Advertisement

The Myxobacteria

  • Lawrence J. Shimkets
  • Martin Dworkin
  • Hans Reichenbach

1

The myxobacteria are Gram-negative, unicellular bacteria with rod-shaped vegetative cells (Fig. 1). Because of their gliding movement, colonies develop as thin, spreading swarms, particularly on media low in organic constituents (Fig. 2). Under starvation conditions, the myxobacteria undergo an impressive process of cooperative morphogenesis: the vegetative cells aggregate into large mounds and then form a fruiting body by directed cell movement (Fig. 3). Myxobacterial fruiting bodies show various degrees of complexity. They typically measure between 50 and 500 µm and can be seen with the naked eye. Within the maturing fruiting body the vegetative cells convert into short, optically refractile myxospores (Figs. 1 and 3). The myxospores are desiccation resistant and allow the organism to survive unfavorable environmental conditions. Many features of the life cycle are richly illustrated in a series of film clips created by Hans Reichenbach and assembled by Martin Dworkin (see the...

Literature Cited

  1. Abadie, M. 1967 Formation intracytoplasmiques du type “mesosome” chez Chondromyces crocatus Berkeley et Curtis C. R. Acad. Sci. Paris, Sér. D 265 2132–2134Google Scholar
  2. Abadie, M. 1968 Mise en évidence des formations mésosomiques dans les cellules végétatives du Chondromyces apiculatus Thaxter C. R. Acad. Sci. Paris, Sér. D 267 1538–1540Google Scholar
  3. Abadie, M. 1971a Contribution à la connaissance des myxobactéries supérieures. I: Recherches culturales et microculturales sur le Chondromyces crocatus Berkeley et Curtis Ann. Sci. Natur., Botanique (Paris), 12e Sér. 12 255–344Google Scholar
  4. Abadie, M. 1971b Contribution à la connaissance des myxobactéries supérieures. II: Donnée ultrastructurales et morphogénétiques sur le Chondromyces crocatus Berkeley et Curtis Ann. Sci. Natur., Botanique (Paris), 12e Sér. 12 345–428Google Scholar
  5. Agnihothrudu, V. G. C. S. Barua, and K. C. Barua. 1959 Occurrence of Chondromyces in the rhizosphere of plants Indian Phytopathol. 12 158–160Google Scholar
  6. Arias, J. M., C. Rodriguez, and E. Montoya. 1979a Biological activity of an antibiotic produced by Myxococcus coralloides Microbios 24 123–131PubMedGoogle Scholar
  7. Arias, J. M., C. Rodriguez, and E. Montoya. 1979b Purification and partial characterization of an antibiotic produced by Myxococcus coralloides J. Antibiot. 32 205–211PubMedCrossRefGoogle Scholar
  8. Arnold, J. W., and L. J. Shimkets. 1988a Cell surface properties correlated with cohesion in Myxococcus xanthus J. Bacteriol. 170 5771–5777PubMedGoogle Scholar
  9. Arnold, J. W., and L. J. Shimkets. 1988b Inhibition of cell-cell interactions in Myxococcus xanthus by Congo red J. Bacteriol. 170 5765–5770PubMedGoogle Scholar
  10. Aschner, M., and M. Chorin-Kirsch. 1970 Light-oriented locomotion in certain myxobacter species Arch. Mikrobiol. 74 308–314CrossRefGoogle Scholar
  11. Bacon, K., and F. A. Eiserling. 1968 A unique structure in microcysts of Myxococcus xanthus J. Ultrastruct. Res. 21 378–382CrossRefGoogle Scholar
  12. Balsalobre, J. M., R. Ruiz-Vázques, and F. J. Murillo. 1987 Light induction of gene expression in Myxococcus xanthus Proc. Natl. Acad. Sci. USA 84 2359–2362PubMedCrossRefGoogle Scholar
  13. Baur, E. 1905 Myxobakterien-Studien Arch. Protistenk. 5 92–121Google Scholar
  14. Becker, K. 1990 Antibiotikca-Produktion mit trärfixierten Myxobakterien [PhD thesis] Technical University Braunschweig Braunschweig, GermanyGoogle Scholar
  15. Beebe, J. M. 1941 Studies on the myxobacteria. 2: The role of myxobacteria as bacterial parasites Iowa State College J. Sci. 15 319–337Google Scholar
  16. Behmlander, R. M., and M. Dworkin. 1991 Extracellular fibrils and contact-mediated cell interactions in Myxococcus xanthus J. Bacteriol. 173 7810–7821PubMedGoogle Scholar
  17. Behmlander, R., and M. Dworkin. 1994 Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus J. Bacteriol. 176 6295–6303PubMedGoogle Scholar
  18. Behrens, J., J. Flossdorf, and H. Reichenbach. 1976 Base composition of deoxyribonucleic acid from Nannocystis exedens (Myxobacterales) Int. J. Syst. Bacteriol. 26 561–562CrossRefGoogle Scholar
  19. Bender, H. 1962 Untersuchungen an Myxococcus xanthus. I: Bildungsbedingungen, Isolierung und Eigenschaften eines bakteriolytischen Enzymsystems Arch. Mikrobiol. 43 262–279CrossRefGoogle Scholar
  20. Bender, H. 1963 Untersuchungen an Myxococcus xanthus II. Partielle Lyse von Pullularia pullulans und einigen Hefen durch ein extrazelluläres Enzymsystem Arch Mikrobiol. 45 407–422PubMedCrossRefGoogle Scholar
  21. Berkeley, M. J. 1857 Introduction to Cryptogamic Botany [on Stigmatella and Chondromyces] H. Bailliere London, UK 313–315Google Scholar
  22. Beveridge, T. J. 1999 Structures of Gram-negative cell walls and their derived membrane vesicles J. Bacteriol. 181 4725–4733PubMedGoogle Scholar
  23. Beyer, P., and H. Kleinig. 1985 In vitro synthesis of C15-C60 polyprenols in a cell-free system of Myxococcus fulvus and determination of chain length by high-performance liquid chromatography In: Methods in Enzymology Academic Press New York, NY 110 299–303Google Scholar
  24. Bird. C. W., J. M. Lynch, F. J. Pirt, and W. W. Reid. 1971 Steroids and squalene in Methylococcus capsulatus grown on methane Nature 230 473–474PubMedCrossRefGoogle Scholar
  25. Blackhart, B. D., and D. Zusman. 1985 “Frizzy” genes of Myxococcus xanthus are involved in control of the frequency of reversal of gliding motility Proc. Natl. Acad. Sci. USA 82 8767–8771PubMedCrossRefGoogle Scholar
  26. Bode, H. B., B. Zeggel, B. Silakowski, S. C. Wenzel, H. Reichenbach, and R. Müller. 2003 Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca Molec. Microbiol. 47 471–481CrossRefGoogle Scholar
  27. Bojary, M. R., and S. A. Dhala. 1989 Coagulase of Myxococcus fulvus NK35. 1: Purification and partial characterization Zbl. Mikrobiol. 144 347–354Google Scholar
  28. Bollag, D. M., P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, and C. M. Woods. 1995 Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action Cancer Res. 55 2325–2333PubMedGoogle Scholar
  29. Bonner, J. T. 1982 Comparative Biology of Cellular Slime Molds In: W. F. Loomis (Ed.) The Development of Dictyostelium discoideum Academic Press New York, NY 1–33Google Scholar
  30. Bonner, P. J., and L. J. Shimkets. 2001 Piecing together a puzzling pathway: New insights into C-signaling Trends Microbiol. 9 462–464PubMedCrossRefGoogle Scholar
  31. Borchers, M. 1982 Isolierung und Charakterisierung hefelytischer Enzyme aus dem gleitenden Bakterium Myxococcus fulvus Mx f80 (Myxobacterales) [Ph.D thesis] Technical University Braunschweig Braunschweig, GermanyGoogle Scholar
  32. Borner, U., A. Deutsch, H. Reichenbach, and M. Bar. 2002 Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions Phys. Rev. Lett. (078101-1-4)89 1–4CrossRefGoogle Scholar
  33. Bowden, M. G., and H. B. Kaplan. 1998 The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development Molec. Microbiol. 30 275–284CrossRefGoogle Scholar
  34. Brauss, R. W., I. Heyne-Katzenberger, H. Pech, and H. Barth. 1967 Beiträ zur Mikrobiologie von Binnengewässern (I) Arch. Hyg. Bakteriol. 150 716–724PubMedGoogle Scholar
  35. Brauss, F. W., I. Heyne-Katzenberger, and W. Heyne. 1968 Beiträ zur Mikrobiologie von Binnengewässern (II) Arch. Hyg. Bakteriol. 152 346–349PubMedGoogle Scholar
  36. Breton, A. M. 1984a Transposon Tn5 confers streptomycin resistance to Myxococcus xanthus FEMS Microbiol. Lett. 22 85–88CrossRefGoogle Scholar
  37. Breton, A. M., J. M. Nicaud, G. Younes, and J. F. Guespin-Michel. 1984b Myxococcus xanthus, a Gram-negative nonpathogenic bacterium, that secretes proteins into the extracellular medium growth, is a potential cloning host for excreted proteins production In: 3rd European Congress Biotechnol. München Verlag Chemie Weinheim Weinheim, Germany III 441–446Google Scholar
  38. Breton, A. M., S. Jaoua, and J. Guespin-Michel. 1985 Transfer of plasmid RP4 to Myxococcus xanthus and evidence for its integration into the chromosome J. Bacteriol. 161 523–528PubMedGoogle Scholar
  39. Breton, A. M., G. Younes, F. van Gijsegem, and J. Guespin-Michel. 1986 Expression in Myxococcus xanthus of foreign genes coding for secreted pectate lyases of Erwinia chrysanthemi J. Biotechnol. 4 303–311CrossRefGoogle Scholar
  40. Breton, A. M., and J. F. Guespin-Michel. 1987 Escherichia coli pH 2.5 acid phosphatase and b-lactamase TEM2 are secreted into the medium by Myxococcus xanthus FEMS Microbiol. Lett. 40 183–188Google Scholar
  41. Bretscher, A. P., and D. Kaiser. 1978 Nutrition of Myxococcus xanthus, a fruiting myxobacterium J. Bacteriol. 133 763–768PubMedGoogle Scholar
  42. Brockman, E. R., and W. L. Boyd. 1963 Myxobacteria from soils of the Alaskan and Canadian arctic J. Bacteriol. 86 605–606PubMedGoogle Scholar
  43. Brockman, E. R. 1967 Fruiting myxobacteria from the South Carolina coast J. Bacteriol. 94 1253–1254PubMedGoogle Scholar
  44. Brockman, E. R., and R. L. Todd. 1974 Fruiting myxobacters as viewed with a scanning electron microscope Int. J. Syst. Bacteriol. 24 118–124CrossRefGoogle Scholar
  45. Brockman, E. R. 1976 Myxobacters from arid Mexican soil Appl. Environ. Microbiol. 32 642–644PubMedGoogle Scholar
  46. Brown, N. L., and J. H. Parish. 1976a Extrachromosomal DNA in chloramphenicol resistant Myxococcus strains J. Gen. Microbiol. 93 63–68PubMedCrossRefGoogle Scholar
  47. Brown, N. L., R. P. Burchard, D. W. Morris, J. H. Parish, N. D. Stow, and C. Tsopanakis. 1976b Phage and defective phage of strains of Myxococcus Arch. Microbiol. 108 271–279PubMedCrossRefGoogle Scholar
  48. Brown, M. L., D. W. Morris, and J. H. Parish. 1976c DNA of Myxococcus bacteriophage MX-1: macromolecular properties and restriction fragments Arch. Microbiol. 108 221–226PubMedCrossRefGoogle Scholar
  49. Browning, D. F., D. E. Whitworth, and D. A. Hodgson. 2003 Light-induced carotenogenesis in Myxococcus xanthus: functional characterization of the ECF sigma factor CarQ and antisigma factor CarR Molec. Microbiol. 48 237–251CrossRefGoogle Scholar
  50. Brun, Y. V., and L. J. Shimkets (Eds.). 1999 Prokaryotic Development American Society for Microbiology Press Washington, DCGoogle Scholar
  51. Burchard, A. C., R. P. Burchard, and J. A. Kloetzel. 1977 Intracellular, periodic structures in the gliding bacterium Myxococcus xanthus J. Bacteriol. 132 666–672PubMedGoogle Scholar
  52. Burchard, R. P., and M. Dworkin. 1966a A bacteriophage for Myxococcus xanthus: Isolation, characterization and relation of infectivity to host morphogenesis J. Bacteriol. 91 1305–1313PubMedGoogle Scholar
  53. Burchard, R. P., and M. Dworkin. 1966b Light-induced lysis and carotenogenesis in Myxococcus xanthus J. Bacteriol. 91 535–545PubMedGoogle Scholar
  54. Burchard, R. P., and S. B. Hendricks. 1969 Action spectrum for carotenogenesis in Myxococcus xanthus J. Bacteriol. 97 1165–1168PubMedGoogle Scholar
  55. Burchard, R. P., and H. Voelz. 1972 Bacteriophage infection of Myxococcus xanthus during cellular differentiation and vegetative growth Virology 48 555–556PubMedCrossRefGoogle Scholar
  56. Burchard, R. P., and D. T. Brown. 1973 Surface structure of gliding bacteria after freeze-etching J. Bacteriol. 114 1351–1355PubMedGoogle Scholar
  57. Burchard, R. P., and J. H. Parish. 1975 Mutants of Myxococcus xanthus insensitive to glycerol-induced myxospore formation Arch. Microbiol. 104 289–292PubMedCrossRefGoogle Scholar
  58. Burchard, R. P., and J. H. Parish. 1976 Chloramphenicol resistance in Myxococcus xanthus Antimicrob. Agents Chemother. 7 233–238CrossRefGoogle Scholar
  59. Burchard, R. P., A. C. Burchard, and J. H. Parish. 1977 Pigmentation phenotype instability in Myxococcus xanthus Can. J. Microbiol. 23 1657–1662PubMedCrossRefGoogle Scholar
  60. Burchard, R. P. 1980 Gliding motility of bacteria Bio. Science 30 157–162Google Scholar
  61. Burchard, R. P. 1981 Gliding motility of prokaryotes: ultrastructure, physiology, and genetics Ann. Rev. Microbiol. 35 497–529CrossRefGoogle Scholar
  62. Burchard, R. P. 1984 Gliding motility and taxes In: E. Rosenberg (Ed.) Myxobacteria: Development and Cell Interactions Springer-Verlag New York, NY 139–161Google Scholar
  63. Burnham, J. C., S. A. Collart, and B. W. Highison. 1981 Entrapment and lysis of the cyanobacterium Phormidium luridum by aqueous colonies of Myxococcus xanthus PCO2 Arch. Microbiol. 129 285–294CrossRefGoogle Scholar
  64. Burnham, J. C., S. A. Collart, and M. J. Daft. 1984 Myxococcal predation of the cyanobacterium Phormidium luridum in aqueous environments Arch. Microbiol. 137 220–225CrossRefGoogle Scholar
  65. Caillon, E., B. Lubochinsky, and D. Rigomier. 1983 Occurrence of dialkyl ether phospholipids in Stigmatella aurantiaca DW4 J. Bacteriol. 153 1348–1351PubMedGoogle Scholar
  66. Callao, V., R. Alvarado, A. Sedano, J. Olivares, and E. Montoya. 1966 Efecto antagonico del Myxococcus xanthus sobre los Azotobacter Microbiol. Español 19 45–51Google Scholar
  67. Campos, J. M., J. Geisselsoder, and D. R. Zusman. 1978 Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus J. Molec. Biol. 119 167–178PubMedCrossRefGoogle Scholar
  68. Cervantes, M., and F. J. Murillo. 2002 Role for vitamin B(12) in light induction of gene expression in the bacterium Myxococcus xanthus J. Bacteriol. 184 2215–2224PubMedCrossRefGoogle Scholar
  69. Chang, B.-Y., and M. Dworkin. 1994 Isolated fibrils rescue cohesion and development in the dsp mutant of Myxococcus xanthus J. Bacteriol. 176 7190–7196PubMedGoogle Scholar
  70. Chen, H., J. M. Keseler, and L. J. Shimkets. 1990 Genome size of Myxococcus xanthus determined by pulsed-field gel electrophoresis J. Bacteriol. 172 4206–4213PubMedGoogle Scholar
  71. Chen, H.-W., A. Kuspa, I. Keseler, and L. J. Shimkets. 1991 Physical map of the M. xanthus chromosome J. Bacteriol. 173 2109–2115PubMedGoogle Scholar
  72. Coletta, P. L., and P. G. G. Miller. 1986 The extracellular proteases of Myxococcus xanthus FEMS Microbiol. Lett. 37 203–207CrossRefGoogle Scholar
  73. Couke, P., and J. P. Voets. 1967 The mineral requirement of Polyangium cellulosum Zeitschr. Allgem. Mikrobiol. 7 175–182CrossRefGoogle Scholar
