Sphingomonas and Related Genera

  • David L. Balkwill
  • J. K. Fredrickson
  • M. F. Romine


The genus Sphingomonas was defined by Yabuuchi et al. (1990) as a group of Gram-negative, rod-shaped, chemoheterotrophic, strictly aerobic bacteria that possess ubiquinone 10 as the major respiratory quinone, contain glycosphingolipids (GSLs) instead of lipopolysaccharide in their cell envelopes, and typically produce yellow-pigmented colonies. By 2001, the genus included more than 20 species that were quite diverse in terms of their phylogenetic, ecological, and physiological properties. As a result, Takeuchi et al. (2001) subdivided Sphingomonas into four genera: Sphingomonas, Sphingobium, Novosphingobium and Sphingopyxis. These genera are referred to collectively as “sphingomonads” in this chapter. The sphingomonads are widely distributed in nature, having been isolated from many different aqueous and terrestrial habitats, as well as from plant root systems, clinical specimens, and other sources. Sphingomonads are metabolically versatile and, thus, are able to utilize...


Vanillyl Alcohol Sphingomonas Paucimobilis Strain RB2256 Sphingomonas Strain Sphingomonas Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cite

  1. Adkins, A. 1999 Degradation of the phenoxy acid herbicide diclofop-methyl by Sphingomonas paucimobilis isolated from a Canadian prairie soil J. Ind. Microbiol. Biotechnol. 23 332–335PubMedGoogle Scholar
  2. Anderson, G. R. 1955 Nitrogen fixation by Pseudomonas-like soil bacteria J. Bacteriol. 70 129–133PubMedGoogle Scholar
  3. Anson, A., P. J. Fisher, A. F. D. Kennedy, and I. W. Sutherland. 1987 A bacterium yielding a polysaccharide with unusual properties J. Appl. Bacteriol. 62 147–150Google Scholar
  4. Armengaud, J., and K. N. Timmis. 1998 The reductase RedA2 of the multi-component dioxin dioxygenase system of Sphingomonas sp. RW1 is related to class-I cytochrome P450-type reductases Eur. J. Biochem. 253 437–444PubMedGoogle Scholar
  5. Ashtaputre, A. A., and A. K. Shah. 1995 Studies on a viscous, gel-forming exopolysaccharide from Sphingomonas paucimobilis GS1 Appl. Environ. Microbiol. 61 1159–1162PubMedGoogle Scholar
  6. Azeredo, J., and R. Oliveira. 2000 The role of exopolymers in the attachment of Sphingomonas paucimobilis Biofouling 16 59–67Google Scholar
  7. Balkwill, D. L. 1989 Numbers, diversity, and morphological characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina Geomicrobiol. J. 7 33–52Google Scholar
  8. Balkwill, D. L., G. R. Drake, R. H. Reeves, J. K. Fredrickson, D. C. White, D. B. Ringelberg, D. P. Chandler, M. F. Romine, D. W. Kennedy, and C. M. Spadoni. 1997a Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov Int. J. Syst. Bacteriol. 47 191–201PubMedGoogle Scholar
  9. Balkwill, D. L., R. H. Reeves, G. R. Drake, J. Y. Reeves, F. H. Crocker, M. B. King, and D. R. Boone. 1997b Phylogenetic characterization of bacteria in the Subsurface Microbial Culture Collection FEMS Microbiol. Rev. 20 201–216PubMedGoogle Scholar
  10. Bastiaens, L., D. Springael, W. Dejonghe, P. Wattiau, H. Verachtert, and L. Diels. 2001 A transcriptional luxAB reporter fusion responding to fluorine in Sphingomonas sp. LB126 and its initial characterisation for whole-cell bioreporter purposes Res. Microbiol. 152 849–859PubMedGoogle Scholar
