Advertisement

The Marine Clade of the Family Flavobacteriaceae: The Genera Aequorivita, Arenibacter, Cellulophaga, Croceibacter, Formosa, Gelidibacter, Gillisia, Maribacter, Mesonia, Muricauda, Polaribacter, Psychroflexus, Psychroserpens, Robiginitalea, Salegentibacter, Tenacibaculum, Ulvibacter, Vitellibacter and Zobellia

  • John P. Bowman

Introduction

The family Flavobacteriaceae represents a major branch of the Gram-negative phylum Bacteroidetes that is also popularly referred to as the “Cytophaga-Flavobacterium-Bacteroides group or phylum” (see The List of Bacterial Names with Standing in Nomenclature website for official taxonomic names). In the last decade the Flavobacteriaceae has undergone rapid expansion incorporating many new species and genera, mostly from marine and polar ecosystems. A standardized minimal set of criteria has been recently established for the description of new members of this taxonomic group (Bernardet et al., 2002). Several genera within the family, most obviously Flavobacterium (Bernardet et al., 1996), have undergone substantial taxonomic revision. This heightened activity has at least partially come in response to the increasing evidence that this homogenously chemoheterotrophic group has environmental significance in aquatic ecosystems. Recent research indicates the marine genera of the...

Keywords

Surface Mixed Layer Marine Agar Subzero Temperature Atlantic Halibut Commercial Fish Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Adachi, M., K. Fukami, R. Kondo, and T. Nishijima. 2002 Identification of marine algicidal Flavobacterium sp. 5 N-3 using multiple probes and whole-cell hybridization Fisheries Sci. 68(4) 713–720CrossRefGoogle Scholar
  2. Allouch, J., M. Jam, W. Helbert, T. Barbeyron, B. Kloareg, B. Henrissat, and M. Czjzek. 2003 The three-dimensional structures of two beta-agarases J. Biol. Chem. 278(47) 47171–47180PubMedCrossRefGoogle Scholar
  3. Anton, J., A. Oren, S. Benlloch, F. Rodriguez-Valera, R. Amann, and R. Rossello-Mora. 2002 Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds Int. J. Syst. Evol. Microbiol. 52 485–491PubMedGoogle Scholar
  4. Bakunina, I. Y., R. A. Kuhlmann, L. M. Likhosherstov, M. D. Martynova, O. I. Nedashkovskaya, V. V. Mikhailov, and L. A. Elyakova. 2002 Alpha-N-acetylgalactosaminidase from marine bacterium Arenibacter latericius KMM 426(T) removing blood type specificity of A-erythrocytes Biochemistry 67(6) 689–695PubMedGoogle Scholar
  5. Balch, W. E., and R. S. Wolfe. 1976 New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere Appl. Environ. Microbiol. 32 781–791PubMedGoogle Scholar
  6. Bano, N., and J. T. Hollibaugh. 2002 Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean Appl. Environ. Microbiol. 68(2) 505–518PubMedCrossRefGoogle Scholar
  7. Barbeyron, T., S. L’Haridon, E. Corre, B. Kloareg, and P. Potin. 2001 Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov Int. J. Syst. Evol. Microbiol. 51(3) 985–997PubMedCrossRefGoogle Scholar
  8. Bernardet, J. F., and P. A. D. Grimont. 1989 Deoxyribonucleic acid relatedness and phenotypic characterization of Flexibacter columnaris sp. nov., nom. rev., Flexibacter psychrophilus sp. nov., nom. rev., and Flexibacter maritimus Wakabayashi, Hikida, and Masumura 1986 Int. J. Syst. Bacteriol. 39 346–354CrossRefGoogle Scholar