  74. Couke, P., and J. P. Voets. 1968 Etude de la cellulolyse enzymatique par Sorangium compositum Ann. Inst. Pasteur. 115 549–560Google Scholar
  75. Couke, P. 1969 Morphology and morphogenesis of Sorangium compositum J. Appl. Bacteriol. 32 24–29CrossRefGoogle Scholar
  76. Crawford Jr., E. W., and L. J. Shimkets. 1999 Multicellular development in the myxobacteria Myxococcus xanthus and Stigmatella aurantiaca In: V. E. A. Russo, D. J. Cove, L. G. Edgar, R. Jaenisch, and F. Salamini (Eds.) Development: Genetics, Epigenetics, and Environmental Regulation Springer-Verlag Heidelberg, Germany 35–47Google Scholar
  77. Cumsky, M. G., and D. R. Zusman. 1981 Purification and characterization of myxobacterial hemagglutinin, a development-specific lectin of Myxococcus xanthus J. Biol. Chem. 256 12581–12588PubMedGoogle Scholar
  78. Cunningham, J. L. 1972 A miracle mounting fluid for permanent whole-mounts of microfungi Mycologia 64 906–911CrossRefGoogle Scholar
  79. Daft, M. J., J. C. Burnham, and Y. Yamamoto. 1985 Lysis of Phormidium luridum by Myxococcus fulvus in continuous flow cultures J. Appl. Bacteriol. 59 73–80CrossRefGoogle Scholar
  80. Dana, J. R. and L. J. Shimkets. 1993 Regulation of cohesion-dependent cell interactions in Myxococcus xanthus J. Bacteriol. 175 3636–3647PubMedGoogle Scholar
  81. Dawid, W. 1978 Fruchtkörper-bildende Myxobakterien in Böden Brasiliens Zeitschr. Allgem. Mikrobiol. 18 83–93CrossRefGoogle Scholar
  82. Dawid, W. 1979 Vorkommen und Verbreitung Fruchtkörperbildender Myxobakterien im Siebengebirge Zeitschr. Allgem. Mikrobiol. 19 705–719CrossRefGoogle Scholar
  83. Dawid, W. 1980 Fruchtkörperbildende Myxobakterien. VII: Die Chondromyces-Arten: Ch. apiculatus und Ch. lanuginosus. Entwicklungszyklus Mikrokosmos 69 73–79Google Scholar
  84. Dawid, W. 1984 Myxobakterien in ungestörten Hochmooren des Hohen Venn (Hautes Fagnes, Belgien) Syst. Appl. Microbiol. 5 555–563CrossRefGoogle Scholar
  85. Dawid, W., C. A. Gallikowski, and P. Hirsch. 1988 Psychrophilic myxobacteria from Antarctic soils Polarforschung 58 271–278Google Scholar
  86. Dawid, W. 2000 Biology and global distribution of myxobacteria in soils FEMS Microbiol. Rev. 24 403–427PubMedCrossRefGoogle Scholar
  87. Dérijard, B., M. Ben A’ssa, B. Lubochinsky, and Y. Cenatiempo. 1989 Evidence for a membrane-associated GTP-binding protein in Stigmatella aurantiaca, a prokaryotic cell Biochem. Biophys. Res. Commun. 158 562–568PubMedCrossRefGoogle Scholar
  88. Devi, A. L., and H. D. McCurdy. 1984 Cyclic GMP and cyclic AMP binding proteins in Myxococcus xanthus J. Gen. Microbiol. 130 1845–1849Google Scholar
  89. Dhundale, A. R., T. Furuichi, S. Inouye, and M. Inouye. 1985 Distribution of multicopy single-stranded DNA among myxobacteria and related species J. Bacteriol. 164 914–917PubMedGoogle Scholar
  90. Dhundale, A., B. Lampson, T. Furuichi, M. Inouye, and S. Inouye. 1987 Structure of msDNA from Myxococcus xanthus: evidence for a long self-annealing RNA precursor for the covalently linked, branched RNA Cell 51 1105–1112PubMedCrossRefGoogle Scholar
  91. Dhundale, A., T. Furuichi, M. Inouye, and S. Inouye. 1988a Mutations that affect production of branched RNA-linked msDNA in Myxococcus xanthus J. Bacteriol. 170 5620–5624PubMedGoogle Scholar
  92. Dhundale, A., M. Inouye, and S. Inouye. 1988b A new species of multicopy single-stranded DNA from Myxococcus xanthus with conserved structural features J. Biol. Chem. 263 9055–9058PubMedGoogle Scholar
  93. Dill, D., H. Eckau, and H. Budzikiewicz. 1985 Neuartige Cerebroside aus Cystobacter fuscus (Myxobacterales) Zeitschr. Naturforsch. 40b 1738–1746Google Scholar
  94. Ditmar, L. P. F. 1814 Die Pilze Deutschlands In: J. Sturm (Ed.) Deutschlands Flora, III. Abteilung, 1. Bändchen, Heft 2 [on Polyangium] Nuremberg, Germany 55–56 and plate 27Google Scholar
  95. Dobson, W. J., and H. D. McCurdy. 1979 The function of fimbriae in Myxococcus xanthus. I: Purification and properties of M. xanthus fimbriae Can. J. Microbiol. 25 1152–1160PubMedCrossRefGoogle Scholar
  96. Downard, J. S. 1988 Tn5-mediated transposition of plasmid DNA after transduction to Myxococcus xanthus J. Bacteriol. 170 4939–4941PubMedGoogle Scholar
  97. Drews, G. 1974 Mikrobiologisches Praktikum, 2nd ed Springer-Verlag Berlin, GermanyCrossRefGoogle Scholar
  98. Dubos, R. 1928 The decomposition of cellulose by aerobic bacteria J. Bacteriol. 15 223–234PubMedGoogle Scholar
  99. Dworkin, M. 1962 Nutritional requirements for vegetative growth of Myxococcus xanthus J. Bacteriol. 84 250–257PubMedGoogle Scholar
  100. Dworkin, M., and S. M. Gibson. 1964a A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus Science 146 243–244PubMedCrossRefGoogle Scholar
  101. Dworkin, M., and D. J. Niederpruem. 1964b Electron transport system in vegetative cells and microcysts of Myxococcus xanthus J. Bacteriol. 87 316–322PubMedGoogle Scholar
  102. Dworkin, M., and W. Sadler. 1966 Induction of cellular morphogenesis in Myxococcus xanthus. I: General description J. Bacteriol. 91 1516–1519PubMedGoogle Scholar
  103. Dworkin, M. 1969 Sensitivity of gliding bacteria to actinomycin D J. Bacteriol. 98 851–852PubMedGoogle Scholar
  104. Dworkin, M. 1973a Cell-cell interactions in the myxobacteria Symp. Gen. Microbiol. 23 125–142Google Scholar
  105. Dworkin, M. 1973b The Myxobacterales In: A. I. Laskin and H. A. Lechevalier (Eds.) Handbook of Microbiology CRC Press Boca Raton, FL I 191–202Google Scholar
  106. Dworkin, M. 1983a Tactic behavior of Myxococcus xanthus J. Bacteriol. 154 452–459PubMedGoogle Scholar
  107. Dworkin, M., and D. Eide. 1983b Myxococcus xanthus does not respond chemotactically to moderate concentration gradients J. Bacteriol. 154 437–442PubMedGoogle Scholar
  108. Dworkin, M., K. H. Keller, and D. Weisberg. 1983c Experimental observations consistent with a surface tension model of gliding motility of Myxococcus xanthus J. Bacteriol. 155 1367–1371PubMedGoogle Scholar
  109. Dworkin, M. 1984 Research on the myxobacteria: past, present, future In: E. Rosenberg (Ed.) Myxobacteria. Development and Cell Interactions Springer-Verlag New York, NY 222–245Google Scholar
  110. Dworkin, M. 1985a Developmental Biology of the Bacteria Benjamin/Cummings Publishing Reading, MAGoogle Scholar
  111. Dworkin, M., and D. Kaiser. 1985b Cell interactions in myxobacterial growth and development Science 230 18–24PubMedCrossRefGoogle Scholar
  112. Dworkin, M. 1991 Cell-cell interactions in Myxobacteria In: M. Dworkin (Ed.) Microbial Cell-Cell Interactions ASM Press Washington, DC 179–216Google Scholar
  113. Dworkin, M., and D. Kaiser (Eds.). 1993 Myxobacteria American Society for Microbiology Washington, DCGoogle Scholar
  114. Dworkin, M. 1996 Recent advances in the social and developmental biology of the Myxobacteria Microbiol. Rev. 60 70–102PubMedGoogle Scholar
  115. Dworkin, M. 1999 Fibrils as extracellular appendages of bacteria: Their role in contact-mediated cell-cell interactions in Myxococcus xanthus BioEssays 21 590–595PubMedCrossRefGoogle Scholar
  116. Eckau, H., D. Dill, and H. Budzikiewicz. 1984 Neuartige Ceramide aus Cystobacter fuscus (Myxobacterales) Zeitschr. Naturforsch. 39c 1–9Google Scholar
  117. El Akoum, A., M. Vijayalakshmi, P. Cardon, B. Fournet, M. Sigot, and J. F. Guespin-Michel. 1987 Myxococcus xanthus produces an extracellular glycopeptide that displays blood anticoagulant properties Enz. Microb. Technol. 9 426–429CrossRefGoogle Scholar
  118. Fautz, E., G. Rosenfelder, and L. Grotjahn. 1979 Iso-branched 2-and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria J. Bacteriol. 140 852–858PubMedGoogle Scholar
  119. Fautz, E., L. Grotjahn, and H. Reichenbach. 1981 2-and 3-hydroxy fatty acids as valuable chemosystematic markers in gliding bacteria In: H. Reichenbach and O. B. Weeks (Eds.) The Flavobacterium-Cytophaga Group Verlag Chemie Weinheim Weinheim, Germany 127–133Google Scholar
  120. Filer, D., E. Rosenberg, and S. H. Kindler. 1973 Aspartokinase of Myxococcus xanthus: “Feedback stimulation” by required amino acids J. Bacteriol. 115 23–28PubMedGoogle Scholar
  121. Filer, D., S. H. Kindler, and E. Rosenberg. 1977 Myxospore coat synthesis in Myxococcus xanthus: Enzymes associated with uridine 5’-diphosphate-N-acetylgalactosamine formation during myxospore development J. Bacteriol. 131 745–750PubMedGoogle Scholar
  122. Finck, G. 1950 Biologische und stoffwechselphysiologische Studien an Myxococcaceen Arch. Mikrobiol. 15 358–388CrossRefGoogle Scholar
  123. Fink, J. M., and J. F. Zissler. 1989a Characterization of lipopolysaccharide from Myxococcus xanthus by use of monoclonal antibodies J. Bacteriol. 171 2028–2032PubMedGoogle Scholar
  124. Fink, J. M., and J. F. Zissler. 1989b Defects in motility and development of Myxococcus xanthus lipopolysaccharide mutants J. Bacteriol. 171 2042–2048PubMedGoogle Scholar
  125. Fink, J. M., M. Kalos, and J. F. Zissler. 1989 Isolation of cell surface antigen mutants of Myxococcus xanthus by use of monoclonal antibodies J. Bacteriol. 171 2033–2041PubMedGoogle Scholar
  126. Fluegel, W. 1963 Fruiting chemotaxis in Myxococcus fulvus (myxobacteria) Proc. Minnesota Acad. Sci. 30 120–123Google Scholar
  127. Fluegel, W. 1965 Fruiting body populations of Myxococcus fulvus (Myxobacterales) Growth 29 183–191PubMedGoogle Scholar
  128. Fontes, M., and D. Kaiser. 1999 Myxococcus cells respond to elastic forces in their substrate Proc. Natl. Acad. Sci. USA 96 8052–8057PubMedCrossRefGoogle Scholar
  129. Fontes, M., L. Galbis-Martinez, and F. J. Murillo. 2003 A novel regulatory gene for light-induced carotenoid synthesis in the bacterium Myxococcus xanthus Molec. Microbiol. 47 561–571CrossRefGoogle Scholar
  130. Fraleigh, P. C., and J. C. Burnham. 1988 Myxococcal predation on cyanobacterial populations—nutrient effects Limnol. Oceanogr. 33 476–483CrossRefGoogle Scholar
  131. Freese, A., H. Reichenbach, and H. Lunsdorf. 1997 Further characterization and in situ localization of chain-like aggregates of the gliding bacteria Myxococcus fulvus and Myxococcus xanthus J. Bacteriol. 179 1246–1252PubMedGoogle Scholar
  132. Fudou, R., Y. Jojima, T. Iizuka, and S. Yamanaka. 2002 Haliangium ochraceum gen.nov., sp. nov. and Haliangium tepidum sp. nov.: Novel moderately halophilic myxobacteroa isolated from coastal saline environments J. Gen. Appl. Microbiol. 48 109–115PubMedCrossRefGoogle Scholar
  133. Furuichi, T., M. Inouye, and S. Inouye. 1985 Novel one-step cloning vector with a transposable element: Application to the Myxococcus xanthus genome J. Bacteriol. 164 270–275PubMedGoogle Scholar
  134. Furuichi, T., A. Dhundale, M. Inouye, and S. Inouye. 1987a Branched RNA covalently linked to the 5′ end of a single-stranded DNA in Stigmatella aurantiaca: structure of msDNA Cell 48 47–53PubMedCrossRefGoogle Scholar
  135. Furuichi, T., S. Inouye, and M. Inouye. 1987b Biosynthesis and structure of stable branched RNA covalently linked to the 5’ end of multicopy single-stranded DNA of Stigmatella aurantiaca Cell 48 55–62PubMedCrossRefGoogle Scholar
  136. Galván, A., R. Anadon, and F. de Castro. 1981 Observation de cuerpos fructiferos de Stigmatella erecta con el microscopio electronico de barrido Bol. R. Espan. Hist. Nat. (Biol.) 79 259–264Google Scholar
  137. Galván, A., F. de Castro, and D. Fernández-Galiano. 1986 Ultrastructura de la célula vegetativa de Stigmatella erecta S12 Bol. R. Soc. Espan. Hist. Nat. (Biol.) 81 5–9Google Scholar
  138. Galván, A., F. de Castro, and D. Fernández-Galiano. 1987 Ultrastructure of the fruiting body of Stigmatella erecta (Myxobacterales) Trans. Am. Microscop. Soc. 106 89–93CrossRefGoogle Scholar
  139. Galván, A., M.A. Marcotegui, and F. de Castro. 1992 Ultrastructure of natural and induced myxospores of Archangium gephyra Can. J. Microbiol. 38 130–134CrossRefGoogle Scholar
  140. Geisselsoder, J., J. Campos, and D. R. Zusman. 1978 Physical characterization of MX4, a generalized transducing phage for Myxococcus xanthus J. Molec. Biol. 119 179–189PubMedCrossRefGoogle Scholar
  141. Geitler, L. 1924 Über Polyangium parasiticum n. sp., eine submerse, parasitische Myxobacteriacee Arch. Protistenk. 50 67–88Google Scholar
  142. Geitler, L. 1925 Über Polyangium parasiticum n. sp., eine submerse, parasitische Myxobacteriacee Zeit. Botanik. 17 600–603Google Scholar
  143. Gelvan, I., M. Varon, and E. Rosenberg. 1987 Cell-density-dependent killing of Myxococcus xanthus by Autocide AmV J. Bacteriol. 169 844–849PubMedGoogle Scholar
  144. Gerth, K. 1975 Untersuchungen über den molekularen Mechanismus der Induktion von Myxosporen bei Stigmatella aurantiaca Sg al (Myxobacterales) [PhD thesis] University of Freiburg Freiburg, GermanyGoogle Scholar
  145. Gerth, K., and H. Reichenbach. 1978 Induction of myxospore formation in Stigmatella aurantiaca (Myxobacterales). I: General characterization of the system Arch. Microbiol. 177 173–182CrossRefGoogle Scholar
  146. Gerth, K., H. Irschik, H. Reichenbach, and W. Trowitzsch. 1980 Myxothiazol, an antibiotic from Myxococcus fulvus (Myxobacterales). I: Cultivation, isolation, physico-chemical and biological properties J. Antibiot. 33 1474–1479PubMedCrossRefGoogle Scholar
  147. Gerth, K., H. Irschik, H. Reichenbach, and W. Trowitzsch. 1982 The myxovirescins, a family of antibiotics from Myxococcus virescens (Myxobacterales) J. Antibiot. 35 1454–1459PubMedCrossRefGoogle Scholar
  148. Gerth, K., R. Jansen, G. Reifenstahl, G. Höfle, H. Irschik, B. Kunze, H. Reichenbach, and G. Thierbach. 1983 The myxalamids, new antibiotics from Myxococcus xanthus (Myxobacterales). I: Production, physico-chemical and biological properties and mechanism of action J. Antibiot. 36 1150–1156PubMedCrossRefGoogle Scholar
  149. Gerth, K., W. Trowitzsch, G. Piehl, R. Schultze, and J. Lehmann. 1984 Inexpensive media for mass cultivation of myxobacteria Appl. Microbiol. Biotechnol. 19 23–28CrossRefGoogle Scholar
  150. Gerth, K., and H. Reichenbach. 1986 Determination of bacterial ammonia pools using Myxococcus virescens as an example Analyt. Biochem. 152 78–82PubMedCrossRefGoogle Scholar
  151. Gerth, K., R. Metzger, and H. Reichenbach. 1993 Induction of myxospores in Stigmatella aurantiaca (Myxobacteria)—inducers and inhibitors of myxospore formation, and mutants with a changed sporulation behaviour J. Gen. Microbiol. 139 865–871CrossRefGoogle Scholar
