus, like hyperthermophilic archaea, uses a two-step pathway for the synthesis of mannosylglycerate Appl. Environ. Microbiol. 69 3272–3279PubMedCrossRefGoogle Scholar
  30. Faraldo, M. M., M. A de Pedro, and J. Berenguer. 1992 Sequence of the S-layer gene of Thermus thermophilus HB8 and functionality of its promoter in Escherichia coli J. Bacteriol 174 7458–7462PubMedGoogle Scholar
  31. Fernández-Herrero, L. A., G. Olabarría, and J. Berenguer. 1997 Surface proteins and a novel transcription factor regulate the expression of the S-layer gene in Thermus thermophilus HB8 Mol Microbiol. 24 61–72Google Scholar
  32. Ferraz, A. S., L. Carreto, S. Tenreiro, M. F. Nobre, and M. S. da Costa. 1994 Polar lipids and fatty acid composition of Thermus strains from New Zealand Ant. v. Leeuwenhoek 66 357–363CrossRefGoogle Scholar
  33. Ferreira, A. M., R. Wait, M. F. Nobre, and M. S. da Costa. 1999 Caracterization of glycolipids from Meiothermus spp Microbiology 145 1191–1199PubMedCrossRefGoogle Scholar
  34. Georganta, G., K. E. Smith, and R. A. D. Williams. 1993 DNA/DNA homology and cellular components of Thermus filiformis and other strains of Thermus from New Zealand hot springs FEMS Microbiol. Lett. 107 145–150CrossRefGoogle Scholar
  35. Henne, A., H. Bruggemann, C. Raasch, A. Wiezer, T. Hartsch, H. Liesegang, A. Johann, T. Lienard, O. Gohl, R. Martinez-Arias, C. Jacobi, V. Starkuviene, S. Schlenczeck, S. Dencker, R. Huber, H. P. Klenk, W. Kramer, R. Merkl, G. Gottschalk, and H. J. Fritz. 2004 The genome sequence of the extreme thermophile Thermus thermophilus Nature Biotechnol. 22 547–553CrossRefGoogle Scholar
  36. Hensel, R., W. Demharter, O. Kandler, R. M. Kroppenstedt, and E. Stackebrandt. 1986 Chemotaxonomic and molecular-genetic studies of the genus Thermus: Evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus Int. J. Syst. Bacteriol. 36 444–453CrossRefGoogle Scholar
  37. Hoshino, T., Y. Yoshino, E. D. Guevarra, S. Ishida, T. Hiruta, R. Fujii, and T. Nakahara. 1994 Isolation and partial characterization of carotenoid underproducing and overproducing mutants from an extremely thermophilic Thermus thermophilus HB27 J. Ferm. Bioengin. 7 131–136CrossRefGoogle Scholar
  38. Hudson, J. A., H. W. Morgan, and R. M. Daniel. 1986 A numerical classification of some Thermus isolates J. Gen. Microbiol. 132 531–540Google Scholar
  39. Hudson, J. A., H. W. Morgan, and R. M. Daniel. 1987a Numerical classification of some Thermus isolates from Icelandic hot springs Syst. Appl. Microbiol. 9 218–223CrossRefGoogle Scholar
  40. Hudson, J. A., H. W. Morgan, and R. M. Daniel. 1987b Thermus filiformis sp. nov., a filamentous caldoactive bacterium Int. J. Syst. Bacteriol. 37 431–436CrossRefGoogle Scholar
  41. Hudson, J. A., H. W. Morgan, and R. M. Daniel. 1989 Numerical classification of Thermus isolates from globally distributed hot springs Syst. Appl. Microbiol. 11 250–256CrossRefGoogle Scholar
  42. Kieft, T. L., J. K. Fredrickson, T. C. Onstott, Y. A. Gorby, H. M. Kostandarithes, T. J. Bailey, D. W. Kennedy, S. W. Li, A. E. Plymale, C. M. Spadoni, and M. S. Gray. 1999 Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate Appl. Environ. Microbiol. 65 1214–1221PubMedGoogle Scholar
  43. Kristjánsson, J. K., and G. A. Alfredsson. 1983 Distribution of Thermus spp. in Icelandic hot springs and a thermal gradient Appl. Environ. Microbiol. 45 1785–1798PubMedGoogle Scholar
  44. Kristjánsson, J. K., G. O. Hreggvidsson, and G. A. Alfredsson. 1986 Isolation of halotolerant Thermus scotoductus spp. from submarine hot springs in Iceland Appl. Environ. Microbiol. 52 1313–1316PubMedGoogle Scholar
  45. Kristjánsson, J. K., S. Hjörleifsdóttir, V. T. Marteinsson, and G. A. Alfredsson. 1994 Thermus scotoductus, sp. nov., a pigment-producing thermophilic bacterium from hot tap water in Iceland and including Thermus sp. X-1 Syst. Appl. Microbiol. 17 44–50CrossRefGoogle Scholar