  9. Bernardet, J. F., P. Segers, M. Vancanneyt, F. Berthe, K. Kersters, and P. Vandamme. 1996 Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978) Int. J. Syst. Bacteriol. 46 128–148CrossRefGoogle Scholar
  10. Bernardet, J. F. 1998 Cytophaga, Flavobacterium, Flexibacter and Chryseobacterium infections in cultured marine fish Fish Pathol. 33(4) 229–238CrossRefGoogle Scholar
  11. Bernardet, J. F, Y. Nakagawa, B. Holmes, and the Subcommittee on the Taxonomy of Flavobacteria. 2002 Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family Int. J. Syst. Evol. Microbiol. 52(3) 1049–1070PubMedCrossRefGoogle Scholar
  12. Bowman, J. P., M. V. Brown, and D. S. Nichols. 1997a Biodiversity an ecophysiology of bacteria associated with Antarctic sea-ice Antarct. Sci. 9 134–142CrossRefGoogle Scholar
  13. Bowman, J. P., S. A. McCammon, J. L. Brown, P. D. Nichols, and T. A. McMeekin. 1997b Psychroserpens burtonensis gen. nov., sp. nov. and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats Int. J. Syst. Bacteriol. 47(3) 670–677PubMedCrossRefGoogle Scholar
  14. Bowman, J. P., S. A. McCammon, M. V. Brown, D. S. Nichols, and T. A. McMeekin. 1997c Diversity and association of psychrophilic bacteria in Antarctic sea-ice Appl. Environ. Microbiol. 63 3068–3078PubMedGoogle Scholar
  15. Bowman, J. P., S. A. McCammon, T. Lewis, J. H. Skerratt, J. L. Brown, D. S. Nichols, and T. A. McMeekin. 1998 Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al., 1993) as Psychroflexus gondwansensis gen. nov., comb. nov Microbiology 144 1601–1609PubMedCrossRefGoogle Scholar
  16. Bowman, J. P. 2000 Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov Int. J. Syst. Evol. Microbiol. 50(5) 1861–1868PubMedGoogle Scholar
  17. Bowman, J. P., and D. S. Nichols. 2002 Aequorivita gen. nov., a member of the family Flavobacteriaceae isolated from terrestrial and marine Antarctic habitats Int. J. Syst. Evol. Microbiol. 52 1533–1541PubMedCrossRefGoogle Scholar
  18. Bowman, J. P., and R. M. McCuaig. 2003a Diversity and biogeography of prokaryotes dwelling in Antarctic continental shelf sediment Appl. Environ. Microbiol. 69(5) 2463–2484PubMedCrossRefGoogle Scholar
  19. Bowman, J. P., C. Mancuso Nichols, and J. A. E. Gibson. 2003b Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats Int. J. Syst. Evol. Microbiol. 53 1343–1355PubMedCrossRefGoogle Scholar
  20. Brinkmeyer, R., K. Knittel, J. Jürgens, H. Weyland, R. Amann, and E. Helmke. 2003 Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice Appl. Environ. Microbiol. 69(11) 6610–6619PubMedCrossRefGoogle Scholar
  21. Brown, M. V., and J. P. Bowman. 2001 A molecular phylogenetic survey of sea-ice microbial communities (SIMCO) FEMS Microbiol. Ecol. 35 267–275PubMedCrossRefGoogle Scholar
  22. Bruns, A., M. Rohde, and L. Berthe-Corti. 2001 Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment Int. J. Syst. Evol. Microbiol. 51(6) 1997–2006PubMedCrossRefGoogle Scholar
  23. Bull, A. T., A. C. Ward, and M. Goodfellow. 2000 Search and discovery strategies for biotechnology: The paradigm shift Microbiol. Molec. Biol. Rev. 64 573–606CrossRefGoogle Scholar
  24. Cho, J.-C., and S. J. Giovannoni. 2003 Croceibacter atlanticus gen. nov. sp. nov., a novel marine bacterium in the family Flavobacteriaceae Syst. Appl. Microbiol. 26(1) 76–83PubMedCrossRefGoogle Scholar