  152. Gerth, K., and H. Reichenbach. 1994 Induction of myxospores in Stigmatella aurantiaca (Myxobacteria)—analysis of inducer–inducer and inducer-inhibitor interactions by dose-response curves Microbiology 140 3241–3247CrossRefGoogle Scholar
  153. Gerth, K., N. Bedorf, G. Höfle, H. Irschik, and H. Reichenbach. 1996 Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties J. Antibiot. 49 560–563PubMedCrossRefGoogle Scholar
  154. Gill, J., E. Stellwag, and M. Dworkin. 1985 Monoclonal antibodies against cell-surface antigens of developing cells of Myxococcus xanthus Ann. Inst. Pasteur/Microbiol. 136A 11–18CrossRefGoogle Scholar
  155. Gill, J. S., and M. Dworkin. 1986 Cell surface antigens during submerged development of Myxococcus xanthus examined with monoclonal antibodies J. Bacteriol. 168 505–511PubMedGoogle Scholar
  156. Gill, J. S., and M. Dworkin. 1988 Isolation of additional monoclonal antibodies directed against cell surface antigens of Myxococcus xanthus cells undergoing submerged development J. Bacteriol. 170 5953–5955PubMedGoogle Scholar
  157. Gnosspelius, G. 1978a Myxobacterial slime and proteolytic activity Arch. Microbiol. 116 51–59PubMedCrossRefGoogle Scholar
  158. Gnosspelius, G. 1978b Purification and properties of an extracellular protease from Myxococcus virescens J. Bacteriol. 133 17–25PubMedGoogle Scholar
  159. Godchaux, W., and E. R. Leadbetter. 1983 Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group J. Bacteriol. 153 1238–1246PubMedGoogle Scholar
  160. Gorham, H. C., S. J. McGowan, P. R. Robson, and D. A. Hodgson. 1996 Light-induced carotenogenesis in Myxococcus xanthus: Light-dependent membrane sequestration of ECF sigma factor CarQ by anti-sigma factor CarR Molec. Microbiol. 19 171–186CrossRefGoogle Scholar
  161. Gräf, W. 1975 Myxobakterien der Gattung Myxococcus als indirekte Fäkalstoffindikatoren in Oberflächengewässern Zbl. Bakteriol., 1. Abt. Orig., Reihe B 160 28–39Google Scholar
  162. Grilione, P. L. 1968 Serological reactions of some higher myxobacteria J. Bacteriol. 95 1202–1204PubMedGoogle Scholar
  163. Grimm, K., H. K. Galle, and H. H. Heunert. 1971 Archangium violaceum (Myxobacteriales)—Bewegungsaktivität undo Kolonieform [film] Institut für den wissenschaftlichen Film Göttingen Germany Encyclopaedia Cinematographica E 1588Google Scholar
  164. Grimm, K., and H. Kühlwein. 1973a Untersuchungen an spontanen Mutanten von Archangium violaceum (Myxobacterales). I: Bewegliche und unbewegliche Zellen von A. violaceum Arch. Mikrobiol. 89 105–119CrossRefGoogle Scholar
  165. Grimm, K., and H. Kühlwein. 1973b Untersuchungen an spontanen Mutanten von Archangium violaceum (Myxobacterales). II: Über den Einfluß des Schleims auf die Bewegung der Zellen und die Entstehung stabiler Suspensionskulturen Arch. Mikrobiol. 89 121–132CrossRefGoogle Scholar
  166. Grimm, K., and H. Kühlwein. 1973c Untersuchungen an spontanen Mutanten von Archangium violaceum (Myxobacterales). III: Über weitere Eigenschaften der K-und S-Zellen Arch. Mikrobiol. 89 113–146Google Scholar
  167. Grimm, K. 1978 Comparison of spontaneous, UV-induced, and nitrosoguanidine-induced mutability to drug resistance in myxobacteria J. Bacteriol. 135 748–753PubMedGoogle Scholar
  168. Hagen, D. C., A. P. Bretscher, and D. Kaiser. 1978 Synergism between morphogenetic mutants of Myxococcus xanthus Devel. Biol. 64 284–296CrossRefGoogle Scholar
  169. Hanson, C. W., and M. Dworkin. 1974 Intracellular and extracellular nucleotides and related compounds during the development of Myxococcus xanthus J. Bacteriol. 118 486–496PubMedGoogle Scholar
  170. Harcke, E., A. Hüttermann, and H. Kühlwein. 1971 Studies on lytic activities of Chondrococcus coralloides (Myxobacterales). I: Purification and some properties of the bacteriolytic activity Arch. Mikrobiol. 77 86–95PubMedCrossRefGoogle Scholar
  171. Harcke, E., A. Hüttermann, and H. Kühlwein. 1972 Studies on lytic activities of Chondrococcus coralloides (Myxobacterales). II: Identification of the bacteriolytic enzyme as a muramidase Arch. Mikrobiol. 85 6–12PubMedCrossRefGoogle Scholar
  172. Hart, B. A., and S. A. Zahler. 1966 Lytic enzyme produced by Myxococcus xanthus J. Bacteriol. 92 1632–1637PubMedGoogle Scholar
  173. Hartzell, P., and D. Kaiser. 1991 Function of MglA, a 22-kilodalton protein essential for gliding in Myxococcus xanthus J. Bacteriol. 173 7615–7624PubMedGoogle Scholar
  174. Hartzell, P. L., and P. Youderian. 1995 Genetics of gliding motility and development in Myxococcus xanthus Arch. Microbiol. 164 309–323PubMedCrossRefGoogle Scholar
  175. Haskå, G. 1969 Production of lytic exoenzymes in casamino acids media by Myxococcus virescens Physiol. Plant. 22 1074–1078CrossRefGoogle Scholar
  176. Haskå, G., and S. Stáhl. 1971 Variants of Myxococcus virescens exhibiting dispersed growth. Growth and production of extracellular enzymes and slime Physiol. Plant. 24 136–142CrossRefGoogle Scholar
  177. Haskå, G. 1972a Extracellular lytic enzymes of Myxococcus virescens. II: Purification of three bacteriolytic enzymes and determination of their molecular weights and isoelectric points Physiol. Plant. 26 221–229Google Scholar
  178. Haskå, G. 1972b Extracellular lytic enzymes of Myxococcus virescens. III: Characterization of two endo-β-N-acetylglucosaminidases Physiol. Plant. 27 139–142CrossRefGoogle Scholar
  179. Haskå, G., B. Norén, and G. Odham. 1972c Effect of fatty acids on the activity of bacteriolytic enzymes Physiol. Plant. 27 187–194CrossRefGoogle Scholar
  180. Haskå, G. 1974 Extracellular lytic enzymes of Myxococcus virescens. IV: Purification and characterization of a D-alanyl-E-N-lysine endopeptidase Physiol. Plant. 31 252–256CrossRefGoogle Scholar
  181. Haskå, G. 1975 Influence of clay minerals on sorption of bacteriolytic enzymes Microb. Ecol. 1 234–245CrossRefGoogle Scholar
  182. Haskå, G. 1981 Activity of bacteriolytic enzymes adsorbed to clay Microb. Ecol. 7 331–341CrossRefGoogle Scholar
  183. Hecht, V., J. Vorlop, H. Kalbitz, K. Gerth, and J. Lehmann. 1987 Vortex chamber for in situ recovery of the antibiotic myxovirescin A in continuous cultivation Biotechnol. Bioengin. 29 222–227CrossRefGoogle Scholar
  184. Heidelbach, M., H. Skladny, and H. U. Schairer. 1993 Heat-shock and development induced synthesis of a low molecular weight stress-responsive protein in the myxobacterium Stigmatella aurantiaca J. Bacteriol. 175 7479–7482PubMedGoogle Scholar
  185. Henrichsen, J. 1983 Twitching motility Ann. Rev. Microbiol. 37 81–93CrossRefGoogle Scholar
  186. Heunert, H. H. 1973 Präparationsmethoden für Vitalbeobachtungen an Mikroorganismen Zeiss Informationen 20 40–49Google Scholar
  187. Heyn, A. N. J. 1957 Bacteriological studies on cotton Textile Res. J. 27 591–603CrossRefGoogle Scholar
  188. Hirsch, H. J. 1977 Bacteriocins from Myxococcus fulvus (Myxobacterales) Arch. Microbiol. 115 45–49PubMedCrossRefGoogle Scholar
  189. Hirsch, H. J., H. Tsai, and I. Geffers. 1978 Purification and effects of fulvocin C, a bacteriocin from Myxococcus fulvus Mx f16 Arch. Microbiol. 119 279–286PubMedCrossRefGoogle Scholar
  190. Hodgkin, J., and D. Kaiser. 1977 Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus Proc. Natl. Acad. Sci. USA 74 2938–2942PubMedCrossRefGoogle Scholar
  191. Hodgkin, J., and D. Kaiser. 1979a Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): Genes controlling movement of single cells Molec. Gen. Genet. 171 167–176CrossRefGoogle Scholar
  192. Hodgkin, J., and D. Kaiser. 1979b Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): Two gene systems control movement Molec. Gen. Genet. 171 177–191CrossRefGoogle Scholar
  193. Hodgson, D. A., and F. J. Murillo. 1993 Genetics of Regulation and Pathway of Synthesis of Carotenoids In: M. Dworkin and D. Kaiser (Eds.) Myxobacteria Springer-Verlag New York, NY II 157–181Google Scholar
  194. Hodgson, D. A., and A. E. Berry. 1998 Light regulation of carotenoid synthesis in Myxococcus xanthus In: M. X. Caddick, S. Baumberg, D. A. Hodgson, and M. K. Phillips-Jones (Eds.) Microbial Responses to Light and Time Cambridge University Press Cambridge, UK Society for General Microbiology Symposium Volume 56 185–211Google Scholar
  195. Homma, Y. 1984 Perforation and lysis of hyphae of Rhizoctonia solani and conidia of Cochliobolus miyabeanus by soil myxobacteria Phytopathology 74 1234–1239CrossRefGoogle Scholar
  196. Hook, L. A., J. M. Larkin, and E. R. Brockman. 1966 Isolation, characterization, and emendation of description of Angiococcus disciformis (Thaxter 1904) Jahn 1924 and proposal of a neotype strain Internat. J. Syst. Bacteriol. 30 135–142CrossRefGoogle Scholar
  197. Hook, L. A. 1977 Distribution of myxobacters in aquatic habitats in an alkaline bog Appl. Environ. Microbiol. 34 333–335PubMedGoogle Scholar
  198. Hüttermann, A. 1969 Studies on bacteriolytic enzyme of Archangium violaceum (Myxobacterales). II: Partial purification and properties of the enzyme Arch. Mikrobiol. 67 306–317PubMedCrossRefGoogle Scholar
  199. Igoshin, O. A., A. Mogilner, R. D. Welch, D. Kaiser, and G. Oster. 2001 Pattern formation and traveling waves in myxobacteria: Theory and modeling Proc. Nat. Acad. Sci. USA 98 14913–14918PubMedCrossRefGoogle Scholar
  200. Iizuka, T., Y. Jojima, R. Fudou, and S. Yamanaka. 1998 Isolation of myxobacteria from the marine environment FEMS Microbiol. Lett. 169 317–322PubMedCrossRefGoogle Scholar
  201. Iizuka, T., Y. Jojima, R. Fudou, A. Hiraishi, J. W. Ahn, and S. Yamanaka. 2003a Plesiocystis pacifica gen. nov., sp. nov., a marine myxobacterium that contains dihydrogenated menaquinone, isolated from the Pacific coasts of Japan Int. J. Syst. Evol. Microbiol. 53 189–195PubMedCrossRefGoogle Scholar
  202. Iizuka, T., Y. Jojima, R. Fudou, M. Tokura, A. Hiraishi, and S. Yamanaka. 2003b Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan Syst. Appl. Microbiol. 26 189–196PubMedCrossRefGoogle Scholar
  203. Imshenetski, A. A., L. Solntseva [name also transliterated as Imschenezki]. 1936 On aerobic cellulose-decomposing bacteria [in Russian, with English summary] Izvestiia Akad. Nauk SSSR, Classe Sci. Math. Natl. Ser. Biol. 1936 1115–1172Google Scholar
  204. Imshenetski, A. A., and L. A. Kusjurina [name also transliterated as Imschenezki]. 1951 Bacteriotrophic microorganisms: The evolution of saprophytism and parasitism (in Russian) Mikrobiologiya 20 3–12Google Scholar
  205. Imschenetski, A. A. [name also transliterated as Imschenezki]. 1959 Mikrobiologie der Cellulose [translated from the Russian edition of 1953] Akademie Verlag Berlin Berlin, GermanyGoogle Scholar
  206. Inouye, M., S. Inouye; D. R. Zusman. 1979a Biosynthesis and self assembly of protein S, a development-specific protein of Myxococcus xanthus Proc. Natl. Acad. Sci. USA 76 209–213PubMedCrossRefGoogle Scholar
  207. Inouye, M., S. Inouye, and D. R. Zusman. 1979a Gene expression during development of Myxococcus xanthus: Pattern of protein synthesis Devel. Biol. 68 579–591CrossRefGoogle Scholar
  208. Inouye, S., T. Franceschini, and M. Inouye. 1983a Structural similarities between the development-specific protein S from a Gram-negative bacterium, Myxococcus xanthus, and calmodulin Proc. Natl. Acad. Sci. USA 80 6829–6833PubMedCrossRefGoogle Scholar
  209. Inouye, S., Y. Ike, and M. Inouye. 1983b Tandem repeat of the genes for protein S, a development-specific protein of Myxococcus xanthus J. Biol. Chem. 258 38–40PubMedGoogle Scholar
  210. Inouye, S. 1984 Identification of a development-specific promoter of Myxococcus xanthus J. Molec. Biol. 174 113–120PubMedCrossRefGoogle Scholar
  211. Inouye, S., T. Furuichi, A. Dhundale, and M. Inouye. 1987 Stable branched RNA covalently linked to the 5′ end of a single-stranded DNA of myxobacteria In: M. Inouye and B. S. Dudock (Eds.) Molecular Biology of RNA: New Perspectives Academic Press San Diego, CA 271–284Google Scholar
  212. Inouye, S., M. Y. Hsu, S. Eagle, and M. Inouye. 1989 Reverse transcriptase associated with the biosynthesis of the branched RNA-linked msDNA in Myxococcus xanthus Cell 56 709–717PubMedCrossRefGoogle Scholar
  213. Inouye, S. 1990a Cloning and DNA sequence of the gene coding for the major sigma factor from Myxococcus xanthus J. Bacteriol. 172 80–85PubMedGoogle Scholar
  214. Inouye, S., P. J. Herzer, and M. Inouye. 1990b Two independent retrons with highly diverse transcriptases in Myxococcus xanthus Proc. Natl. Acad. Sci. USA 87 942–945PubMedCrossRefGoogle Scholar
  215. Irschik, H., K. Gerth, G. Höfle, W. Kohl, and H. Reichenbach. 1983a The myxopyronins, new inhibitors of bacterial RNA synthesis from Myxococcus fulvus (Myxobacterales) J. Antibiot. 36 1651–1658PubMedCrossRefGoogle Scholar
  216. Irschik, H., K. Gerth, T. Kemmer, H. Steinmetz, and H. Reichenbach. 1983b The myxovalargins, new peptide antibiotics from Myxococcus fulvus (Myxobacterales). I: Cultivation, isolation and some chemical and biological properties J. Antibiot. 36 6–12PubMedCrossRefGoogle Scholar
  217. Irschik, H., and H. Reichenbach. 1985a An unusual pattern of carbohydrate utilization in Corallococcus (Myxococcus) coralloides (Myxobacterales) Arch. Microbiol. 142 40–44CrossRefGoogle Scholar
  218. Irschik, H., R. Jansen, G. Höfle, K. Gerth, and H. Reichenbach. 1985b The corallopyronins, new inhibitors of bacterial RNA synthesis from myxobacteria J. Antibiot. 38 145–152PubMedCrossRefGoogle Scholar
  219. Irschik, H., R. Jansen, K. Gerth, G. Höfle, and H. Reichenbach. 1987 The sorangicins, novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria J. Antibiot. 40 7–13PubMedCrossRefGoogle Scholar
  220. Jackson, D. J. 1959 The association of a slime bacterium with the inner envelope of the egg of Dytiscus marginalis (Coleoptera), and the less common occurrence of a similar bacterium on the egg of D. semisulcatus Quart. J. Microscop. Sci. 100 433–443Google Scholar
  221. Jacobi, C. A., Assmus, B., Reichenbach, H., Stackebrandt, E. 1997 Molecular evidence for association between the sphingobacterium-like organism “Candidatus comitans” and the myxobacterium Chondromyces crocatus 63 719–723Google Scholar
  222. Jahn, E. 1911 Myxobacteriales Kryptogamenflora der Mark Brandenburg Gebrüder Borntraeger Leipzig Leipzig, Germany 5 187–206Google Scholar