  11. Bertini, I., F. Capozzi, A. Dikiy, B. Happe, C. Luchinat, and K. N. Timmis. 1995 Evidence of histidine coordination to the catalytic ferrous ion in the ring-cleaving 2,2′,3-trihydroxybiphenyl dioxygenase from the dibenzofuran-degrading bacterium Sphingomonas sp. strain RW1 Biochem. Biophys. Res. Comm. 215 855–860PubMedGoogle Scholar
  12. Bowman, J. P., S. A. McCammon, M. V. Brown, D. S. Nichols, and T. A. McMeekin. 1997 Diversity and association of psychrophilic bacteria in Antarctic sea ice Appl. Environ. Microbiol. 63 3068–3078PubMedGoogle Scholar
  13. Bünz, P. V., and A. M. Cook. 1993a Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: Angular dioxygenation by a three-component enzyme system J. Bacteriol. 175 6467–6475PubMedGoogle Scholar
  14. Bünz, P. V., R. Falchetto, and A. M. Cook. 1993b Purification of two isofunctional hydrolases (EC in the degradative pathway for dibenzofuran in Sphingomonas sp. strain RW1 Biodegradation 4 171–178PubMedGoogle Scholar
  15. Bünz, P. V., M. Buck, S. Hebenbrock, and P. Fortnagel. 1999 Stability of mutations in a Sphingomonas strain Can. J. Microbiol. 45 404–407PubMedGoogle Scholar
  16. Buswell, C. M., Y. M. Herlihy, P. D. Marsh, C. W. Keevil, and S. A. Leach. 1997 Coaggregation amongst aquatic biofilm bacteria J. Appl. Microbiol. 83 477–484Google Scholar
  17. Byun, T., M. Tang, A. Sloma, K. M. Brown, C. Marumoto, M Fujii, and A. M. Blinkovsky. 2001 Aminopeptidase from Sphingomonas capsulata J. Biol. Chem. 276 17902–17907PubMedGoogle Scholar
  18. Chandler, D. P., F. J. Brockman, T. J. Bailey, and J. K. Fredrickson. 1998 Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol Microb. Ecol. 36 37–50PubMedGoogle Scholar
  19. Chang, D., B. Witholt, and Z. Li. 2000 Preparation of (S)-N-substituted 4-hydroxy-pyrrolidin-2-ones by regio-and stereoselective hydroxylation with Sphingomonas sp. HXN-200 Org. Lett. 2 3949–3942PubMedGoogle Scholar
  20. Chang, D., H. J. Feiten, K. H. Engesser, J. B. van Beilen, B. Witholt, and Z. Li. 2002 Practical syntheses of N-substituted 3-hydroxyazetidines and 4-hydroxypiperidines by hydroxylation with Sphingomonas sp. HXN-200 Org. Lett. 4 1859–1862PubMedGoogle Scholar
  21. Christner, B. C., E. Mosley-Thompson, L. G. Thompson, and J. N. Reeve. 2001 Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice Environ. Microbiol. 3 570–577PubMedGoogle Scholar
  22. Coughlin, M. F., B. K. Kinkle, and P. L. Bishop. 1999 Degradation of azo dyes containing aminonaphthol by Sphingomonas sp. strain 1CX J. Ind. Microbiol. Biotechnol. 23 341–346PubMedGoogle Scholar
  23. Cousineau, B., D. Smith, S. Lawrence-Cavanagh, J. E. Mueller, J. Yang, D. Mills, D. Manias, G. Dunny, A. M. Lambowitz, and M. Belfort. 1998 Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination Cell 94 451–462PubMedGoogle Scholar
  24. Crane, L. R., L. C. Tagle, and W. A. Palutke. 1981 Outbreak of Pseudomonas paucimobilis in an intensive care facility J. Am. Med. Assoc. 246 985–987Google Scholar