  25. Cho, J.-C., and S. J. Giovannoni. 2004 Robiginitalea biformata gen. nov., sp. nov., a new marine bacterium in the family Flavobacteriaceae that contains higher G+C composition. Online: [{http://dx.doi.org/10.1099/ijs.0.03023-0}{http://dx.doi.org/10.1099/ijs.0.03023-0}] Int. J. Syst. Evol. Microbiol.Google Scholar
  26. Connon, S. A., and S. J. Giovannoni. 2002 High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates Appl. Env. Microbiol. 68 3878–3885CrossRefGoogle Scholar
  27. Cottrell, M. T., and D. L. Kirchman. 2000 Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter Appl. Environ. Microbiol. 66(4) 1692–1697PubMedCrossRefGoogle Scholar
  28. Deming, J. W. 2003 Psychrophiles and polar regions Biofutur 229 43–50Google Scholar
  29. Desholme, B., and J. F. Bernardet. 1998 Freeze-drying of Flavobacterium columnare, Flavobacterium psychrophilum and Flexibacter maritimus Dis. Aquat. Org. 27 77–80CrossRefGoogle Scholar
  30. Dobson, S. J., S. R. James, P. D. Franzmann, and T. A. McMeekin. 1991 A numerical taxonomic study of some pigmented bacteria isolated from Organic Lake, an Antarctic hypersaline lake Arch. Microbiol. 156(1) 56–61CrossRefGoogle Scholar
  31. Dobson, S. J., R. R. Colwell, T. A. McMeekin, and P. D. Franzmann. 1993 Direct sequencing of the polymerase chain reaction amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake Int. J. Syst. Bacteriol. 43(1) 77–83PubMedCrossRefGoogle Scholar
  32. Donachie, S. P., J. P. Bowman, and M. Alam. 2004 Psychroflexus tropicus sp. nov., a new obligately halophilic Cytophaga-Flavobacterium-Bacteroides group bacterium isolated from an Hawaiian hypersaline lake. Online: [{http://dx.doi.org/10.1099/ijs.0.02733-0}{http://dx.doi.org/10.1099/ijs.0.02733-0}] Int. J. Syst. Evol. Microbiol.Google Scholar
  33. Doucette, G. J., E. R. McGovern, and J. A. Babinchak. 1999 Algicidal bacteria active against Gymnodinium breve (Dinophyceae). I: Bacterial isolation and characterization of killing activity J. Phycol. 35(6) 1447–1454CrossRefGoogle Scholar
  34. Egan, S., T. Thomas, C. Holmström, and S. Kjelleberg. 2000 Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca Environ. Microbiol. 2(3) 343–347PubMedCrossRefGoogle Scholar
  35. Frette, L., N. O. G. Jørgensen, H. Irming, and N. Kroer. 2004 Tenacibaculum skaggerrakense sp. nov., a marine bacterium isolated from the pelagic zone in Skaggerrak, Denmark. Online: [{http://dx.doi.org/10.1099/ijs.0.02398-0}{http://dx.doi.org/10.1099/ijs.0.02398-0}] Int. J. Syst. Evol. Microbiol.Google Scholar
  36. Glöckner, F. O., B. M. Fuchs, and R. Amann. 1999 Bacterioplankton compositions of lakes and oceans: A first comparison based on fluorescence in situ hybridization Appl. Env. Microbiol. 65 3721–3726Google Scholar
  37. Gosink, J. J., C. R. Woese, and J. T. Staley. 1998 Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzamannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of “Flectobacillus glomeratus” as Polaribacter glomeratus comb. nov Int. J. Syst. Bacteriol. 48(1) 223–235PubMedCrossRefGoogle Scholar
  38. Grossart, H. P. 1999 Interactions between marine bacteria and axenic diatoms (Cylindrotheca fusiformis, Nitzschia laevis, and Thalassiosira weissflogii) incubated under various conditions in the lab Aquat. Microb. Ecol. 19(1) 1–11CrossRefGoogle Scholar