  223. Jahn, E. 1924 Beiträ zur botanischen Protistologie. I: Die Polyangiden Gebrüder Borntraeger Leipzig Leipzig, GermanyGoogle Scholar
  224. Jansen, R., A. Nowak, B. Kunze, H. Reichenbach, and G. Höfle. 1995 Four new carotenoids from Polyangium fumosum (myxobacteria): 3,3,4,4’-tetradehydro-1,1′,2,2′-tetrahydro-1,1′dihydroxy-ψ,ψ-carotene (di-O-demethylspirilloxanthin), its β-glucoside and glucoside fatty acid Liebigs Ann. 1995 873–876CrossRefGoogle Scholar
  225. Janssen, G. R., J. W. Wireman, and M. Dworkin. 1977 Effect of temperature on the growth of Myxococcus xanthus J. Bacteriol. 103 561–562Google Scholar
  226. Jaoua, S., J. F. Guespin-Michel, and A. M. Breton. 1987 Mode of insertion of the broad-host-range plasmid RP4 and its derivatives into the chromosome of Myxococcus xanthus Plasmid 18 111–119PubMedCrossRefGoogle Scholar
  227. Jaoua, S., B. Letouvet-Pawlak, C. Monnier, and J. F. Guespin-Michel. 1990 Mechanism of integration of the broad-host-range plasmid RP4 into the chromosome of Myxococcus xanthus Plasmid 23 183–193PubMedCrossRefGoogle Scholar
  228. Jarvis, B. W., and M. Dworkin. 1989a Purification and properties of Myxococcus xanthus cell surface antigen 1604 J. Bacteriol. 171 4655–4666PubMedGoogle Scholar
  229. Jarvis, B. W., and M. Dworkin. 1989b Role of Myxococcus xanthus cell surface antigen 1604 in development J. Bacteriol. 171 4667–4673PubMedGoogle Scholar
  230. Jeffers, E. E. 1964 Myxobacters of a freshwater lake and its environs Int. Bull. Bact. Nomencl. Taxon. 14 115–136Google Scholar
  231. Johnson, J. L., and E. J. Ordal. 1969 Deoxyribonucleic acid homology among the fruiting myxobacteria J. Bacteriol. 98 319–320PubMedGoogle Scholar
  232. Kaiser, D., and M. Dworkin. 1975 Gene transfer to a myxobacterium by Escherichia coli phage P1 Science 187 653–655PubMedCrossRefGoogle Scholar
  233. Kaiser, D. 1979a Social gliding is correlated with the presence of pili in Myxococcus xanthus Proc. Natl. Acad. Sci. USA 76 5952–5956PubMedCrossRefGoogle Scholar
  234. Kaiser, D., C. Manoil, and M. Dworkin. 1979b Myxobacteria: Cell interactions, genetics, and development Ann. Rev. Microbiol. 33 595–639CrossRefGoogle Scholar
  235. Kaiser, D., and C. Crosby. 1983 Cell movement and its coordination in swarms of Myxococcus xanthus Cell Motility 3 227–245CrossRefGoogle Scholar
  236. Kaiser, D. 1984a Genetics of myxobacteria In: E. Rosenberg (Ed.) Myxobacteria: Development and Cell Interactions Springer-Verlag New York, NY 163–184Google Scholar
  237. Kaiser, D. 1984b Regulation of multicellular development in myxobacteria In: R. Losick and L. Shapiro (Eds.) Microbial Development Cold Spring Harbor Laboratory Cold Spring Harbor, NY 197–218Google Scholar
  238. Kaiser, D., L. Kroos, and A. Kuspa. 1985 Cell interactions govern the temporal pattern of Myxococcus development Cold Spring Harbor Symp. Quant. Biol. 50 823–830PubMedCrossRefGoogle Scholar
  239. Kaiser, D. 1986 Control of multicellular development: Dictyostelium and Myxococcus Ann. Rev. Genet. 20 539–566PubMedCrossRefGoogle Scholar
  240. Kaiser, D. 1989 Multicellular development in myxobacteria In: A. Hopwood and K. F. Chater (Eds.) Genetics of Bacterial Diversity Academic Press London, UK 243–263CrossRefGoogle Scholar
  241. Kaiser, D. 1993 Roland Thaxter’s legacy and the origins of multicellular development Genetics 135 249–254PubMedGoogle Scholar
  242. Kaiser, D. 1996 Bacteria also vote Science 272 1598–1599PubMedCrossRefGoogle Scholar
  243. Kaiser, D. 1998 How and why Myxobacteria talk to each other Curr. Opin. Microbiol. 1 663–668PubMedCrossRefGoogle Scholar
  244. Kaiser, D. 1999 Cell fate and organogenesis in bacteria Trends Genet. 15 273–277PubMedCrossRefGoogle Scholar
  245. Kaiser, D. 2000a Bacterial motility: How do pili pull? Curr. Biol. 10 R777–R780PubMedCrossRefGoogle Scholar
  246. Kaiser, D. 2000b Cell-interactive sensing of the environment In: Y. V. Brun and L. J. Shimkets (Eds.) Prokaryotic Development ASM Press Washington, DC 263–275Google Scholar
  247. Kaiser, D. 2001 Building a multicellular organism Ann. Rev. Genet. 35 103–123PubMedCrossRefGoogle Scholar
  248. Karwowski, J. P., G. N. Sunga, S. Kadam, and J. B. McAlpine. 1996 A method for the selective isolation of Myxococcus directly from soil J. Indust. Microbiol. 16 230–236CrossRefGoogle Scholar
  249. Kashefi, K., and P. L. Hartzell. 1995 Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF- defect Molec. Microbiol. 15 483–494CrossRefGoogle Scholar
  250. Kato, H. 1955 Notes on myxobacteria II. Antibacterial strains of Myxococcus fulvus Ecol. Rev. 14 26–28Google Scholar
  251. Kearns, D. B., and L. J. Shimkets. 1998 Chemotaxis in a gliding bacterium Proc. Natl. Acad. Sci. USA 95 11957–11962PubMedCrossRefGoogle Scholar
  252. Kearns, D. B., B. D. Campbell, and L. J. Shimkets. 2000 Myxococcus xanthus fibril appendages are essential for excitation by a phospholipid attractant Proc. Natl. Acad. Sci. USA 97 11505–11510PubMedCrossRefGoogle Scholar
  253. Kearns, D. B., and L. J. Shimkets. 2001a Lipid chemotaxis and signal transduction in Myxococcus xanthus Trends Microbiol. 9 126–129PubMedCrossRefGoogle Scholar
  254. Kearns, D. B., A. Venoit, P. J. Bonner, B. Stevens, G.-J. Boons, and L. J. Shimkets. 2001b Identification of a developmental chemoattractant in Myxococcus xanthus through metabolic engineering Proc. Natl. Acad. Sci. USA 98 13990–13994PubMedCrossRefGoogle Scholar
  255. Kearns, D. B., P. J. Bonner, D. R. Smith, and L. J. Shimkets. 2002 An extracellular matrix-associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus J. Bacteriol. 184 1678–1684PubMedCrossRefGoogle Scholar
  256. Keller, K. H., M. Grady, and M. Dworkin. 1983 Surface tension gradients: feasible model for gliding motility of Myxococcus xanthus J. Bacteriol. 155 1358–1366PubMedGoogle Scholar
  257. Killeen, K. P., and D. R. Nelson. 1988 Acceleration of starvation-and glycerol-induced myxospore formation by prior heat shock in Myxococcus xanthus J. Bacteriol. 170 5200–5207PubMedGoogle Scholar
  258. Kim, S. K., and D. Kaiser. 1990 C-factor: a cell-cell signaling protein required for fruiting body morphogenesis of M. xanthus Cell 61 19–26PubMedCrossRefGoogle Scholar
  259. Kim, S.-H., S. Ramaswamy, and J. Downard. 1999 Regulated exopolysaccharide production in Myxococcus xanthus J. Bacteriol. 181 1496–1507PubMedGoogle Scholar
  260. Kim, Y. J., Furihata, K., Yamanaka, S., Fudo, R., and Seto, H. 1991 Isolation and structural elucidation of stipiamide, a new antibiotic effective to multidrug-resistant cancer cells J. Antibiot. (Tokyo) 44 553–556CrossRefGoogle Scholar
  261. Kimchi, A. E. Rosenberg. 1976 Linkages between deoxyribonucleic acid synthesis and cell division in Myxococcus xanthus J. Bacteriol. 128 69–79PubMedGoogle Scholar
  262. Kleinig, H., H. Reichenbach, and H. Achenbach. 1970 Carotenoid pigments of Stigmatella aurantiaca (Myxobacterales). II: Acylated carotenoid glycosides Arch. Mikrobiol. 74 223–234PubMedCrossRefGoogle Scholar
  263. Kleinig, H., H. Reichenbach, H. Achenbach, and J. Stadler. 1971 Carotenoid pigments of Sorangium cellulosum (Myxobacterales) including two new carotenoid glycoside esters and two new carotenoid rhamnosides Arch. Mikrobiol. 78 224–233PubMedCrossRefGoogle Scholar
  264. Kleinig, H. 1972 Membranes from Myxococcus fulvus (Myxobacterales) containing carotenoid glucosides. I: Isolation and composition Biochim. Biophys. Acta 274 489–498PubMedCrossRefGoogle Scholar
  265. Kleinig, H., and H. Reichenbach. 1973 Biosynthesis of carotenoid glucoside esters in Myxococcus fulvus (Myxobacterales): Inhibition by nicotine and carotenoid turnover Biochim. Biophys. Acta 306 249–256PubMedCrossRefGoogle Scholar
  266. Kleinig, H. 1974a Inhibition of carotenoid synthesis in Myxococcus fulvus (Myxobacterales) Arch. Microbiol. 97 217–226PubMedCrossRefGoogle Scholar
  267. Kleinig, H., H. Reichenbach, N. Theobald, and H. Achenbach. 1974b Flexibacter elegans and Myxococcus fulvus: Aerobic Gram-negative bacteria containing menaquinones as the only isoprenoid quinones Arch. Microbiol. 101 91–93PubMedCrossRefGoogle Scholar
  268. Kleinig, H. 1975 On the utilization in vivo of lycopene and phytoene as precursors for the formation of carotenoid glucoside ester and on the regulation of carotenoid biosynthesis in Myxococcus fulvus Eur. J. Biochem. 57 301–308PubMedCrossRefGoogle Scholar
  269. Kofler, L. 1913 Die Myxobakterien der Umgebung von Wien Sitzber. Kais. Akad. Wiss. Wien, Math. Naturw. Klasse, Abt. 1 122 845–876Google Scholar
  270. Kohl, W., A. Gloe, and H. Reichenbach. 1983 Steroids from the myxobacterium Nannocystis exedens J. Gen. Microbiol. 129 1629–1635Google Scholar
  271. Komano, T., T. Franceschini, and S. Inouye. 1987 Identification of a vegetative promoter in Myxococcus xanthus: A protein that has homology to histones J. Molec. Biol. 196 517–524PubMedCrossRefGoogle Scholar
  272. Kottel, R.H., K. Bacon, D. Clutter, and D. White. 1975 Coats from Myxococcus xanthus: Characterization and synthesis during myxospore differentiation J. Bacteriol. 124 550–557PubMedGoogle Scholar
  273. Kroos, L., and D. Kaiser. 1984 Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus Proc. Natl. Acad. Sci. USA 81 5816–5820PubMedCrossRefGoogle Scholar
  274. Kroos, L., A. Kuspa, and D. Kaiser. 1986 A global analysis of developmentally regulated genes in Myxococcus xanthus Devel. Biol. 17 252–266CrossRefGoogle Scholar
  275. Kroos, L., A. Kuspa, and D. Kaiser. 1990 Defects in fruiting body development caused by Tn5 lac insertions in Myxococcus xanthus J. Bacteriol. 172 484–487PubMedGoogle Scholar
  276. Krzemieniewska, H., and S. Krzemieniewski. 1926 Miksobakterje Polski [in Polish, with German summary] Acta Soc. Botan. Polon. 4 1–54Google Scholar
  277. Krzemieniewska, H., and S. Krzemieniewski. 1927a Miksobakterje Polski. Uzupelnienie [in Polish, with German summary] Acta Soc. Botan. Polon. 5 79–98Google Scholar
  278. Krzemieniewska, H., and S. Krzemieniewski. 1927b Rozsiedlenie miksobakteryj (Über die Verbreitung der Myxobakterien im Boden) [in Polish, with German summary] Acta Soc. Botan. Polon. 5 102–139Google Scholar
  279. Krzemieniewska, H., and S. Krzemieniewski. 1928 Morphologja komorki miksobakteryj (Zur Morphologie der Myxobakterienzelle) [in Polish, with German summary] Acta Soc. Botan. Polon. 5 46–90Google Scholar
  280. Krzemieniewska, H., and S. Krzemieniewski. 1930 Mikrobakterje Polski. Czesc trzecia (Die Myxobakterien von Polen. III. Teil) [in Polish, with German summary] Acta Soc. Botan. Polon. 7 250–273Google Scholar
  281. Krzemieniewska, H., and S. Krzemieniewski. 1937a Die zellulosezersetzenden Myxobakterien Bull. Acad. Polon. Sci. Lettr. Classe Sci. Math. Nat. Sér. B (I) 11–31Google Scholar
  282. Krzemieniewska, H., and S. Krzemieniewski. 1937b Über die Zersetzung der Zellulose durch Myxobakterien Bull. Acad. Polon. Sci. Lettr. Classe Sci. Math. Nat. Sér. B (I) 33–59Google Scholar
  283. Krzemieniewska, H., and S. Krzemieniewski. 1946 Myxobacteria of the species Chondromyces Berkeley and Curtis Bull. Acad. Polon. Sci. Lettr. Classe Sci. Math. Nat. Sér. B (I) 31–48Google Scholar
  284. Kühlwein, H. 1950 Beiträ zur Biologie und Entwicklungsgeschichte der Myxobakterien Arch. Mikrobiol. 14 678–704CrossRefGoogle Scholar
  285. Kühlwein, H., and E. Gallwitz. 1958 Polyangium violaceum nov. spec.: Ein Beitrag zur Kenntnis der Myxobakterien Arch. Mikrobiol. 31 139–145CrossRefGoogle Scholar
  286. Kühlwein, H. 1960 Zur Systematik und Verbreitung der Myxobakterien Zbl. Bakteriol., 2. Abt. 113 480–490Google Scholar
  287. Kühlwein, H., and H. Reichenbach. 1965 Anreicherung und Isolierung von Myxobakterien Zbl. Bakteriol., 1. Abt. Orig. Suppl. 1 57–80Google Scholar
  288. Kühlwein, H. and H. Reichenbach. 1968a Schwarmentwicklung und Morphogenese bei Myxobakterien Archangium-Myxococcus-Chondrococcus-Chondromyces Ed. G. Wolf. Göttingen Encyclopaedia Cinematographica Institut für den wissenschaftlichen Film Göttingen, Germany Segment #4 341–342 (Film C893; 1965)Google Scholar
  289. Kühlwein, H. and H. Reichenbach. 1968b Schwarmentwicklung und Morphogenese bei Myxobakterien Archangium-Myxococcus-Chondrococcus-Chondromyces Ed. G. Wolf. Göttingen Encyclopaedia Cinematographica Institut für den wissenschaftlichen Film Göttingen, Germany Segment #5 342Google Scholar
  290. Kühlwein, H. and H. Reichenbach. 1968c Schwarmentwicklung und Morphogenese bei Myxobakterien Archangium-Myxococcus-Chondrococcus-Chondromyces Ed. G. Wolf. Göttingen Encyclopaedia Cinematographica Institut für den wissenschaftlichen Film Göttingen, Germany Segment #6 342Google Scholar
  291. Kühlwein, H. and H. Reichenbach. 1968d Schwarmentwicklung und Morphogenese bei Myxobakterien Archangium-Myxococcus-Chondrococcus-Chondromyces Ed. G. Wolf. Göttingen Encyclopaedia Cinematographica Institut für den wissenschaftlichen Film Göttingen, Germany Segment #26 350Google Scholar
  292. Kühlwein, H. and H. Reichenbach. 1968e Schwarmentwicklung und Morphogenese bei Myxobakterien Archangium-Myxococcus-Chondrococcus-Chondromyces Ed. G. Wolf. Göttingen Encyclopaedia Cinematographica Institut für den wissenschaftlichen Film Göttingen, Germany Segment #27 352Google Scholar
  293. Kühlwein, H. and H. Reichenbach. 1968f Schwarmentwicklung und Morphogenese bei Myxobakterien Archangium-Myxococcus-Chondrococcus-Chondromyces Ed. G. Wolf. Göttingen Encyclopaedia Cinematographica Institut für den wissenschaftlichen Film Göttingen, Germany Segments #29–31 352–353Google Scholar
  294. Kühlwein, H. and H. Reichenbach. 1968g Schwarmentwicklung und Morphogenese bei Myxobakterien Archangium-Myxococcus-Chondrococcus-Chondromyces Ed. G. Wolf. Göttingen Encyclopaedia Cinematographica Institut für den wissenschaftlichen Film Göttingen, Germany Segment #3 340–341Google Scholar
  295. Kühlwein, H. and H. Reichenbach. 1968h Schwarmentwicklung und Morphogenese bei Myxobakterien Archangium-Myxococcus-Chondrococcus-Chondromyces Ed. G. Wolf. Göttingen Encyclopaedia Cinematographica Institut für den wissenschaftlichen Film Göttingen, Germany Segments #11–2 343–345Google Scholar