  25. Crawford, R. L., and M. M. Ederer. 1999 Phylogeny of Sphingomonas species that degrade pentachlorophenol J. Ind. Microbiol. Biotechnol. 23 320–325PubMedGoogle Scholar
  26. Daane, L. L., I. Harjono, G. J. Zylstra, and M. M. Häggblom. 2001 Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants Appl. Environ. Microbiol. 67 2683–2691PubMedGoogle Scholar
  27. Davison, A. D., and D. A. Veal. 1993 Storage of a mixed microbial consortium capable of growth on biphenyl Lett. Appl. Microbiol. 17 101–103Google Scholar
  28. Davison, A. D., P. Karuso, D. R. Jardine, and D. A. Veal. 1996 Halopicilinic acids, novel products arising through the degradation of chloro-and bromo-biphenyl by Sphingomonas paucimobilis BPSI-3 Can. J. Microbiol. 42 66–71PubMedGoogle Scholar
  29. De Feyter, R., and D. W. Gabriel. 1991 Use of cloned DNA methylase genes to increase the frequency of transfer of foreign genes into Xanthomonas campestris pv. malvacearum J. Bacteriol. 173 6421–6427PubMedGoogle Scholar
  30. Denner, E. B. M., P. Kämpfer, H.-J. Busse, and E. R. B. Moore. 1999 Reclassification of Pseudomonas echinoides Heumann 1962, 343AL, in the genus Sphingomonas as Sphingomonas echinoides comb. nov Int. J. Syst. Bacteriol. 49 1103–1109PubMedGoogle Scholar
  31. Denner, E. B. M., S. Paukner, P. Kämpfer, E. R. B. Moore, W.-R. Abraham, H.-J. Busse, G. Wanner, and W. Lubitz. 2001 Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan Int. J. Syst. Evol. Microbiol. 51 827–841PubMedGoogle Scholar
  32. de Otero, J., J. Masip, S. Elia, A. Betbese, J. Paez, and L. Ferrer. 1998 Bacteremia caused by Sphingomonas (Pseudomonas) paucimobilis [in Spanish] Enferm. Infecc. Microbiol. Clin. 16 388–389PubMedGoogle Scholar
  33. Ditta, G., T. Schmidhauser, E. Yakobson, P. Lu, X. W. Liang, D. R. Finlay, D. Guiney, and D. R. Helinski. 1985 Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression Plasmid 13 149–153PubMedGoogle Scholar
  34. Dutta, T. K., S. A. Selifonov, and I. C. Gunsalus. 1998 Oxidation of methyl-substituted naphthalenes: Pathways in versatile Sphingomonas paucimobilis strain Appl. Environ. Microbiol. 64 1884–1889PubMedGoogle Scholar
  35. Edgehill, R. U., and R. K. Finn. 1982 Isolation, characterization and growth kinetics of bacteria metabolizing pentachlorophenol Eur. J. Appl. Microbiol. Biotechnol. 16 179–184Google Scholar
  36. Eguchi, M., T. Nishikawa, K. MacDonald, R. Cavicchioli, J. C. Gottschal, and S. Kjelleberg. 1996 Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256 Appl. Environ. Microbiol. 62 1287–1294PubMedGoogle Scholar
  37. Eguchi, M., M. Ostrowski, F. Fegatella, J. Bowman, D. Nichols, T. Nishino, and R. Cavicchioli. 2001 Sphingomonas alaskensis strain AFO1, an abundant oligotrophic ultramicrobacterium from the North Pacific Appl. Environ. Microbiol. 67 4945–4954PubMedGoogle Scholar
  38. Faden, H., M. Britt, and B. Epstein. 1981 Sinus contamination with Pseudomonas paucimobilis: A pseudoepidemic due to contaminated irrigation fluid Infect. Control 2 233–235PubMedGoogle Scholar
  39. Fegatella, F., J. Lim, S. Kjelleberg, and R. Cavicchioli. 1998 Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256 Appl. Environ. Microbiol. 64 4433–4438PubMedGoogle Scholar