  39. Grossart, H.P. and, Ploug, H. 2001 Microbial degradation of organic carbon and nitrogen on diatom aggregates Limnol. Oceanogr. 46(2) 267–277CrossRefGoogle Scholar
  40. Hamana, K., and Y. Nakagawa. 2001a Polyamine distribution profiles in newly validated genera and species within the Flavobacterium-Flexibacter-Cytophaga-Sphingobacterium complex Microbios 106 105–116PubMedGoogle Scholar
  41. Hamana, K., and M. Niitsu. 2001b Large production of an aromatic amine, 2-phenylethylamine, in a psychrophilic marine bacterium, Psychroflexus torquis J. Gen. Appl. Microbiol. Tokyo 47(2) 103–105CrossRefGoogle Scholar
  42. Hansen, G. H., Ø. Bergh, J. Michaelsen, and N. Knappskog. 1992 Flexibacter ovolyticus sp. nov., a pathogen of eggs and larvae of Atlantic Halibut, Hippoglossus hippoglossus L Int. J. Syst. Bacteriol. 42(3) 451–458PubMedCrossRefGoogle Scholar
  43. Hikida, M., H. Wakabayashi, S. Egusa, and K. Masumura. 1979 Flexibacter sp., a gliding bacterium pathogenic to some marine fishes in Japan Bull. Jpn. Soc. Sci. Fish. 45 421–428CrossRefGoogle Scholar
  44. Ivanova, E. P., E. A. Kiprianova, V. V. Mikhailov, F. G. Levanova, A. G. Garagulya, N. M. Gorshkova, N. Yumoto, and S. Yoshikawa. 1996 Characterization and identification of marine Alteromonas nigrifaciens strains and emendation of the description Int. J. Syst. Bacteriol. 48(1) 247–256CrossRefGoogle Scholar
  45. Ivanova, E. P., O. I. Nedashkovskaya, J. Chun, A. M. Lysenko, G. M. Frolova, V. I. Svetashev, M. V. Vysotskii, V. V. Mikhailov, A. Huq, and R. R. Colwell. 2001 Arenibacter gen. nov., new genus of the family Flavobacteriaceae and description of a new species, Arenibacter latericius sp. nov Int. J. Syst. Evol. Microbiol. 51(6) 1987–1995PubMedCrossRefGoogle Scholar
  46. Ivanova, E. P., Y. A. Alexeeva, S. Flavier, J. P. Wright, N. V. Zhukova, V. V. Gorshkova, D. V. Nicolau, and R. Christen. 2004 Formosa algae gen. nov., a novel member of the family Flavobacteriaceae. Online: [{http://ijs. sgmjournals.org/misc/pip.shtml}] Int. J. Syst. Bacteriol.Google Scholar
  47. Johansen, J. E., P. Nielsen, and C. Søjholm. 1999 Description of Cellulophaga baltica gen. nov., sp. nov. and Cellulophaga fucicola gen. nov., sp. nov. and reclassification of [Cytophaga] lytica to Cellulophaga lytica gen. nov., comb. nov Int. J. Syst. Bacteriol. 49 1231–1240PubMedCrossRefGoogle Scholar
  48. Johns, R. B., and G. J. Perry. 1977 Lipids of the marine bacterium Flexibacter polymorphus Arch. Microbiol. 114 267–271CrossRefGoogle Scholar
  49. Joseph, S. J., P. Hugenholtz, P. Sangwan, C. A. Osborne, and P. H. Janssen. 2003 Laboratory cultivation of widespread and previously uncultured soil bacteria Appl. Env. Microbiol. 69 7210–7215CrossRefGoogle Scholar
  50. Junge, K., F. Imhoff, T. Staley, and J. W. Deming. 2002 Phylogenetic diversity of numerically important arctic sea-ice bacteria cultured at subzero temperature Microb. Ecol. 43(3) 315–328PubMedCrossRefGoogle Scholar
  51. Junge, K., H. Eicken, and J. W. Deming. 2004 Bacterial activity at −2 to −20°C in Arctic wintertime sea ice Appl. Env. Microbiol. 70 550–557CrossRefGoogle Scholar
  52. Kaneda, T. 1991 Iso-and anteiso-fatty acids in bacteria: Biosynthesis, function and taxonomic significance Microbiol. Rev. 55 288–302PubMedGoogle Scholar