  296. Kühlwein, H. and H. Reichenbach. 1968i Schwarmentwicklung und Morphogenese bei Myxobakterien Archangium-Myxococcus-Chondrococcus-Chondromyces Ed. G. Wolf. Göttingen Encyclopaedia Cinematographica Institut für den wissenschaftlichen Film Göttingen, Germany Segments #16–7 346–347Google Scholar
  297. Kühlwein, H. and H. Reichenbach. 1968j Schwarmentwicklung und Morphogenese bei Myxobakterien Archangium-Myxococcus-Chondrococcus-Chondromyces Ed. G. Wolf. Göttingen Encyclopaedia Cinematographica Institut für den wissenschaftlichen Film Göttingen, Germany Segment #14 346Google Scholar
  298. Kühlwein, H., B. Schlicke, H. K. Galle, and H. H. Heunert. 1971a Polyangium fuscum (Myxobacterales)—Cystenkeimung und Schwarmentwicklung [film] Institut für den wissenschaftlichen Film Göttingen, Germany Encyclopaedia Cinematographica E 1582Google Scholar
  299. Kühlwein, H., B. Schlicke, H. K. Galle, and H. H. Heunert. 1971b Polyangium fuscum (Myxobacterales)—Morphogenese Institut für den wissenschaftlichen Film Göttingen, Germany Encyclopaedia Cinematographica E 1583Google Scholar
  300. Kuner, J. M., and D. Kaiser. 1981 Introduction of transposon Tn5 into Myxococcus for analysis of developmental and other nonselectable mutants Proc. Natl. Acad. Sci. USA 78 425–429PubMedCrossRefGoogle Scholar
  301. Kuner, J. M., and D. Kaiser. 1982 Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus J. Bacteriol. 151 458–461PubMedGoogle Scholar
  302. Kunze, B., T. Kemmer, G. Höfle, and H. Reichenbach. 1984 Stigmatellin, a new antibiotic from Stigmatella aurantiaca (Myxobacterales). I: Production, physico-chemical and biological properties J. Antibiot. 37 454–461PubMedCrossRefGoogle Scholar
  303. Kunze, B., W. Kohl, G. Höfle, and H. Reichenbach. 1985 Production, isolation, physicochemical and biological properties of angiolam A, a new antibiotic from Angiococcus disciformis (Myxobacterales) J. Antibiot. 38 1649–1654PubMedCrossRefGoogle Scholar
  304. Kunze, B., G. Höfle, and H. Reichenbach. 1987 The aurachins, new quinoline antibiotics from myxobacteria: Production, physicochemical and biological properties J. Antibiot. 40 258–265PubMedCrossRefGoogle Scholar
  305. Kurtz, S., J. Rossi, L. Petko, and S. Lindquist. 1986 An ancient developmental induction: Heat-shock proteins induced in sporulation and oogenesis Science 231 1154–1157PubMedCrossRefGoogle Scholar
  306. Kuspa, A., D. Vollrath, Y. Cheng, and D. Kaiser. 1989 Physical mapping of the Myxococcus xanthus genome by random cloning in yeast artificial chromosomes Proc. Natl. Acad. Sci. USA 86 8917–8921PubMedCrossRefGoogle Scholar
  307. Lam, H.-M., and M. E. Winkler. 1992 Characterization of the complex pdxH-tyrS operon of Escherichia coli K12 and pleiotrophic phenotypes caused by pdxH insertion mutations J. Bacteriol. 174 6033–6045PubMedGoogle Scholar
  308. Lampky, J. R. 1976 Ultrastructure of Polyangium cellulosum J. Bacteriol. 126 1278–1284PubMedGoogle Scholar
  309. Lampky, J. R., and E. R. Brockman. 1977 Fluorescence of Myxococcus stipitatus Int. J. Syst. Bacteriol. 27 161CrossRefGoogle Scholar
  310. Lampson, B. C., M. Inouye, and S. Inouye. 1989 Reverse transcriptase with concomitant ribonuclease H. activity in the cell-free synthesis of branched RNA-linked msDNA of Myxococcus xanthus Cell 56 701–707PubMedCrossRefGoogle Scholar
  311. Lancero, H., J. E. Brofft, J. Downard, B. W. Birren, C. Nusbaum, J. Naylor, W. Shi, and L. J. Shimkets. 2002 Mapping of Myxococcus xanthus social motility dsp mutations to the dif genes J. Bacteriol. 184 1462–1465PubMedCrossRefGoogle Scholar
  312. Lau, J., S. Frykman, R. Regentin, S. Ou, H. Tsuruta, and P. Licari. 2002 Optimizing the heterologous production of epothilone D in Myxococcus xanthus Biotechnol. Bioengin. 78 280–288CrossRefGoogle Scholar
  313. Laue, B. E., and R. E. Gill. 1995 Using a phase-locked mutant of Myxococcus xanthus to study the role of phase variation in development J. Bacteriol. 177 4089–4096PubMedGoogle Scholar
  314. Li, S.-F., and L. J. Shimkets. 1988 Site-specific integration and expression of a developmental promoter in Myxococcus xanthus J. Bacteriol. 170 5552–5556PubMedGoogle Scholar
  315. Li, S.-F., and L. J. Shimkets. 1993 Effect of dsp mutations on the cell-to-cell transmission of CsgA in Myxococcus xanthus J. Bacteriol. 175 3648–3652PubMedGoogle Scholar
  316. Li., Y.-Z., W. Hu, Y.-Q. Zhang, Z. Qiu, Y. Zhang, and B.-H. Wu. 2002 A simple method to isolate salt-tolerant myxobacteria from marine samples J. Microbiol. Meth. 50 205–209CrossRefGoogle Scholar
  317. Li, Y., H. Sun, X. Ma, A. Lu, R. Lux, D. Zusman, and W. Shi. 2003 Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus Proc. Natl. Acad. Sci. USA 100 5443–5448PubMedCrossRefGoogle Scholar
  318. Link, H. F. 1809 Observationes in Ordines plantarum naturales. Dissertatio Ima, complectens Anandrarum ordines Epiphytas, Mucedines Gastomycos et Fungos Der Gesellschaft Naturforschender Freunde zu Berlin Magazin für die neuesten Entdeckungen in der gesamten Naturkunds 3 3–42 and Fig. 65Google Scholar
  319. Loebeck, M. E., and H. P. Klein. 1956 Substrates for Myxococcus virescens with special reference to eubacterial fractions J. Gen. Microbiol. 14 281–289PubMedCrossRefGoogle Scholar
  320. Lonergan, D. J., H. L. Jenter, J. D. Coates, E. J. Phillips, T. M. Schmidt, and D. R. Lovely. 1996 Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria J. Bacteriol. 178 2402–2408PubMedGoogle Scholar
  321. Ludwig, W., H. H. Schleifer, H. Reichenbach, and E. Stackebrandt. 1983 A phylogenetic analysis of the myxobacteria Myxococcus fulvus, Stigmatella aurantiaca, Cystobacter fuscus, Sorangium cellulosum and Nannocystis exedens Arch. Microbiol. 135 58–62CrossRefGoogle Scholar
  322. Lünsdorf, H., and H. Reichenbach. 1989 Ultrastructural details of the apparatus of gliding motility of Myxococcus fulvus (Myxobacterales) J. Gen. Microbiol. 135 1633–1641Google Scholar
  323. Lünsdorf, H., and H. U. Schairer. 2001 Frozen motion of gliding bacteria outlines inherent features of the motility apparatus Microbiology-UK 147 939–947Google Scholar
  324. MacRae, T. H., and H. D. McCurdy. 1975 Ultrastructural studies of Chondromyces crocatus vegetative cells Can. J. Microbiol. 21 1815–1826PubMedCrossRefGoogle Scholar
  325. MacRae, T. H., and H. D. McCurdy. 1976 Evidence for motility-related fimbriae in the gliding microorganism Myxococcus xanthus Can. J. Microbiol. 22 1589–1593PubMedCrossRefGoogle Scholar
  326. MacRae, T. H., W. J. Dobson, and H. D. McCurdy. 1977 Fimbriation in gliding bacteria Can. J. Microbiol. 23 1096–1108PubMedCrossRefGoogle Scholar
  327. Maeba, P. Y. 1983 Iodination of Myxococcus xanthus during development J. Bacteriol. 155 1033–1041PubMedGoogle Scholar
  328. Maeba, P. Y. 1986 Isolation of a surface glycoprotein from Myxococcus xanthus J. Bacteriol. 166 644–650PubMedGoogle Scholar
  329. Magrini, V., D. Salmi, D. Thomas, S. K. Herbert, P. L. Hartzell, and P. Youderian. 1997 Temperate Myxococcus xanthus phage Mx8 encodes a DNA adenine methylase, Mox J. Bacteriol. 179 4254–4263PubMedGoogle Scholar
  330. Magrini, V., C. Creighton, and P. Youderian. 1999a Site-specific recombination of temperate Myxococcus xanthus phage Mx8: Genetic elements required for integration J. Bacteriol. 181 4050–4061PubMedGoogle Scholar
  331. Magrini, V., M. L. Storms, and P. Youderian. 1999b Site-specific recombination of temperate Myxococcus xanthus phage Mx8: Regulation of integrase activity by reversible, covalent modification J. Bacteriol. 181 4062–4070PubMedGoogle Scholar
  332. Maier, B., L. Potter, M. So, C. D. Long, H. S. Seifert, and M. P. Sheetz. 2002 Single pilus motor forces exceed 100 pN Proc. Natl. Acad. Sci. USA 99 16012–16017PubMedCrossRefGoogle Scholar
  333. Man, S. Z. 1998 Structural Characterization of the O-Antigen Polysaccharide from Wild-type Myxococcus xanthus Lipopolysaccharide and its Two Mutants by the Reductive Cleavage Method [PhD thesis] University of Minnesota Minneapolis, MNGoogle Scholar
  334. Mandel, M., and E. R. Leadbetter. 1965 Deoxyribonucleic acid base composition of myxobacteria J. Bacteriol. 90 1795–1796PubMedGoogle Scholar
  335. Margalith, P. 1962 Bacteriolytic principles of Myxococcus fulvus Nature 196 1335–1336CrossRefGoogle Scholar
  336. Martin, S., E. Sodergren, T. Massuda, and D. Kaiser. 1978 Systematic isolation of transducing phages for Myxococcus xanthus Virology 88 44–53PubMedCrossRefGoogle Scholar
  337. Martinez-Laborda, A., J. M. Balsalobre, M. Fontes, and F. J. Murillo. 1990 Accumulation of carotenoids in structural and regulatory mutants of the bacterium Myxococcus xanthus Molec. Gen. Genet. 223 205–210PubMedGoogle Scholar
  338. Mason, J., and D. Powelson. 1958 Lysis of Myxococcus xanthus J. Gen. Microbiol. 19 65–70PubMedCrossRefGoogle Scholar
  339. Masson, P. J., and J. F. Guespin-Michel. 1988 An extracellular blood-anticoagulant glycopeptide produced exclusively during vegetative growth by Myxococcus xanthus and other myxobacteria is not co-regulated with other extracellular macromolecules J. Gen. Microbiol. 134 801–806PubMedGoogle Scholar
  340. Mathew, S., and A. Dudani. 1955 Lysis of human pathogenic bacteria by myxobacteria Nature 175 125PubMedCrossRefGoogle Scholar
  341. Mayer, D. 1967 Ernährungsphysiologische Untersuchungen an Archangium violaceum Arch. Mikrobiol. 58 186–200PubMedCrossRefGoogle Scholar
  342. Mayer, H., and H. Reichenbach. 1978 Restriction endonucleases: General survey procedure and survey of gliding bacteria J. Bacteriol. 136 708–713PubMedGoogle Scholar
  343. McBride, M. J., and D. R. Zusman. 1989a Trehalose accumulation in vegetative cells and spores of Myxococcus xanthus J. Bacteriol. 171 6383–6386PubMedGoogle Scholar
  344. McBride, M. J., R. A. Weinberg, and D. R. Zusman. 1989b “Frizzy” aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria Proc. Natl. Acad. Sci. USA 86 424–428PubMedCrossRefGoogle Scholar
  345. McBride, M. J. 2001 Bacterial gliding motility: Multiple mechanisms for cell movement over surfaces Ann. Rev. Microbiol. 55 49–75CrossRefGoogle Scholar
  346. McCleary, W., and D. Zusman. 1990a FrzE of M. xanthus is homologous to both CheA and CheY of Salmonella typhimurium Proc. Natl. Acad. Sci. USA 87 5898–5902PubMedCrossRefGoogle Scholar
  347. McCleary, W. and D. Zusman. 1990b Purification and characterization of the M. xanthus FrzE protein shows that it has autophosphorylation activity J. Bacteriol. 172 6661–6668PubMedGoogle Scholar
  348. McCleary, W. R., M. J. McBride, and D. R. Zusman. 1990c Developmental sensory transduction in Myxococcus xanthus involves methylation and demethylation of Frz CD J. Bacteriol. 172 4877–4887PubMedGoogle Scholar
  349. McCurdy, H. D. 1963 A method for the isolation of myxobacteria in pure culture Can. J. Microbiol. 9 282–285CrossRefGoogle Scholar
  350. McCurdy, H. D., and S. Wolf. 1967 Deoxyribonucleic acid base compositions of fruiting Myxobacterales Can. J. Microbiol. 13 1707–1708PubMedCrossRefGoogle Scholar
  351. McCurdy, H. D. 1969a Light and electron microscope studies on the fruiting bodies of Chondromyces crocatus Arch. Mikrobiol. 65 380–390CrossRefGoogle Scholar
  352. McCurdy, H. D. 1969b Studies on the taxonomy of the Myxobacterales. I: Record of Canadian isolates and survey of methods Can. J. Microbiol. 5 1453–1461CrossRefGoogle Scholar
  353. McCurdy, H. D., and B. T. Khouw. 1969c Studies on Stigmatella brunea Can. J. Microbiol. 15 731–738PubMedCrossRefGoogle Scholar
  354. McCurdy, H. D., and T. H. MacRae. 1973 Xanthacin. A bacteriocin of Myxococcus xanthus FB Can. J. Microbiol. 20 131–135CrossRefGoogle Scholar
  355. McCurdy, H. D. 1974 Myxobacterales In: R. E. Buchanan and N. E. Gibbons (Eds.) Bergey’s Manual of Determinative Bacteriology, 8th ed. Williams and Wilkins Baltimore, MD 76–98Google Scholar
  356. McCurdy, H. D. 1989 Order Myxococcales Tchan, Pochon and Prévot 1948, 398 (with contributions of E. R. Brockman, H. Reichenbach, and D. White) In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 3 2139–2170Google Scholar
  357. McDonald, J. C., and J. E. Peterson. 1962 Liquid cultures of two members of the higher fruiting myxobacteria Mycologia 54 368–373CrossRefGoogle Scholar
  358. McDonald, J. C. 1967 Studies on the genus Archangium (Myxobacterales). II: The effect of temperature and carbohydrates on some physiological processes Mycologia 59 1059–1068PubMedCrossRefGoogle Scholar
  359. McVittie, A., and S. A. Zahler. 1962 Chemotaxis in Myxococcus Nature 194 1299–1300CrossRefGoogle Scholar
  360. Menne, B., and G. Rückert. 1988 Myxobakterien (Myxobacterales) in Höhlensedimenten des Hagengebirges (Nördliche Kalkalpen) Die Höhle 4 120–131Google Scholar
  361. Merroun, M. L., K. Ben Chekroun, M. T. Gonzalez-Munoz, and J. M. Arias. 2003 Lanthanum fixation by Myxococcus xanthus: cellular location and extracellular polysaccharide observation Chemosphere 52 113–120PubMedCrossRefGoogle Scholar
  362. Merz, A., M. So, and M. P. Sheetz. 2000 Pilus retraction powers bacterial twitching motility Nature 407 98–101PubMedCrossRefGoogle Scholar
  363. Mesbah, M., U. Premachandran, and W. B. Whitman. 1989 Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography Int. J. Syst. Bacteriol. 39 159–167CrossRefGoogle Scholar
  364. Michoustine, E. [name also transliterated as Mishustin]. 1968 Microorganismes cellulolytiques des sols de l’U.S.S.R Ann. Inst. Pasteur 115 596–603Google Scholar
  365. Miyashiro, S., S. Yamanaka, S. Takayama, and H. Shibai. 1988 Novel macrocyclic antibiotics: myxovalicins A, B, C, D, G and H. I: Screening of antibiotics-producing myxobacteria and production of megovalicins J. Antibiot. 41 433–438PubMedCrossRefGoogle Scholar
  366. Mizrahi, A., J. Arnan, G. Miller, Z. Liron, M. Manai, Y. Batus, and E. Rosenberg. 1977 Scaling-up process for production of antibiotic of Myxococcus xanthus TA J. Appl. Chem. Biotechnol. 26 160–166Google Scholar
  367. Monteoliva-Sanchez, M., C. Ruiz, and A. Ramos-Cormenzana. 1987 Cellular fatty acid composition of Corallococcus coralloides Curr. Microbiol. 15 269–271CrossRefGoogle Scholar
  368. Morris, D. W., and J. H. Parish. 1976 Restriction in Myxococcus virescens Arch. Microbiol. 108 227–230PubMedCrossRefGoogle Scholar
  369. Morris, D. W., S. R. Ogden-Swift, V. Virrankowski-Castrodeza, K. Ainley, and J. H. Parish. 1978 Transduction of Myxococcus virescens by coliphage P1CM: Generation of plasmids containing both phage and Myxococcus genes J. Gen. Microbiol. 107 73–83PubMedCrossRefGoogle Scholar