  40. Fegatella, F., and R. Cavicchioli. 2000 Physiological responses to starvation in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256 Appl. Environ. Microbiol. 66 2037–2044PubMedGoogle Scholar
  41. Feng, X., L.-T. Ou, and A. Ogram. 1997 Plasmid-mediated mineralization of carbofuran by Sphingomonas sp. strain CF06 Appl. Environ. Microbiol. 63 1332–1337PubMedGoogle Scholar
  42. Ferat, J. L., M. Le Gouar, and F. Michel. 1994 Multiple group II self-splicing introns in mobile DNA from Escherichia coli C. R. Acad. Sci. 317 141–148Google Scholar
  43. Fialho, A. M., L. O. Martins, M.-L. Donval, J. H. Leitão, M. J. Ridout, A. J. Jay, V. J. Morris, and I. Sá-Correia. 1999 Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactase compared with those produced from glucose and from cheese whey Appl. Environ. Microbiol. 65 2485–2491PubMedGoogle Scholar
  44. Fortnagel, P., H. Harms, R.-M. Wittich, S. Krohn, H. Meyer, V. Sinnwell, H. Wilkes, and W. Francke. 1990 Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27 Appl. Environ. Microbiol. 56 1148–1156PubMedGoogle Scholar
  45. Fredrickson, J. K., D. L. Balkwill, G. R. Drake, M. F. Romine, D. B. Ringelberg, and D. C. White. 1995 Aromatic-degrading Sphingomonas isolates from the deep subsurface Appl. Environ. Microbiol. 61 1917–1922PubMedGoogle Scholar
  46. Fredrickson, J. K., D. L. Balkwill, M. F. Romine, and T. Shi. 1999 Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp J. Ind. Microbiol. Biotechnol. 23 273–283PubMedGoogle Scholar
  47. Fujii, K., N. Urano, H. Ushio, M. Satomi, and S. Kimura.. 2001 Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo Int. J. Syst. Evol. Microbiol. 51 603–610PubMedGoogle Scholar
  48. Fukuda, K., S. Nagata, and H. Taniguchi. 2002 Isolation and characterization of dibenzofuran-degrading bacteria FEMS Microbiol. Lett. 208 179–185PubMedGoogle Scholar
  49. Furukawa, K., and A. M. Chakrabarty. 1982 Involvement of plasmids in total degradation of chlorinated biphenyls Appl. Environ. Microbiol. 44 619–626PubMedGoogle Scholar
  50. Furukawa, K., J. R. Simon, and A. M. Chakrabarty. 1983 Common induction and regulation of biphenyl, xylene/toluene, and salicylate catabolism in Pseudomonas paucimobilis J. Bacteriol. 154 1356–1362PubMedGoogle Scholar
  51. Gibson, D. T., R. L. Roberts, M. C. Wells, and V. M. Kobal. 1973 Oxidation of biphenyl by a Beijerinckia species Biochem. Biophys. Res. Comm. 50 211–219PubMedGoogle Scholar
  52. Gibson, D. T. 1999 Beijerinckia sp. strain B1: A strain by any other name J. Ind. Microbiol. Biotechnol. 23 284–293PubMedGoogle Scholar
  53. Gilardi, G. L. 1984 Antimicrobial susceptibility of glucose-nonfermenting Gram-negative bacilli (NFGNB) Clin. Microbiol. Newslett. 6 149–152Google Scholar
  54. Gilewicz, M., Ni’matuzahroh, T. Nadalig, H. Budzinski, P. Doumenq, V. Michotey, and J. C. Bertrand. 1997 Isolation and characterization of a marine bacterium capable of utilizing 2-methylphenanthrene Appl. Microbiol. Biotechnol. 48 528–533PubMedGoogle Scholar
  55. Gorricho, J., L. Torres, J. Navascues, M. C. Villuendas, and M. L. Marco. 1998 Bacteremia by Sphingomonas paucimobilis [in Spanish] Enferm. Infecc. Microbiol. Clin. 16 98–99PubMedGoogle Scholar