  53. Kelly, K. M., and A. Y. Chistoserdov. 2001 Phylogenetic analysis of the succession of bacterial communities in the Great South Bay (Long Island) FEMS Microbiol. Ecol. 35(1) 85–95PubMedCrossRefGoogle Scholar
  54. Kirchman, D. L. 2002 The ecology of Cytophaga-Flavobacteria in aquatic environments FEMS Microbiol. Ecol. 39(2) 91–100PubMedGoogle Scholar
  55. Kirchman, D. L., L. Y. Yu, and M. T. Cottrell. 2003 Diversity and abundance of uncultured Cytophaga-like bacteria in the Delaware Estuary Appl. Environ. Microbiol. 69(11) 6587–6596PubMedCrossRefGoogle Scholar
  56. Kondo, R., I. Imai, K. Fukami, K. Minami, and A. Hiroishi. 1999 Phylogenetic analysis of algicidal bacteria (Family Flavobacteriaceae) and selective detection by PCR using a specific primer set Fisheries Sci. 65(3) 432–435Google Scholar
  57. Krembs, C., J. W. Deming, and H. Eicken. 2003 Can Microorganisms, Especially Melosira arctica, Significantly Alter the Physical Properties of Sea-Ice and to What Biological Advantage? Online: [{http://psc.apl. washington.edu/CKrembs/AAAS.pdf}] Polar Science Center, University of Washington Seattle, WAGoogle Scholar
  58. Kusuda, R., and K. Kawai. 1998 Bacterial diseases of cultured marine fish in Japan Fish Pathol. 33(4) 221–227CrossRefGoogle Scholar
  59. Lewin, R. A. 1969 A classification of flexibacteria J. Gen. Microbiol. 58 189–206PubMedCrossRefGoogle Scholar
  60. Li, D., and A. J. Sinclair. 2002 Macronutrient innovations: The role of fats and sterols in human health Asia Pac. J. Clin. Nutr. 11(Suppl. 6) 155–162CrossRefGoogle Scholar
  61. Macián, M. C., M. J. Pujalte, M. C. Márquez, W. Ludwig, A. Ventosa, E. Garay, and K.-H. Schleifer. 2002 Gelidibacter mesophilus sp. nov., a novel marine bacterium in the family Flavobacteriaceae Int. J. Syst. Evol. Microbiol. 52 1325–1329PubMedCrossRefGoogle Scholar
  62. Madrid, V. M., J. Y. Aller, R. C. Aller, and A. T. Chistoserdov. 2001 High prokaryote diversity and analysis of community structure in mobile mud deposits off French Guiana: identification of two new bacterial candidate divisions FEMS Microbiol. Ecol. 37(3) 197–209CrossRefGoogle Scholar
  63. McGuire, A. J., P. D. Franzmann, and T. A. McMeekin. 1987 Flectobacillus glomeratus sp. nov., a curved, nonmotile, pigmented bacterium isolated from Antarctic marine environments Syst. Appl. Microbiol. 9 265–272CrossRefGoogle Scholar
  64. Miguez, B., and M. P. Combarro. 2003 Bacteria associated with sardine (Sardina pilchardus) eggs in a natural environment (Ria de Vigo, Galicia, northwestern Spain) FEMS Microbiol. Ecol. 44(3) 329–334PubMedCrossRefGoogle Scholar
  65. Morita, R. Y. 1975 Psychrophilic bacteria Bacteriol. Rev. 39 144–167PubMedGoogle Scholar
  66. Muller, S., B. Kiesel, and L. Berthe-Corti. 2001 Muricauda ruestringensis has an asymmetric cell cycle Acta Biotechnol. 21(4) 343–357CrossRefGoogle Scholar
  67. Nagasaki, K., M. Yamaguchi, and I. I. Imai. 2000 Algicidal activity of a killer bacterium against the harmful red tide dinoflagellate Heterocapsa circularisquama isolated from Ago Bay, Japan Nippon Guisan Gakk. 66(4) 666–673CrossRefGoogle Scholar