  370. Morris, J., S. R. Kushner, and R. Ivarie. 1986 The simple repeat poly (dT-dG).poly (dC-dA) common to eukaryotes is absent from eubacteria and archaebacteria and rare in protozoans Molec. Biol. Evol. 3 343–355PubMedGoogle Scholar
  371. Mullings, R., and J. H. Parish. 1984 Mesophilic aerobic Gram-negative cellulose degrading bacteria from aquatic habitats and soils J. Appl. Bacteriol. 57 455–468CrossRefGoogle Scholar
  372. Nellis, L. F., and H. R. Garner. 1964 Methods of isolation and purification of Chondromyces J. Bacteriol. 87 230–231PubMedGoogle Scholar
  373. Nelson, D. R., M. G. Cumsky, and D. R. Zusman. 1981 Localization of myxobacterial hemagglutinin in the periplasmic space and on the cell surface of Myxococcus xanthus during developmental aggregation J. Biol. Chem. 256 12589–12595PubMedGoogle Scholar
  374. Nelson, D. R., and D. R. Zusman. 1983 Evidence for a long-lived mRNA during fruiting body formation in Myxococcus xanthus Proc. Natl. Acad. Sci. USA 80 1467–1471PubMedCrossRefGoogle Scholar
  375. Nelson, D. R., and K. P. Killeen. 1986 Heat shock proteins of vegetative and fruiting Myxococcus xanthus J. Bacteriol. 168 1100–1106PubMedGoogle Scholar
  376. Neumann, B., A. Pospiech, and H. U. Schairer. 1992 Size and stability of the genomes of the myxobacteria Stigmatella aurantiaca and Stigmatella erecta J. Bacteriol. 174 6307–6310PubMedGoogle Scholar
  377. Neumann, B., A. Pospiech, and H. U. Schairer. 1993 A physical and genetic map of the Stigmatella aurantiaca DW4/3.1 chromosome Molec. Microbiol. 10 1087–1099CrossRefGoogle Scholar
  378. Nicaud, J. M., A. Breton, G. Younes, and J. Guespin-Michel. 1984 Mutants of Myxococcus xanthus impaired in protein secretion: An approach to study a secretory mechanism Appl. Microbiol. Biotechnol. 20 344–350CrossRefGoogle Scholar
  379. Nigam, J. N., J. Lehmann, K. Gerth, H. Piehl, R. Schultze, and W. Trowitzsch. 1984 Feeding strategy for the production of the new antibiotic myxovirescin A from Myxococcus virescens (Myxobacterales) Appl. Microbiol. Biotechnol. 19 157–160CrossRefGoogle Scholar
  380. Nolte, E. M. 1957 Untersuchungen über Ernährung und Fruchtkörperbildung von Myxobakterien Arch. Mikrobiol. 28 191–218PubMedCrossRefGoogle Scholar
  381. Norén, B. 1950 Notes on myxobacteria in Sweden Svensk Bot. Tidskr. 44 108–112Google Scholar
  382. Norén, B. 1952 Further notes on the distribution of myxobacteria in Swedish soils Svensk Bot. Tidskr. 46 446–453Google Scholar
  383. Norén, B. 1953 On the production of antibiotics by myxobacteria Svensk Bot. Tidskr. 47 402–410Google Scholar
  384. Norén, B. 1955 Studies on myxobacteria III. Organic factors in nutrition Botaniska Notiser 108 81–134Google Scholar
  385. Norén, B. 1960a Lytic activity on autoclaved and on intact eubacterial cells by a preparation UZD, obtained from a metabolic solution of Myxococcus virescens Botaniska Notiser 113 320–336Google Scholar
  386. Norén, B. 1960b Notes on the bacteriolytic activity of Myxococcus virescens Svensk Bot. Tidskr. 54 550–560Google Scholar
  387. Norén, B., and K. B. Raper. 1962 Antibiotic activity of myxobacteria in relation to their bacteriolytic capacity J. Bacteriol. 84 157–162PubMedGoogle Scholar
  388. Norén, B., and G. Odham. 1973 Antagonistic effects of Myxococcus xanthus on fungi. II: Isolation and characterization of inhibitory lipid factors Lipids 8 573–583PubMedCrossRefGoogle Scholar
  389. O’Connor, K. A., and D. R. Zusman. 1983 Coliphage P1-mediated transduction of cloned DNA from Escherichia coli to Myxococcus xanthus: Use for complementation and recombinational analyses J. Bacteriol. 155 317–329PubMedGoogle Scholar
  390. O’Connor, K. A., and D. R. Zusman. 1989 Patterns of cellular interactions during fruiting body formation in Myxococcus xanthus J. Bacteriol. 171 6013–6024PubMedGoogle Scholar
  391. O’Connor, K., and D. Zusman. 1991a Analysis of Myxococcus xanthus cell types by two-dimensional polyacrylamide gel electrophoresis J. Bacteriol. 173 3334–3341PubMedGoogle Scholar
  392. O’Connor, K., and D. Zusman. 1991b Behavior of peripheral rods and their role in the life cycle of Myxococcus xanthus J. Bacteriol. 173 3342–3355PubMedGoogle Scholar
  393. O’Connor, K., and D. Zusman. 1991c Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores J. Bacteriol. 173 3318–3333PubMedGoogle Scholar
  394. Oetker, H. 1953 Untersuchungen über die Ernährung einiger Myxobakterien Arch. Mikrobiol. 19 206–246PubMedCrossRefGoogle Scholar
  395. Oka, M., Y. Nishiyama, S. Ohta, H. Kamei, M. Konishi, T. Miyaki, T. Oki, and H. Kawaguchi. 1988a Glidobactins A, B and C, new antitumor antibiotics. I: Production, isolation, chemical properties and biological activity J. Antibiot. 41 1331–1337PubMedCrossRefGoogle Scholar
  396. Oka, M., H. Ohkuma, H. Kamei, M. Konishi, T. Oki, and H. Kawaguchi. 1988b Glidobactins D, E, F, G and H; minor components of the antitumor antibiotic glidobactin J. Antibiot. 41 1906–1909PubMedCrossRefGoogle Scholar
  397. Oka, M., K. Yaginuma, K. Numata, M. Konishi, T. Oki, and H. Kawaguchi. 1988c Glidobactins A, B and C, new antitumor antibiotics. II: Structure elucidation J. Antibiot. 41 1338–1350PubMedCrossRefGoogle Scholar
  398. Onishi, N., K. Izaki, and H. Takahashi. 1984 A macrocyclic antibiotic M-230B produced by Myxococcus xanthus: Isolation and characterization J. Antibiot. 37 13–19PubMedCrossRefGoogle Scholar
  399. Orlowski, M., and D. White. 1974 Intracellular proteolytic activity in developing myxospores of Myxococcus xanthus Arch. Microbiol. 97 347–357PubMedCrossRefGoogle Scholar
  400. Orlowski, M. 1980 Cyclic adenosine 3’,5’-monophosphate binding protein in developing myxospores of Myxococcus xanthus Can. J. Microbiol. 26 905–911PubMedCrossRefGoogle Scholar
  401. Orndorff, P. E., and M. Dworkin. 1980 Separation and properties of the cytoplasmic and outer membranes of vegetative cells of Myxococcus xanthus J. Bacteriol. 141 914–927PubMedGoogle Scholar
  402. Orndorff, P. E., and M. Dworkin. 1982 Synthesis of several membrane proteins during developmental aggregation in Myxococcus xanthus J. Bacteriol. 149 29–39PubMedGoogle Scholar
  403. Orndorff, P., E. Stellwag, T. Starich, M. Dworkin, and J. Zissler. 1983 Genetic and physical characterization of lysogeny by bacteriophage MX8 in Myxococcus xanthus J. Bacteriol. 154 772–779PubMedGoogle Scholar
  404. Oxford, A. E., and B. N. Singh. 1946 Factors contributing to the bacteriolytic effect of species of myxococci upon viable eubacteria Nature 1158 745CrossRefGoogle Scholar
  405. Oxford, A. E. 1947 Observations concerning the growth and metabolic activities of myxococci in a simple protein-free liquid medium J. Bacteriol. 53 129–138PubMedGoogle Scholar
  406. Oyaizu, H., and C. R. Woese. 1985 Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria Syst. Appl. Microbiol. 6 257–263CrossRefGoogle Scholar
  407. Panasenko, S. M. 1985 Methylation of macromolecules during development in Myxococcus xanthus J. Bacteriol. 164 495–500PubMedGoogle Scholar
  408. Parish, J. H. 1975 Transfer of drug resistance to Myxococcus from bacteria carrying drug-resistance factors J. Gen. Microbiol. 87 198–210PubMedCrossRefGoogle Scholar
  409. Peterson, J. E. 1965 A group of strongly cellulolytic myxobacteria previously unreported in North American soils Am. J. Bot. 52 636CrossRefGoogle Scholar
  410. Peterson, J. E. 1966 The demise of the myxobacterial genus Angiococcus Mycologia 58 962–965CrossRefGoogle Scholar
  411. Peterson, J. E., and B. Norén. 1967 The occurrence of the cellulose-decomposing myxobacterium, Sorangium cellulosum, in Scandinavian soils Am. J. Bot. 54 648Google Scholar
  412. Peterson, J. E. 1969 Isolation, cultivation and maintenance of the myxobacteria In: J. R. Norris and D. W. Ribbons (Eds.) Methods in Microbiology Academic Press London, UK 3B 185–210Google Scholar
  413. Pinoy, P.E. 1913 On the necessity of a bacterial association for the development of the myxobacterium, Chondromyces crocatus Compt. Rend. Soc. Biol. 157 77–78Google Scholar
  414. Pradella, S., A. Hans, C. Sproer, H. Reichenbach, K. Gerth, and S. Beyer. 2002 Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56 Arch. Microbiol. 178 484–492PubMedCrossRefGoogle Scholar
  415. Pronina, N. I., 1962 A description of new species and varieties of cellulose decomposing myxobacteria Microbiology 31 384–390Google Scholar
  416. Qualls, G. T., K. Stephens, and D. White. 1978 Light-stimulated morphogenesis in the fruiting myxobacterium Stigmatella aurantiaca Science 201 444–445PubMedCrossRefGoogle Scholar
  417. Quehl, A. 1906 Untersuchungen über die Myxobakterien Zbl. Bakteriol., 2. Abt. 16 9–34Google Scholar
  418. Ramaswamy, S., M. Dworkin, and J. Downard. 1997 Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding J. Bacteriol. 179 2863–2871PubMedGoogle Scholar
  419. Ramsey, W. S., and M. Dworkin. 1968 Microcyst germination in Myxococcus xanthus J. Bacteriol. 95 2249–2257PubMedGoogle Scholar
  420. Raverdy, J. 1973 About the isolation and bacteriolytic activity of a few Myxobacteria isolated from water Water Res. 7 687–693CrossRefGoogle Scholar
  421. Reichenbach, H. 1965a Rhapidosomen bei Myxobakterien Arch. Mikrobiol. 50 246–255CrossRefGoogle Scholar
  422. Reichenbach, H. 1965b Rhythmische Vorgänge bei der Schwarmentfaltung von Myxobakterien Ber. Deutsch. Bot. Ges. 78 102–105Google Scholar
  423. Reichenbach, H. 1965c Untersuchungen an Archangium violaceum: Ein Beitrag zur Kenntnis der Myxobakterien Arch. Mikrobiol. 52 376–403PubMedCrossRefGoogle Scholar
  424. Reichenbach, H., H. H. Heunert, and H. Kuczka. 1965d Archangium violaceum (Myxobacterales)—Schwarmentwicklung und Bildung von Protocysten [film] Institut für den wissenschaftlichen Film Göttingen, Germany Encyclopaedia Cinematographica E 777Google Scholar
  425. Reichenbach, H., H. H. Heunert, and H. Kuczka. 1965e Chondromyces apiculatus (Myxobacterales)—Schwarmentwicklung und Morphogenese [film] Institut für den wissenschaftlichen Film Göttingen, Germany Encyclopaedia Cinematographica E 779Google Scholar
  426. Reichenbach, H., H. H. Heunert, and H. Kuczka. 1965f Myxococcus spp. (Myxobacterales)—Schwarmentwicklung und Bildung von Protocysten [film] Institut für den wissenschaftlichen Film Göttingen, Germany Encyclopaedia Cinematographica E 778Google Scholar
  427. Reichenbach, H., H. H. Heunert, and H. Kuczka. 1965g Schwarmentwicklung und Morphogenese bei Myxobakterien—Archangium, Myxococcus, Chondrococcus, Chondromyces [film] Institut für den wissenschaftlichen Film Göttingen, Germany Film C 893Google Scholar
  428. Reichenbach, H. 1966 Myxococcus spp. (Myxobacteriales): Schwarmentwicklung und Bildung von Protocysten [text with the film EC 778/1965] Ed. G. Wolf. Göttingen Encyclopaedia Cinematographica Institut für den wissenschaftlichen Film Göttingen, Germany Segment #1 570–571. (Film W778)Google Scholar
  429. Reichenbach, H. 1967 Die wahre Natur der Myxobakterien-“Rhapidosomen” Arch. Mikrobiol. 56 371–383PubMedCrossRefGoogle Scholar
  430. Reichenbach, H. 1968 Archangium violaceum (Myxobacteriales) (sic) Schwarmentwicklung und Bildung von Protocysten Ed. G. Wolf. Göttingen Encyclopaedia Cinematographica Institut für den wissenschaftlichen Film Göttingen, Germany Segment #24 330 (Film E777)Google Scholar
  431. Reichenbach, H., and M. Dworkin. 1969a Studies on Stigmatella aurantiaca (Myxobacterales) J. Gen. Microbiol. 58 3–14CrossRefGoogle Scholar
  432. Reichenbach, H., H. Voelz, and M. Dworkin. 1969b Structural changes in Stigmatella aurantiaca during myxospore induction J. Bacteriol. 97 905–911PubMedGoogle Scholar
  433. Reichenbach, H., and M. Dworkin. 1970 Induction of myxospore formation in Stigmatella aurantiaca (Myxobacterales) by monovalent cations J. Bacteriol. 101 325–326PubMedGoogle Scholar
  434. Reichenbach, H., and H. Kleinig. 1971 The carotenoids of Myxococcus fulvus (Myxobacterales) Arch. Mikrobiol. 76 364–380CrossRefGoogle Scholar
  435. Reichenbach, H. 1974a Chondromyces apiculatus (Myxobacterales)—Schwarmentwicklung und Morphogenese Publiktionen zu wissenschaftlichen Filmen, Sektion Biologie 7 Institut für den wissenschaftlichen Film Göttingen, Germany 245–263Google Scholar
  436. Reichenbach, H. 1974b Die Biologie der Myxobakterien Biologie in unserer Zeit 4 33–45CrossRefGoogle Scholar
  437. Reichenbach, H., H. K. Galle, and H. H. Heunert. 1980 Stigmatella aurantiaca (Myxobacterales): Schwarmentwicklung und Fruchtkörperbildung [film] In: Encyclopaedia Cinematographica Institut für den wissenschaftlichen Film Göttingen, Germany E2421Google Scholar
  438. Reichenbach, H. 1983 A simple method for the purification of myxobacteria J. Microbiol. Meth. 1 77–79CrossRefGoogle Scholar
  439. Reichenbach, H. 1984a Myxobacteria: A most peculiar group of social prokaryotes In: E. Rosenberg (Ed.) Myxobacteria. Development and Cell Interactions Springer-Verlag New York, NY 1–50Google Scholar
  440. Reichenbach, H., and H. Kleinig. 1984b Pigments of myxobacteria In: E. Rosenberg (Ed.) Myxobacteria: Development and Cell Interactions Springer-Verlag New York, NY 127–137Google Scholar
  441. Reichenbach, H. 1986 The myxobacteria: common organisms with uncommon behaviour Microbiol. Sci. 3 268–274PubMedGoogle Scholar
  442. Reichenbach, H. 1988a Gliding bacteria in biotechnology In: H. J. Rehm and G. Reed (Eds.) Biotechnology BCH Verlagsgesellschaft Weinheim, Germany 6b 673–696Google Scholar
  443. Reichenbach, H., K. Gerth, H. Irschik, B. Kunze, and G. Höfle. 1988b Myxobacteria: A source of new antibiotics Trends Biotechnol. 6 115–121CrossRefGoogle Scholar
  444. Reichenbach, H., and G. Höfle. 1989 The gliding bacteria: a treasury of secondary metabolites In: M. E. Bushell and U. Gräfe (Eds.) Bioactive Metabolites from Microorganisms Elsevier Science Publishers Amsterdam, The Netherlands 79–100Google Scholar
  445. Reichenbach, H., and G. Höfle. 1993 Biologically active secondary metabolites from myxobacteria Biotech. Adv. 11 219–277CrossRefGoogle Scholar
  446. Reichenbach, H., and G. Höfle. 1998 Myxobacteria as producers of secondary metabolites In: S. Grabley and R. Thiericke (Eds.) Drug Discovery from Nature Springer-Verlag Berlin, Germany 149–179Google Scholar