  46. Loginova, L. G., L. A. Egorova, R. S. Golovacheva, and L. M. Seregina. 1984 Thermus ruber sp. nov., nom. rev Int. J. Syst. Bacteriol. 34 498–499CrossRefGoogle Scholar
  47. Manaia, C. M., and M. S. da Costa. 1991 Characterization of halotolerant Thermus isolates from shallow marine hot springs on S. Miguel, Azores J. Gen. Microbiol. 137 2643–2648CrossRefGoogle Scholar
  48. Manaia, C. M., B. Hoste, M. C. Gutierrez, M. Gillis, A. Ventosa, K. Kersters, and M. S. da Costa. 1994 Halotolerant Thermus strains from marine and terrestrial hot springs belong to Thermus thermophilus (ex Oshima and Imahori, 1974) nom. rev. emend Syst. Appl. Microbiol. 17 526–532CrossRefGoogle Scholar
  49. Marteinsson, V. T., J.-L. Birrien, J. K. Kristjánsson, and D. Prieur. 1995 First isolation of thermophilic aerobic non-sporulating heterotrophic bacteria from deep-sea hydrothermal vents FEMS Microbiol. Ecol. 18 163–174CrossRefGoogle Scholar
  50. Marteinsson, V. T., J.-L. Birrien, G. Raguénès, M. S. da Costa, and D. Prieur. 1999 Isolation and characterization of Thermus thermophilus Gy1211 from a deep-sea hydrothermal vent Extremophiles 3 247–251PubMedCrossRefGoogle Scholar
  51. Merkel, G. J., S. S. Stapleton, and J. J. Perry. 1978 Isolation and peptidoglycan of Gram-negative hydrocarbon-utilizing thermophilic bacteria J. Gen. Microbiol. 109 141–148CrossRefGoogle Scholar
  52. Miroshnichenko, M. L., S. L’Haridon, C. Jeanthon, A. N. Antipov, N. A. Kostrikina, B. J. Tindall, P. Schumann, S. Spring, E. Stackebrandt, and E. A. Bonch-Osmolovskaya. 2003a Oceanithermus profundus gen. nov., sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent Int. J. Syst. Evol. Microbiol. 53 747–752PubMedCrossRefGoogle Scholar
  53. Miroshnichenko, M. L., S. L’Haridon, O. Nercessian, A. N. Antipov, N. A., Kostrikina, B. J Tindall, P. Schumann, S. Spring, E. Stackebrandt, E. A. Bonch-Osmolovskaya, and C. Jeanthon. 2003b Vulcanithermus mediatlanticus gen. nov., sp. nov., a novel member of the family Thermaceae from a deep-sea hot vent Int. J. Syst. Evol. Microbiol. 53 1143–1148PubMedCrossRefGoogle Scholar
  54. Mori, K., T. Kakegawa, Y. Higashi, K. Nakamura, A. Maruyama, and S. Hanada. 2004 Oceanithermus desulfurans sp. nov., a novel thermophilic, sulfur-reducing bacterium isolated from a sulfide chimney in Suiyo Seamount Int. J. Syst. Evol. Microbiol. 54 1561–1566PubMedCrossRefGoogle Scholar
  55. Munster, M. J., A. P. Munster, J. R. Woodrow, and R. J. Sharp. 1986 Isolation and preliminary taxonomic studies of Thermus strains isolated from Yellowstone National Park, USA J. Gen. Microbiol. 132 1677–1683PubMedGoogle Scholar
  56. Nobre, M. F., L. Carreto, R. Wait, S. Tenreiro, O. Fernandes, R. J. Sharp, and M. S. da Costa. 1996a Fatty acid composition of the species of the genera Thermus and Meiothermus Syst. Appl. Microbiol. 19 303–311CrossRefGoogle Scholar
  57. Nobre, M. F., H. G. Trüper, and M. S. da Costa. 1996b Transfer of Thermus ruber (Loginova et al. 1984), Thermus silvanus (Tenreiro et al. 1995), and Thermus chliarophilus (Tenreiro et al. 1995) to Meiothermus gen. nov. as Meiothermus ruber comb. nov., Meiothermus silvanus comb. nov., and Meiothermus chliarophilus comb. nov., respectively, and emendation of the genus Thermus Int. J. Syst. Bacteriol. 46 604–606CrossRefGoogle Scholar
  58. Nobre, M. F., and M. S. da Costa. 2001 The genus Meiothermus In: D. R. Boone and R. W. Castenholz (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York, NY 1 414–420Google Scholar
  59. Nold, S. C., and D. M. Ward. 1995 Diverse Thermus species inhabit a single hot spring microbial mat Syst. Appl. Microbiol. 18 274–278PubMedCrossRefGoogle Scholar