  68. Nedashkovskaya, O. I., S. B. Kim, S. K. Han, A. M. Lysenko, M. Rohde, N. V. Zhukova, E. Falsen, G. M. Frolova, V. V. Mikhailov, and K. S. Bae. 2003a Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the gree alga Acrisiphonia sonderi (Kürtz) Kornm Int. J. Syst. Evol. Microbiol. 53(6) 1967–1971PubMedCrossRefGoogle Scholar
  69. Nedashkovskaya, O. I., M. Suzuki, M. V. Vysotskii, and V. V. Mikhailov. 2003b Arenibacter troitsensis sp. nov., isolated from marine bottom sediment Int. J. Syst. Evol. Microbiol. 53(5) 1287–1290PubMedCrossRefGoogle Scholar
  70. Nedashkovskaya, O. I., M. Suzuki, M. V. Vysotskii, and V. V. Mikhailov. 2003c Vitellibacter vladivostokensis gen. nov., sp. nov., a new member of the phylum Cytophaga-Flavobacterium-Bacteroides Int. J. Syst. Evol. Microbiol. 53(5) 1281–1286PubMedCrossRefGoogle Scholar
  71. Nedashkovskaya, O. I., S. B. Kim, S. K. Han, A. M. Lysenko, M. Rohde, M. S. Rhee, G. M. Frolova, E. Falsen, V. V. Mikhailov, and K. S. Bae. 2004a Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. Online: [{http://dx.doi.org/10.1099/ijs.0.02849-0}{http://dx.doi.org/10.1099/ijs.0.02849-0}] Int. J. Syst. Bacteriol.Google Scholar
  72. Nedashkovskaya, O. I., S. B. Kim, M. S. Rhee, A. M. Lysenko, E. Falsen, G. M. Frolova, V. V. Mikhailov, and K. S. Bae. 2004b Ulvibacter litoralis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the green alga Ulva fenestrata. Online: [{http://dx.doi.org/10.1099/ijs.0.02757-0}{http://dx.doi.org/10.1099/ijs.0.02757-0}] Int. J. Syst. Evol. MicrobiolGoogle Scholar
  73. Nichols, D. S, J. P. Bowman, K. Sanderson, C. Mancuso Nichols, T. Lewis, T. A. McMeekin, and P. D. Nichols. 1999 Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes Curr. Opin. Biotechnol. 10 240–246PubMedCrossRefGoogle Scholar
  74. O’Sullivan, L.A., K. E. Fuller, E. M. Thomas, C. M. Turley, J. C. Fry, and A. J. Weightman. 2004 Wide distribution and culturability of the uncultivated “AGG58 cluster” of the Bacteroidetes phylum in aquatic environments FEMS Microbiol. Ecol. 47 359–370PubMedCrossRefGoogle Scholar
  75. Perovic, S, A. Wichels, C. Schutt, G. Gerdts, S. Pahler, R. Steffen, and W. E. G. Muller. 1998 Neuroactive compounds produced by bacteria from the marine sponge Halichondria panicea: activation of the neuronal NMDA receptor Env. Toxicol. Pharmacol. 6(2) 125–133CrossRefGoogle Scholar
  76. Ploug, H., Hietanen, S., and, Kuparinen, J. 2002 Diffusion and advection within and around sinking, porous diatom aggregates Limnol. Oceanogr. 47 (4) 1129–1136CrossRefGoogle Scholar
  77. Rappé, M. S., S. A. Connon, K. L. Vergin, and S. J. Giovannoni. 2002 Cultivation of the ubiquitous SAR 11 marine bacterioplankton clade Nature 418(6898) 630–633CrossRefGoogle Scholar
  78. Reichenbach, H. 1989 Genus I: Cytophaga Winogradsky 1929, 577AL emend In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology, 1st ed Williams & Wilkins Baltimore, MD 3 2015–2050Google Scholar
  79. Rothschild, L. J., and R. L. Mancinelli. 2001 Life in extreme environments Nature 409 1092–1101PubMedCrossRefGoogle Scholar
  80. Russell, N. J., and D. S. Nichols. 1999 Polyunsaturated fatty acids in marine bacteria—a dogma rewritten Microbiology (UK) 145(4) 767–779CrossRefGoogle Scholar
  81. Sakai, T., H. Kimura, and I. Kato. 2002 A marine strain of Flavobacteriaceae utilizes brown seaweed fucoidan Mar. Biotechnol. 4(4) 399–405PubMedCrossRefGoogle Scholar