  447. Reichenbach, H. 1999 The ecology of the myxobacteria Environ. Microbiol. 1 15–21PubMedCrossRefGoogle Scholar
  448. Reichenbach, H. 2001 Myxobacteria, producers of novel bioactive substances J. Indust. Microbiol. Biotechnol. 27 149–156CrossRefGoogle Scholar
  449. Reichenbach, H. and Dworkin, M. 2001 The myxobacteria The Prokaryotes 4Google Scholar
  450. Reichenbach, H. 2005 The Myxococcales In: G. M. Garrity (Ed.) Bergey’s Manual of Systematic Bacteriology, 2nd edn, Part 3: The Beta-, Delta-, and Epsilonproteobacteria Springer-Verlag New York, NYGoogle Scholar
  451. Ringel, S. M., R. C. Greenough, S. Roemer, D. Connor, and M. von Strandtmann. 1977 Ambruticin (W 7783), a new antifungal antibiotic J. Antibiot. 30 371–375PubMedCrossRefGoogle Scholar
  452. Rodrigues, F. K., V. Virrankoski-Castrodeza, J. H. Parish, and K. Grimm. 1980 Isolation and characterization of new bacteriophages for Myxococcus xanthus Arch. Microbiol. 126 175–180CrossRefGoogle Scholar
  453. Romeo, J. M., B. Esmon, and D. R. Zusman. 1986 Nucleotide sequence of the myxobacterial hemagglutinin gene contains four homologous domains Proc. Natl. Acad. Sci. USA 83 6332–6336PubMedCrossRefGoogle Scholar
  454. Rosenberg, E., B. Vaks, and A. Zuckerberg. 1973 Bactericidal action of an antibiotic produced by Myxococcus xanthus Antimicrob. Agents Chemother. 4 507–513PubMedCrossRefGoogle Scholar
  455. Rosenberg, E., K. H. Keller, and M. Dworkin. 1977 Cell density-dependent growth of Myxococcus xanthus on casein J. Bacteriol. 129 770–777PubMedGoogle Scholar
  456. Rosenberg, E., S. Fytlovitch, S. Carmeli, and Y. Kashman. 1982 Chemical properties of Myxococcus xanthus antibiotic TA J. Antibiot. 35 788–793PubMedCrossRefGoogle Scholar
  457. Rosenberg, E. (Ed.). 1984 Myxobacteria: Development and Cell Interactions Springer-Verlag New York, NYGoogle Scholar
  458. Rosenfelder, G., O. Lüderitz, and O. Westphal. 1974 Composition of lipopolysaccharides from Myxococcus fulvus and other fruiting and non-fruiting myxobacteria Eur. J. Biochem. 44 411–420PubMedCrossRefGoogle Scholar
  459. Rückert, G. 1975a Koprochorie einiger Myxobakterien-Arten (Myxobacterales) Zeitschr. Allgem. Mikrobiol. 15 565–567CrossRefGoogle Scholar
  460. Rückert, G. 1975b Zur Verbreitung bakteriotropher Myxobakterien in Waldböden Mitteilungen des Vereins für forstliche Standortskunde und Forstpflanzenzüchtung. 24 43–47Google Scholar
  461. Rückert, G. 1975c Zur Verbreitung von Fruchtkörper-bildenden Myxobakterien in europäischen Strand-und Dünenböden Zbl. Bakteriol., 2. Abt. 130 343–347Google Scholar
  462. Rückert, G. 1976 Myxobakterien (Myxobacterales) in natürlichen und naturnahen Substraten aus der europäischen Subarktis Acta Bot. Islandica 4 4–9Google Scholar
  463. Rückert, G., and G. Heym. 1977 Bakteriotrophe Myxobakterien (Myxobacterales) in ariden Substraten Karlsruher Geographische Heft 8 101–111Google Scholar
  464. Rückert, G. 1978 Förderung der Fruchtkörper-Bildung von Myxococcus virescens Thaxter (Myxobacterales) in Rohkulturen durch Salzzusatz Zeitschr. Allgem. Mikrobiol. 18 69–71CrossRefGoogle Scholar
  465. Rückert, G. 1979 Myxobakterien-Artenspektren von Böden in Abhängigkeit von bodenbildenden Faktoren unter besonderer Berücksichtigung der Bodenreaktion Zeitschr. Pflanzenernähr. Bodenk. 42 330–343CrossRefGoogle Scholar
  466. Rückert, G. 1981 Myxobakterien (Myxobacterales) auf Blattoberflächen Zeitschr. Allgem. Mikrobiol. 21 761–763CrossRefGoogle Scholar
  467. Rückert, G. 1983 Myxobakterien in Böden extremer Biotope Mitt. Deutsch. Bodenkundl. Gesellsch. 38 355–360Google Scholar
  468. Rückert, G. 1984 Untersuchungen zum Vorkommen von Myxobakterien in von Meerwasser beeinflussten Substraten unter besonderer Berücksichtigung der Insel Helgoland Helgoländer Meeresunters. 38 179–184CrossRefGoogle Scholar
  469. Rückert, G. 1985 Myxobacteria from Antarctic soils Biol. Fert. Soils 1 215–216CrossRefGoogle Scholar
  470. Rudd, K. E., and D. R. Zusman. 1982 RNA polymerase of Myxococcus xanthus: Purification and selective transcription in vitro with bacteriophage templates J. Bacteriol. 151 89–105PubMedGoogle Scholar
  471. Ruiz, C., M. Monteoliva-Sanchez, and A. Ramos-Cormenzana. 1985 Effect of culture age on the cellular fatty acid composition of two strains of Myxococcus xanthus Microbios Lett. 30 95–99Google Scholar
  472. Ruiz, C., A. Ruiz-Bravo, A. Ramos-Cormenzana. 1987 Endotoxin-like activities in Myxococcus xanthus Curr. Microbiol. 15 343–345CrossRefGoogle Scholar
  473. Ryding, N. J., and L. J. Shimkets. 2000 Myxococcus, genetics Encyclopedia of Microbiology Academic Press New York, NY 3 363–372Google Scholar
  474. Sabados-Saric, A. 1957 Istrazivanja o miksobacterijama u thina Jugoslavije [Myxobacteria in different types of soils in Yugoslavia: in Serbo-Croatian, with English summary] Yugoslavenska Akademija Znanosti i Umjetnosti, Zagreb 312 5–29Google Scholar
  475. Sadler, W., and M. Dworkin. 1966 Induction of cellular morphogenesis in Myxococcus xanthus. II: Macromolecular synthesis and mechanism of inducer action J. Bacteriol. 91 1520–1525PubMedGoogle Scholar
  476. Sager, B., and D. Kaiser. 1993 Two cell-density domains within the Myxococcus xanthus fruiting body Proc. Natl. Acad. Sci. USA. 90 3690–3694PubMedCrossRefGoogle Scholar
  477. Sager, B., and D. Kaiser. 1994 Intercellular C-signaling and the traveling waves of Myxococcus Genes Dev. 8 2793–2804PubMedCrossRefGoogle Scholar
  478. Sager, B. M. 1996 Propagation of traveling waves in excitable media Genes Dev. 10 2237–2250PubMedCrossRefGoogle Scholar
  479. Salmi, D., V. Magrini, P. L. Hartzell, and P. Youderian. 1998 Genetic determinants of immunity and integration of temperate Myxococcus xanthus phage Mx8 J. Bacteriol. 180 614–621PubMedGoogle Scholar
  480. Sanford, R. A., J. R. Cole, and J. M. Tiedje. 2002 Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium Appl. Environ. Microbiol. 68 893–890PubMedCrossRefGoogle Scholar
  481. Sarao, R., H. D. McCurdy, and L. Passador. 1985 Enzymes of the intermediary carbohydrate metabolism of Polyangium cellulosum Can. J. Microbiol. 31 1142–1146CrossRefGoogle Scholar
  482. Schmidt-Lorenz, W., and H. Kühlwein. 1968 Intracelluläre Bewegungsorganellen bei Myxobakterien Arch. Mikrobiol. 60 95–98PubMedCrossRefGoogle Scholar
  483. Schmidt-Lorenz, W., and H. Kühlwein. 1969 Beiträ zur Kenntnis der Myxobakterienzelle. 2: Mitteilung. Oberflächenstrukturen der Schwarmzellen Arch. Mikrobiol. 68 405–426PubMedCrossRefGoogle Scholar
  484. Schröder, J., and H. Reichenbach. 1970 The fatty acid composition of vegetative cells and myxospores of Stigmatella aurantiaca (Myxobacterales) Arch. Mikrobiol. 71 384–390CrossRefGoogle Scholar
  485. Schürmann, C. 1967 Growth of myxococci in suspension in liquid media Appl. Microbiol. 15 971–974PubMedGoogle Scholar
  486. Sharpe, A. N., and D. C. Kilsby. 1971 A rapid, inexpensive bacterial count technique using agar droplets J. Appl. Bacteriol. 34 435–440PubMedCrossRefGoogle Scholar
  487. Shi, W., and D. R. Zusman. 1993a Fatal attraction Nature 366 414–415PubMedCrossRefGoogle Scholar
  488. Shi, W., T. Kohler, and D. R. Zusman. 1993b Chemotaxis plays a role in the social behavior of Myxococcus xanthus Molec. Microbiol. 9 601–611CrossRefGoogle Scholar
  489. Shimkets, L. J., and D. Kaiser. 1982 Induction of coordinated movement of Myxococcus xanthus cells J. Bacteriol. 152 451–461PubMedGoogle Scholar
  490. Shimkets, L. J., R. E. Gill, and D. Kaiser. 1983 Developmental cell interactions in Myxococcus xanthus and the spoC locus Proc. Natl. Acad. Sci. USA 80 1406–1410PubMedCrossRefGoogle Scholar
  491. Shimkets, L. J. 1984 Nutrition, metabolism, and the initiation of development In: E. Rosenberg (Ed.) Myxobacteria: Development and Cell Interactions Springer-Verlag New York, NY 91–107Google Scholar
  492. Shimkets, L. J. 1986 Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus J. Bacteriol. 166 837–841PubMedGoogle Scholar
  493. Shimkets, L. J. 1987 Control of morphogenesis in myxobacteria Crit. Rev. Microbiol. 14 195–227PubMedCrossRefGoogle Scholar
  494. Shimkets, L. J., and S. J. Asher. 1988 Use of recombination techniques to examine the structure of the csg locus of Myxococcus xanthus Molec. Gen. Genet. 211 63–71PubMedCrossRefGoogle Scholar
  495. Shimkets, L. J. 1990a Social and developmental biology of the myxobacteria Microbiol. Rev. 54 473–501PubMedGoogle Scholar
  496. Shimkets, L. J. 1990b The Myxococcus xanthus FprA protein causes increased flavin biosynthesis in Escherichia coli J. Bacteriol. 172 24–30PubMedGoogle Scholar
  497. Shimkets, L., and C. R. Woese. 1992 A phylogenetic analysis of the myxobacteria: Basis for their classification Proc. Natl. Acad. Sci. USA 89 9459–9463PubMedCrossRefGoogle Scholar
  498. Shimkets, L. J. 1997a Myxococcus xanthus DK1622 In: F. J. de Bruijn, J. R. Lupski, and G. M. Weinstock (Eds.) Bacterial Genomes: Physical Structure and Analysis Chapman & Hall New York, NY 695–701Google Scholar
  499. Shimkets, L. J. 1997b Structure and sizes of genomes of the Archaea and Bacteria In: F. J. de Bruijn, J. R. Lupski, and G. M. Weinstock (Eds.) Bacterial Genomes: Physical Structure and Analysis Chapman & Hall New York, NY 5–11Google Scholar
  500. Shimkets, L. J., and M. Dworkin. 1997c Myxobacterial Multicellularity In: J. A. Shapiro and M. Dworkin (Eds.) Bacteria as Multicellar Organisms Oxford University Press Oxford, UK 220–244Google Scholar
  501. Shimkets, L. J. 1999 Intercellular signaling during fruiting body development of Myxococcus xanthus Ann. Rev. Microbiol. 53 525–549CrossRefGoogle Scholar
  502. Shimkets, L. J. 2000 Growth, sporulation, and other tough decisions In: Y. Brun and L. J. Shimkets (Eds.) Prokaryotic Development American Society for Microbiology Washington, DC 277–284Google Scholar
  503. Simunovic, V., F. C. Gherardini, and L. J. Shimkets. 2003 Membrane localization of motility, signaling and polyketide synthetase proteins in Myxococcus xanthus J. Bacteriol. 185 5066–5075PubMedCrossRefGoogle Scholar
  504. Singh, B. N. 1947 Myxobacteria in soils and composts: Their distribution, number and lytic action on bacteria J. Gen. Microbiol. 1 1–10PubMedCrossRefGoogle Scholar
  505. Singh, B. N., and N. B. Singh. 1971 Distribution of fruiting myxobacteria in Indian soils, bark of trees and dung of herbivorous animals Indian J. Microbiol. 11 47–92Google Scholar
  506. Skerker, J. M., and H. C. Berg. 2001 Direct observation of extension and retraction of type IV pili Proc. Natl. Acad. Sci. USA 98 6901–6904PubMedCrossRefGoogle Scholar
  507. Smith, B.A., and M. Dworkin. 1981 Myxococcus xanthus synthesizes a stabilized messenger RNA during fruiting body formation Curr. Microbiol. 6 95–100CrossRefGoogle Scholar
  508. Smith, D. R., and M. Dworkin. 1994 Territorial interactions between two Myxococcus species J. Bacteriol. 176 1201–1205PubMedGoogle Scholar
  509. Spröer, C., H. Reichenbach, and E. Stackebrandt. 1999 The correlation between morphological and phylogenetic classification of myxobacteria Int. J. Syst. Bacteriol. 49 1255–1262PubMedCrossRefGoogle Scholar
  510. Stackebrandt, E., R. G. E. Murray, and H. G. Trüper. 1988 Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives” Int. J. Syst. Bacteriol. 38 321–325CrossRefGoogle Scholar
  511. Stanier, R. Y. 1942a A note on elasticotaxis in myxobacteria J. Bacteriol. 44 405–412PubMedGoogle Scholar
  512. Stanier, R. Y. 1942b The Cytophaga group: a contribution to the biology of myxobacteria Bacteriol. Rev. 6 143–196PubMedGoogle Scholar
  513. Starich, T., P. Cordes, and J. Zissler. 1985 Transposon tagging to detect a latent virus in Myxococcus xanthus Science 230 541–543PubMedCrossRefGoogle Scholar
  514. Starich, T., and J. Zissler. 1989 Movement of multiple DNA units between Myxococcus xanthus cells J. Bacteriol. 171 2323–2336PubMedGoogle Scholar
  515. Stein, J., and H. Budzikiewicz. 1987 1-O-(13-Methyl-1-Z-tetradecenyl)2-O-(13-methyltetradecanoyl)-glycero-3-phospho-ethanolamine, ein Plasmalogen aus Myxococcus stipitatus Zeitschr. Naturforsch. 42b 1017–1020Google Scholar
  516. Stellwag, E., J. M. Fink, and J. Zissler. 1985 Physical characterization of the genome of the Myxococcus xanthus bacteriophage MX-8 Molec. Gen. Genet. 199 123–132PubMedCrossRefGoogle Scholar
  517. Stephens, K., and D. White. 1980a Morphogenetic effects of light and guanine derivatives on the fruiting myxobacterium Stigmatella aurantiaca J. Bacteriol. 144 322–326PubMedGoogle Scholar
  518. Stephens, K., and D. White. 1980b Scanning electron micrographs of fruiting bodies of the myxobacterium Stigmatella aurantiaca lacking a coat and revealing a cellular stalk FEMS Microbiol. Lett. 9 189–192CrossRefGoogle Scholar
  519. Stephens, K., G. D. Hegeman, and D. White. 1982 Pheromone produced by the myxobacterium Stigmatella aurantiaca J. Bacteriol. 149 739–747PubMedGoogle Scholar
  520. Sudo, S. Z., and M. Dworkin. 1969 Resistance of vegetative cells and microcysts of Myxococcus xanthus J. Bacteriol. 98 883–887PubMedGoogle Scholar
  521. Sudo, S., and M. Dworkin. 1972 Bacteriolytic enzymes produced by Myxococcus xanthus J. Bacteriol. 110 236–245PubMedGoogle Scholar
  522. Sudo, S. Z., and M. Dworkin. 1973 Comparative biology of prokaryotic resting cells Adv. Microbial Physiol. 9 153–223CrossRefGoogle Scholar
  523. Sun, H., D. R. Zusman, and W. Shi. 2000 Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system Curr. Biol. 10 1143–1146PubMedCrossRefGoogle Scholar
  524. Sutherland, I. W., and M. L. Smith. 1973 The lipopolysaccharides of fruiting and non-fruiting myxobacteria J. Gen. Microbiol. 74 259–266CrossRefGoogle Scholar
  525. Sutherland, I. W., and S. Thomson. 1975 Comparison of polysaccharides produced by Myxococcus strains J. Gen. Microbiol. 89 124–132PubMedCrossRefGoogle Scholar
  526. Sutherland, I. W. 1976a Novel surface polymer changes in development of Myxococcus spp Nature 259 46–47PubMedCrossRefGoogle Scholar
  527. Sutherland, I. W. 1976b Ultrasonication—an enrichment technique for microcyst-forming bacteria J. Appl. Bacteriol. 41 185–188PubMedCrossRefGoogle Scholar
  528. Sutherland, I. W., and C. L. Mackenzie. 1977 Glucan common to the microcyst walls of cyst-forming bacteria J. Bacteriol. 129 599–605PubMedGoogle Scholar