  60. Nunes, O. C., C. M. Manaia, M. S. da Costa, and H. Santos. 1995 Compatible solutes in the thermophylic bacteria Rhodothermus marinus and “Thermus thermophilus.” Appl. Environ. Microbiol. 61 2351–2357PubMedGoogle Scholar
  61. Olabarría, G., L. A. Fernández-Herrero, J. L. Carrascosa, and J. Berenguer. 1996 slpM, a gene coding for an “S-layer-like array” overexpressed in S-layer mutants of Thermus thermophilus HB8 J. Bacteriol. 178 357–365PubMedGoogle Scholar
  62. Oshima, M., and T. Yamakawa. 1974 Chemical structure of a novel glycolipid from an extreme thermophile, Flavobacterium thermophilum Biochemistry 13 1140–1146PubMedCrossRefGoogle Scholar
  63. Oshima, T., and K. Imahori. 1974 Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from a Japanese thermal spa Int. J. Syst. Bacteriol. 24 102–112CrossRefGoogle Scholar
  64. Pask-Hughes, R., and R. A. D. Williams. 1975 Extremely thermophilic Gram-negative bacteria from hot tap water J. Gen. Microbiol. 88 321–328PubMedCrossRefGoogle Scholar
  65. Pask-Hughes, R. A., and R. A. D. Williams. 1977 Yellow-pigmented strains of Thermus spp. from Icelandic hot springs J. Gen. Microbiol. 102 375–383CrossRefGoogle Scholar
  66. Pask-Hughes, R. A., and R. A. D. Williams. 1978 Cell envelope components of strains belonging to the genus Thermus J. Gen. Microbiol. 107 65–72CrossRefGoogle Scholar
  67. Pond, J. P., T. A. Langworthy, and G. Holzer. 1986 Long-chain diols: A new class of membrane lipids from a thermophilic bacterium Science 231 1134–1136PubMedCrossRefGoogle Scholar
  68. Pond, J. P., and T. A. Langworthy. 1987 Effect of growth temperature on the long-chain diols and fatty acids of Thermomicrobium roseum J. Bacteriol. 169 1328–1330PubMedGoogle Scholar
  69. Prado, A., M. S. da Costa, and V. M. C. Madeira. 1988 Effect of the growth temperature on the lipid composition of two strains of Thermus sp J. Gen. Microbiol. 134 1653–1660Google Scholar
  70. Rainey, F. A., M. F. Nobre, P. Schumann, E. Stackebrandt, and M. S. da Costa. 1997 Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison Int. J. Syst. Bacteriol. 47 510–514PubMedCrossRefGoogle Scholar
  71. Rainey, F. A., and M. S. da Costa. 2001 Thermales ord. nov In: D. R. Boone and R. W. Castenholz (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed Springer-Verlag New York, NY 1 403Google Scholar
  72. Ramaley, R. F., and J. Hixson. 1970 Isolation of a nonpigmented, thermophilic bacterium similar to Thermus aquaticus J. Bacteriol. 103 527–528PubMedGoogle Scholar
  73. Ramos, A., N. D. H. Raven, R. J. Sharp, S. Bartolucci, M. Rossi, R. Cannio, J. Lebbink, J. van der Oost, W. M. De Vos, and H. Santos. 1997 Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate Appl. Environ. Microbiol. 63 4020–4025PubMedGoogle Scholar
  74. Saiki, T., R. Kimura, and K. Arima. 1972 Isolation and characterization of extremely thermophilic bacteria from hot springs Agric. Biol. Chem. 36 2357–2366CrossRefGoogle Scholar
  75. Sako, Y, S. Nakagawa, K. Takai, and K. Horikoshi. 2003 Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney Int. J. Syst. Evol. Microbiol. 53 59–65PubMedCrossRefGoogle Scholar
  76. Santos, M. A., R. A. D. Williams, and M. S. da Costa. 1989 Numerical taxonomy of Thermus isolates from hot springs in Portugal Syst. Appl. Microbiol. 12 310–315CrossRefGoogle Scholar
  77. Schleifer, K.-H., and O. Kandler. 1972 Peptidoglycan types of bacterial cell walls and their taxonomic implications Bacteriol. Rev. 36 407–477PubMedGoogle Scholar
  78. Sharp, R. J., and R. A. D. Williams. 1988 Properties of Thermus ruber strains isolated from Icelandic hot springs and DNA:DNA homology of Thermus ruber and Thermus aquaticus Appl. Environ. Microbiol. 54 2049–2053PubMedGoogle Scholar
  79. Sharp, R., D. Cossar, and R. Williams. 1995 Physiology and metabolism of Thermus In: R. Sharp, and R. A. D. Williams (Eds.) Thermus Species Plenum Press New York, NY 67–91CrossRefGoogle Scholar