  82. Shahidi, F., and S. K. Kim. 2002 Marine lipids as affected by processing and their quality preservation by natural antioxidants ACS Symp. Ser. 816 1–13CrossRefGoogle Scholar
  83. Skerratt, J. H., J. P. Bowman, G. Hallegraeff, S. James, and P. D. Nichols. 2002 Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary Mar. Ecol. Prog. Ser. 244 1–15CrossRefGoogle Scholar
  84. Smith, M. C., J. P. Bowman, F. J. Scott, and M. A. Line. 2000 Sublithic bacteria associated with Antarctic quartz stones Antarct. Sci. 12 177–184Google Scholar
  85. Staley, J. T., and J. J. Gosink. 1999 Poles apart: Biodiversity and biogeography of sea ice bacteria Ann. Rev. Microbiol. 53 189–215CrossRefGoogle Scholar
  86. Suzuki, M., Y. Nakagawa, S. Harayama, and S. Yamamoto. 2001 Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov Int. J. Syst. Evol. Microbiol. 51(5) 1639–1652PubMedCrossRefGoogle Scholar
  87. Tavani, A., C. Pelucchi, M. Parpinel, E. Negri, S. Franceschi, F. Levi, and C. La Vecchia. 2003 n-3 polyunsaturated fatty acid intake and cancer risk in Italy and Switzerland Int. J. Cancer 105(1) 113–116PubMedCrossRefGoogle Scholar
  88. Tokai, M., H. Kawasaki Y. Kikuchi, and K. Ouchi. 2000 Cloning and characterization of the CSF1 gene of Saccharomyces cerevisiae, which is required for nutrient uptake at low temperature J. Bacteriol. 182(10) 2865–2868PubMedCrossRefGoogle Scholar
  89. Umezawa, H., Y. Okami, S. Kurasawa, T. Ohnuki, M. Ishizuka, T. Takeuchi, T. Shiio, and Y. Yugari. 1983 Marinactan, antitumor polysaccharide produced by marine bacteria J. Antibiot. (Tokyo) 36(5) 471–477CrossRefGoogle Scholar
  90. Van Trappen, S., J. Mergaert, S. Van Eygen, P. Dawyndt, M. C. Cnokaert, and J. Swings. 2002 Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes Syst. Appl. Microbiol. 25 603–610PubMedCrossRefGoogle Scholar
  91. Van Trappen, S., I. Vandecandelaere, J. Mergaert, and J. Swings. 2003 Gillisia limnaea gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from a microbial mat in Lake Fryxell, Antarctica. Online: [{http://dx.doi.org/10.1099/ijs.0.02922}{http://dx.doi.org/10.1099/ijs.0.02922}] Int. J. Syst. Evol. Microbiol.Google Scholar
  92. Wakabayashi, H., M. Hikida, and K. Masumura. 1986 Flexibacter maritimus sp. nov., a pathogen of marine fishes Int. J. Syst. Bacteriol. 36 396–398CrossRefGoogle Scholar
  93. Wilson, T. H., and P. Z. Ding. 2001 Sodium-substrate co-transport in bacteria BBA Bioenergetics 1505(1) 121–130PubMedCrossRefGoogle Scholar
  94. Wilson, T., J. Carson, and J. Bowman. 2002 Optimisation of one-tube PCR-ELISA to detect femtogram amounts of genomic DNA J. Microbiol. Meth. 51(2) 163–170CrossRefGoogle Scholar
  95. Yan, L. M., K. G. Boyd, and J. G. Burgess. 2002 Surface attachment induced production of antimicrobial compounds by marine epiphytic bacteria using modified roller bottle cultivation Mar. Biotechnol. 4(4) 356–366PubMedCrossRefGoogle Scholar
  96. ZoBell, C. E., and H. C. Upham. 1944 A list of marine bacteria including descriptions of sixty new species Bull. Scripps Inst. Oceanogr. Univ. Calif. (Techn. Ser.) 5 239–292Google Scholar
  97. ZoBell, C. E. 1946 Marine Microbiology Chronica Botanica Waltham, MAGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • John P. Bowman

There are no affiliations available

Personalised recommendations