  529. Sutherland, I. W. 1979 Polysaccharides produced by Cystobacter, Archangium, Sorangium, and Stigmatella species J. Gen. Microbiol. 111 211–216CrossRefGoogle Scholar
  530. Takayama, S., S. Yamanaka, S. Miyashiro, Y. Yokokawa, and H. Shibai. 1988 Novel macrocyclic antibiotics: megovalicins A, B, C, D, G and H. II. Isolation and chemical structures of megovalicins J. Antibiot. 41 439–445PubMedCrossRefGoogle Scholar
  531. Teintze, M., M. Inouye, and S. Inouye. 1988 Characterization of calcium-binding sites in development-specific protein S of Myxococcus xanthus using site-specific mutagenesis J. Biol. Chem. 263 1199–1203PubMedGoogle Scholar
  532. Thaxter, R. 1892 On the Myxobacteriaceae, a new order of Schizomycetes Bot. Gaz. 17 389–406CrossRefGoogle Scholar
  533. Thaxter, R. 1893 A new order of Schizomycetes Bot. Gaz. 18 29–30CrossRefGoogle Scholar
  534. Thaxter, R. 1904 Notes on the Myxobacteriaceae Bot. Gaz. 37 405–416 (including two plates)CrossRefGoogle Scholar
  535. Thaxter, T. 1897 Further observations on the Myxobacteriaceae Bot. Gaz. 23 395–411CrossRefGoogle Scholar
  536. Thomasson, B., J. Link, A. G. Stassinopoulos, N. Burke, L. Plamann, and P. L. Hartzell. 2002 MglA, a small GTPase, interacts with a tyrosine kinase to control type IV pili-mediated motility and development of Myxococcus xanthus Molec. Microbiol. 46 1399–1413CrossRefGoogle Scholar
  537. Toal, D. R., S. W. Clifton, B. R. Roe, and J. Downard. 1995 The esg locus of Myxococcus xanthus encodes the E1α and E1β subunits of a branched-chain keto acid dehydrogenase Molec. Microbiol. 16 177–189CrossRefGoogle Scholar
  538. Tojo, N., K. Sanmiya, H. Sugawara, S. Inouye, and T. Komano. 1996 Integration of bacteriophage Mx8 into the Myxococcus xanthus chromosome causes a structural alteration at the C-terminal region of the IntP protein J. Bacteriol. 178 4004–4011PubMedGoogle Scholar
  539. Tojo, N., and T. Komano. 2003 The IntP C-terminal segment is not required for excision of bacteriophage Mx8 from the Myxococcus xanthus chromosome J. Bacteriol. 185 2187–2193PubMedCrossRefGoogle Scholar
  540. Trowitzsch, W., L. Witte, and H. Reichenbach. 1981 Geosmin from earthy smelling cultures of Nannocystis exedens (Myxobacterales) FEMS Microbiol. Lett. 12 257–260CrossRefGoogle Scholar
  541. Trowitzsch, W., V. Wray, K. Gerth, and G. Höfle. 1982 Structure of myxovirescin A, a new macrocyclic antibiotic from gliding bacteria J. Chem. Soc. Chem. Commun. 1982 1340–1342CrossRefGoogle Scholar
  542. Trowitzsch-Kienast, W., K. Schober, V. Wray, K. Gerth, H. Reichenbach, and G. Höfle. 1989 Zur Konstitution der Myxovirescine B-T und Biogenese des Myxovirescins A Liebigs Ann. Chem. 1989 345–355CrossRefGoogle Scholar
  543. Trowitzsch-Kienast, W., Forche, E., Wray, V., Jurkiewicz, E., Hunsmann, G., Reichenbach, H. and G. Höfle. 1992 HIV-1-inhibitoren aus Myxococcus stipitatus Mx s40 Liebigs Ann. Chem. 1992 659–664CrossRefGoogle Scholar
  544. Trowitzsch-Kienast, W., V. Wray, W., K. Gerth, H. Reichenbach, and G. Höfle. 1993 Myxochromid A: ein hochengesattigtes lipopeptidlacton aus Myxococcus virescens Liebigs Ann. Chem. 1993 1233–1237CrossRefGoogle Scholar
  545. Trzilová, B., L. Miklosovicová, E. Golaisová, and M. Bobková. 1980 Indikatoren der Verunreinigung des Donauwassers im tschechoslowakischem Abschnitte Acta Ecologica (Bratislava) 8 91–102Google Scholar
  546. Trzilová, B., L. Mikloöovicová, G. Morhácová, and E. Golaisová. 1981 Die Wasserqualitat der Zuflüsse des tschechoslowakischen Donauabschnittes von limnologischer und hygienischer Sicht Biolgia (Bratislava) 36 765–774Google Scholar
  547. Tsai, H., and H. J. Hirsch. 1981 The primary structure of fulvocin C from Myxococcus fulvus Biochim. Biophys. Acta 667 213–217PubMedCrossRefGoogle Scholar
  548. Tsopanakis, C., and J. H. Parish. 1976 Bacteriophage MX-1: Properties of the phage and its structural proteins J. Gen. Virol. 30 99–112PubMedCrossRefGoogle Scholar
  549. Vacheron, M. J., N. Arpin, and G. Michel. 1970 Isolement d’esters de phleixanthophylle de Nocardia kirovani C. R. Acad. Sci., Sér. C 271 881–884Google Scholar
  550. Vahle, C. 1910 Vergleichende Untersuchungen über die Myxobakteriazeen und Bakteriazeen, sowie die Rhodobakteriazeen und Spirillazeen Zbl. Bakteriol., 2. Abt. 25 178–260Google Scholar
  551. Varon, M., A. Tietz, and E. Rosenberg. 1986 Myxococcus xanthus autocide AMI J. Bacteriol. 167 356–361PubMedGoogle Scholar
  552. Voelz, H., and M. Dworkin. 1962 Fine structure of Myxococcus xanthus during morphogenesis J. Bacteriol. 84 943–952PubMedGoogle Scholar
  553. Voelz, H. 1964 Sites of adenosine triphosphatase: Activity in bacteria J. Bacteriol. 88 1196–1198PubMedGoogle Scholar
  554. Voelz, H. 1965 Formation and structure of mesosomes in Myxococcus xanthus Arch. Mikrobiol. 51 60–70PubMedCrossRefGoogle Scholar
  555. Voelz, H. 1966a In vivo induction of “polysomes” by limiting phosphate and the structural consequences in Myxococcus xanthus In: 6th International Congress Electron Microscopy Tokyo: Maruzen Kyoto, Japan 255–256Google Scholar
  556. Voelz, H. 1966b The fate of the cell envelopes of Myxococcus xanthus during microcyst germination Arch. Mikrobiol. 55 110–115PubMedCrossRefGoogle Scholar
  557. Voelz, H., U. Voelz, and R. O. Ortigoza. 1966c The “polyphosphate overplus” phenomenon in Myxococcus xanthus and its influence on the architecture of the cell Arch. Mikrobiol. 53 371–388PubMedCrossRefGoogle Scholar
  558. Voelz, H. 1967 The physical organization of the cytoplasm in Myxococcus xanthus and the fine structure of its components Arch. Mikrobiol. 57 181–195PubMedCrossRefGoogle Scholar
  559. Voelz, H. 1968 Structural comparison between intramitochondrial and bacterial crystalloids J. Ultrastruct. Res. 25 29–36PubMedCrossRefGoogle Scholar
  560. Voelz, H., and H. Reichenbach. 1969 Fine structure of fruiting bodies of Stigmatella aurantiaca (Myxobacterales) J. Bacteriol. 99 856–866PubMedGoogle Scholar
  561. Voelz, H., and R. P. Burchard. 1971 Fine structure of bacteriophage-infected Myxococcus xanthus. I: The lytic cycle in vegetative cells Virology 43 243–250PubMedCrossRefGoogle Scholar
  562. Vuillemard, J. C., S. Terré, S. Benoit, and J. Amiot. 1988 Protease production by immobilized growing cells of Serratia marcescens and Myxococcus xanthus in calcium alginate gel beads Appl. Microbiol. Biotechnol. 27 423–431Google Scholar
  563. Ward, M. J., and D. R. Zusman. 1997 Regulation of directed motility in Myxococcus xanthus Molec. Microbiol. 24 885–893CrossRefGoogle Scholar
  564. Ward, M. J., and D. R. Zusman. 1999 Motility in Myxococcus xanthus and its role in developmental aggregation Curr. Opin. Microbiol. 2 624–629PubMedCrossRefGoogle Scholar
  565. Ward, M. J., and D. R. Zusman. 2000 Developmental aggregation and fruiting body formation in the gliding bacterium Myxococcus xanthus In: Y. V. Brun and L. J. Shimkets (Eds.) Prokaryotic Development American Society for Microbiology Press Washington, DC 243–262Google Scholar
  566. Ware J. C., and M. Dworkin. 1973 Fatty acids of Myxococcus xanthus J. Bacteriol. 115 253–261PubMedGoogle Scholar
  567. Watson, B. F., and M. Dworkin. 1968 Comparative intermediary metabolism of vegetative cells and microcysts of Myxococcus xanthus J. Bacteriol. 96 1465–1473PubMedGoogle Scholar
  568. Weckesser, J., G. Rosenfelder, H. Mayer, and O. Lüderitz. 1971 The identification of 3-O-methyl-D-xylose and 3-O-methyl-L-xylose as constituents of the lipopolysaccharides of Myxococcus fulvus and Rhodopseudomonas viridis, respectively Eur. J. Biochem. 24 112–115PubMedCrossRefGoogle Scholar
  569. Weinberg, R. A., and D. R. Zusman. 1989 Evidence that the Myxococcus xanthus frz genes are developmentally regulated J. Bacteriol. 171 6174–6186PubMedGoogle Scholar
  570. Welch, R., and D. Kaiser. 2001 Cell behavior in traveling wave patterns of myxobacteria Proc. Natl. Acad. Sci. USA 98 14907–14912PubMedCrossRefGoogle Scholar
  571. White, D., M. Dworkin, and D. J. Tipper. 1968 Peptidoglycan of Myxococcus xanthus: Structure and relation to morphogenesis J. Bacteriol. 95 2186–2197PubMedGoogle Scholar
  572. White, D. 1993 Myxospore and fruiting body morphogenesis In: M. Dworkin and D. Kaiser (Eds.) Myxobacteria American Society for Microbiology Washington, DC II 307–332Google Scholar
  573. White, D., and H. U. Schairer. 2000 Development of Stigmatella In: Y. Brun and L. J. Shimkets (Eds.) Prokaryotic Development Washington, DC 285–294Google Scholar
  574. Whitworth, D. E., and D. A. Hodgson. 2001 Light-induced carotenogenesis in Myxococcus xanthus: evidence that CarS acts as an anti-repressor of CarA Molec. Microbiol. 42 809–819CrossRefGoogle Scholar
  575. Wireman, J. W., and M. Dworkin. 1975 Morphogenesis and developmental interactions in myxobacteria Science 189 516–523PubMedCrossRefGoogle Scholar
  576. Wireman, J. W., and M. Dworkin. 1977 Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus J. Bacteriol. 129 796–802Google Scholar
  577. Wistow, G. 1990 Evolution of a protein superfamily: Relationships between vertebrate lens crystallins and microorganism dormancy proteins J. Molec. Evol. 30 140–145PubMedCrossRefGoogle Scholar
  578. Witkin, S., and E. Rosenberg. 1970 Induction of morphogenesis by methionine starvation in Myxococcus xanthus. Polyamine control J. Bacteriol. 103 641–649PubMedGoogle Scholar
  579. Wolgemuth, C., E. Hoiczyk, D. Kaiser, and G. Oster. 2002 How myxobacteria glide Curr. Biol. 12 369–377PubMedCrossRefGoogle Scholar
  580. Woods, N. A. 1948 Studies on the Myxobacteria [MS thesis] University of Washington Seattle, WAGoogle Scholar
  581. Wu, S. S., and D. Kaiser. 1995 Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus Molec. Microbiol. 18 547–558CrossRefGoogle Scholar
  582. Wu, S. S., J. Wu, and D. Kaiser. 1997 The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced Molec. Microbiol. 23 109–121CrossRefGoogle Scholar
  583. Wu, S. S., J. Wu, Y. Cheng, and D. Kaiser. 1998 The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus Molec. Microbiol. 29 1249–1261CrossRefGoogle Scholar
  584. Yamanaka, S., A. Kawaguchi, and K. Komagata. 1987 Isolation and identification of myxobacteria from soils and plant materials, with special reference to DNA base composition, quinone system, and cellular fatty acid composition, and with a description of a new species, Myxococcus flavescens J. Gen. Appl. Microbiol. 33 247–265CrossRefGoogle Scholar
  585. Yamanaka, S., R. Fudo, A. Kawaguchi, and K. Komagata. 1988 Taxonomic significance of hydroxy fatty acids in myxobacteria with special reference to 2-hydroxy fatty acids in phospholipids J. Gen. Appl. Microbiol. 34 57–66CrossRefGoogle Scholar
  586. Yang, Z., Y. Geng, D. Zu, H. B. Kaplan, and W. Shi. 1998 A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility Molec. Microbiol. 30 1123–1130CrossRefGoogle Scholar
  587. Yang, Z. M., D. C. Guo, M. G. Bowden, H. Sun, L. M. Tong, Z. Li, A. E. Brown, H. B. Kaplan, and W. Shi. 2000a The Myxococcus xanthus wbgB gene encodes a glycosyltransferase homologue required for lipopolysaccharide O-antigen biosynthesis Archiv.Microbiol. 174 399–405CrossRefGoogle Scholar
  588. Yang, Z., X. Ma, T. Leming H. B. Kaplan, and W. Shi. 2000b Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility J. Bacteriol. 182 5793–5798PubMedCrossRefGoogle Scholar
  589. Yee, T., and M. Inouye. 1981 Reexamination of the genome size of myxobacteria, including the use of a new method for genome size analysis J. Bacteriol. 145 1257–1265PubMedGoogle Scholar
  590. Yee, T., and M. Inouye. 1982 Two-dimensional DNA electrophoresis applied to the study of DNA methylation and the analysis of genome size in Myxococcus xanthus J. Molec. Biol. 154 181–196PubMedCrossRefGoogle Scholar
  591. Yee, T., T. Furuichi, S. Inouye, and M. Inouye. 1984 Multicopy single-stranded DNA isolated from a Gram-negative bacterium, Myxococcus xanthus Cell 38 203–209PubMedCrossRefGoogle Scholar
  592. Youderian, P. 1998 Bacterial motility: Secretory secrets of gliding bacteria Curr. Biol. 8 R408–R411PubMedCrossRefGoogle Scholar
  593. Youderian, P., N. Burke, D. J. White, and P. L. Hartzell. 2003 Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner Molec. Microbiol. 49 555–570CrossRefGoogle Scholar
  594. Younes, G., J. M. Nicaud, and J. Guespin-Michel. 1984 Enhancement of extracellular enzymatic activities produced by immobilized growing cells of Myxococcus xanthus Appl. Microbiol. Biotechnol. 19 67–69CrossRefGoogle Scholar
  595. Younes, G., A. M. Breton, and J. Guespin-Michel. 1987 Production of extracellular native and foreign proteins by immobilized growing cells of Myxococcus xanthus Appl. Microbiol. Biotechnol. 25 507–512CrossRefGoogle Scholar
  596. Zeggel, B. 1993 Steroids bei Myxobakteria [doctoral thesis] Technical University Braunschweig Braunschweig, Germany 134Google Scholar
  597. Zukal, H. 1896 Myxobotrys variabilis Zuk., als Repräsentant einer neuen Myxomyceten-Ordnung Ber. Deutsch. Bot. Gesellsch. 14 340–347Google Scholar
  598. Zukal, H. 1897 Über die Myxobacterien Ber. Deutsch. Bot. Gesellsch. 15 542–552Google Scholar
  599. Zusman, D., and E. Rosenberg. 1968 Deoxyribonucleic acid synthesis during microcyst germination in Myxococcus xanthus J. Bacteriol. 96 981–986PubMedGoogle Scholar
  600. Zusman, D. R., D. M. Krotoski, and M. Cumsky. 1978 Chromosome replication in Myxococcus xanthus J. Bacteriol. 133 122–129PubMedGoogle Scholar
  601. Zusman, D. R. 1980 Genetic approaches to the study of development in the myxobacteria In: T. Leighton and W. F. Loomis (Eds.) The Molecular Genetics of Development: An Introduction to Recent Research in Experimental Systems Academic Press New York, NY 41–78Google Scholar
  602. Zusman, D. R. 1984 Cell-cell interactions and development in Myxococcus xanthus Quart. Rev. Microbiol. 59 119–138Google Scholar
  603. Zusman, D. R. 1991 Cellular aggregation during fruiting body formation in Myxococcus xanthus In: M. Inouye, J. Campisi, D. Cunningham, and M. Riley (Eds.) Gene Expression and Regulation of Cell Growth and Development John Wiley & Sons New York, NY 65–72Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Lawrence J. Shimkets
  • Martin Dworkin
  • Hans Reichenbach

There are no affiliations available

Personalised recommendations