  80. Silva, Z., S. Alarico, A. Nobre, R. Horlacher, J. Marugg, W. Boos, A. I. Mingote, and M. S. da Costa. 2003 Osmotic adaptation of Thermus thermophilus RQ-1: Lesson from a mutant deficient in synthesis of trehalose J. Bacteriol. 185 5943–5952PubMedCrossRefGoogle Scholar
  81. Skirnisdottir, S., G. O. Hreggvidsson, O. Holst, and J. K. Kristjansson. 2001 Isolation and characterization of a mixotrophic sulfur-oxidizing Thermus scotoductus Extremophiles 5 45–51PubMedCrossRefGoogle Scholar
  82. Stramer, S. L., and M. J. Starzyk. 1981 The occurrence and survival of Thermus aquaticus Microbios. 32 99–110Google Scholar
  83. Tabata, K., S. Ishida, T. Nakahara, and T. Hoshino. 1994 A carotenogenic gene cluster exists on a large plasmid in Thermus thermophilus FEBS Lett. 341 251–255PubMedCrossRefGoogle Scholar
  84. Taguchi, H., M. Yamashita, H. Matsuzawa, and T. Ohta. 1982 Heat stable and fructose 1,6-biphosphate-activated L-lactate dehydrogenase from an extremely thermophilic bacterium J. Biochem. 91 1343–1348PubMedGoogle Scholar
  85. Tenreiro, S., M. F. Nobre, and M. S. da Costa. 1995a Thermus silvanus sp. nov. and Thermus chliarophilus sp. nov., two new species related to Thermus ruber but with lower growth temperatures Int. J. Syst. Bacteriol. 45 633–639PubMedCrossRefGoogle Scholar
  86. Tenreiro, S., M. F. Nobre, B. Hoste, M. Gillis, J. K. Kristjánsson, and M. S. da Costa. 1995b DNA:DNA hybridization and chemotaxonomic studies of Thermus scotoductus Res. Microbiol. 146 315–324PubMedCrossRefGoogle Scholar
  87. Tenreiro, S., M. F., Nobre, F. A. Rainey, C. Miguel, and M. S. da Costa. 1997 Thermomena rossianum sp. nov., a new thermophilic and slightly halophilic species from saline hot springs in Naples, Italy Int. J. Syst. Bacteriol. 47 122–126PubMedCrossRefGoogle Scholar
  88. Van de Peer, Y., J.-M. Neefs, P. De Rijk, P. De Vos, and R. De Wachter. 1994 About the order of divergence of the major bacterial taxa during evolution Syst. Appl. Microbiol. 17 32–38CrossRefGoogle Scholar
  89. Wait, R., L. Carreto, M. F. Nobre, A. M. Ferreira, and M. S. da Costa. 1997 Characterization of novel long-chain 1,2-diols in Thermus species and demonstration that Thermus strains contain both glycerol-linked and diol-linked glycolipids J. Bacteriol. 179 6154–6162PubMedGoogle Scholar
  90. Waring, G. A. 1965 Thermal Springs of the United States and Other Countries of the World: A Summary US Government Printing Office Washington, DCGoogle Scholar
  91. Weisburg, W. G., S. J. Giovannoni, and C. R. Woese. 1989 The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction Syst. Appl. Microbiol. 11 128–134PubMedCrossRefGoogle Scholar
  92. Williams, R. A. D., and M. S. da Costa. 1992 The genus Thermus and related microorganisms In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York, NY 3745–3753Google Scholar
  93. Williams, R. A. D., K. E. Smith, S. G. Welch, J. Micallef, and R. J. Sharp. 1995 DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori) Int. J. Syst. Bacteriol. 45 495–499PubMedCrossRefGoogle Scholar
  94. Williams, R. A. D., K. E. Smith, S. G. Welch, and J. Micallef. 1996 Thermus oshimai sp. nov., isolated from hot springs in Portugal, Iceland, and the Azores, and comment on the concept of a limited geographical distribution of Thermus species Int. J. Syst. Bacteriol. 46 403–408PubMedCrossRefGoogle Scholar
  95. Yoshida, M., and T. Oshima. 1971 The thermostable allosteric nature of fructose 1,6-diphosphatase from an extreme thermophile Biochem. Biophys. Res. Comm. 45 495–500PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Milton S. Da Costa
  • Fred A. Rainey
  • M. Fernanda Nobre

There are no affiliations available

Personalised recommendations