  56. Halden, R. U., B. G. Halden, and D. F. Dwyer. 1999 Removal of dibenzofuran, dibenzo-p-dioxin, and 2-chlorodibenzo-p-dioxin from soils inoculated with Sphingomonas sp. strain RW1 Appl. Environ. Microbiol. 65 2246–2249PubMedGoogle Scholar
  57. Hashimoto, W., T. Inose, H. Nakajima, N. Sato, S. Kimura, and K. Murata. 1996 Purification and characterization of microbial gellan lyase Appl. Environ. Microbiol. 62 1475–1477PubMedGoogle Scholar
  58. Hashimoto, W., and K. Murata. 1998 Alpha-L-rhamnosidase of Sphingomonas sp. R1 producing an unusual exopolysaccharide of sphingan Biosci. Biotechnol. Biochem. 62 1068–1074PubMedGoogle Scholar
  59. Hashimoto, W., K. Momma, Y. Mishima, B. Mikami, and K. Murata. 2001 Super-channel in bacteria: function and structure of a macromolecular import system mediated by a pit-dependent ABC transporter Biosci. Biotechnol. Biochem. 65 1949–1956PubMedGoogle Scholar
  60. Hernáez, M. J., W. Reineke, and E. Santero. 1999 Genetic analysis of biodegradation of tetralin by a Sphingomonas strain Appl. Environ. Microbiol. 65 1806–1810PubMedGoogle Scholar
  61. Heumann, W. 1962 Die Methodik der Kreuzung sternbildender Bakterien Biol. Zentbl. 81 341–354Google Scholar
  62. Hill, S., and J. R. Postgate. 1969 Failure of putative nitrogen-fixing bacteria to fix nitrogen J. Gen. Microbiol. 58 277–285PubMedGoogle Scholar
  63. Hiraishi, A., H. Kuraishi, and K. Kawahara. 2000 Emendation of the description of Blastomonas natatoria (Sly 1985) Sly and Cahill 1997 as an aerobic photosynthetic bacterium and reclassification of Erythromonas ursincola Yurkov et al. 1997 as Blastomonas ursincola comb. nov Int. J. Syst. Evol. Microbiol. 50 1113–1118PubMedGoogle Scholar
  64. Holmes, B., R. J. Owen, A. Evans, H. Malnick, and W. R. Willcox. 1977 Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources Int. J. Syst. Bacteriol. 27 133–146Google Scholar
  65. Holmes, B., and P. Roberts. 1981 The classification, identification, and nomenclature of agrobacteria. Incorporating revised descriptions for each of Agrobacterium tumefaciens (Smith & Townsend) Conn 1942, Agrobacterium rhizogenes (Riker et al.) Conn 1942, and Agrobacterium rubi (Hildebrand) Starr & Weiss 1943 J. Appl. Bacteriol. 50 443–467Google Scholar
  66. Horvath, M., G. Ditzelmüller, M. Loidl, and F. Streichsbier. 1990 Isolation and characterization of a 2-(2,4-dichlorophenoxy)propionic acid-degrading soil bacterium Appl. Microbiol. Biotechnol. 33 213–216PubMedGoogle Scholar
  67. Hsueh, P.-R., L.-J. Teng, P.-C. Yang, Y.-C. Chen, H.-J. Pan, S.-W. Ho, and K.-T. Luh. 1998 Nosocomial infections caused by Sphingomonas paucimobilis: clinical features and microbiological characteristics Clin. Infect. Dis. 26 676–681PubMedGoogle Scholar
  68. Hynková, K., Y. Nagata, M. Takagi, and J. Damborsky. 1999 Identification of the catalytic triad in the haloalkane dehalogenase from Sphingomonas paucimobilis UT26 FEBS Lett. 446 177–181PubMedGoogle Scholar
  69. Imai, R., Y. Nagata, K. Senoo, H. Wada, M. Fukuda, M. Takagi, and K. Yano. 1989 Dehydrochlorination of γ-hexachlorocyclohexane (γ-BHC) by γ-BHC-assimilating Pseudomonas paucimobilis Agric. Biol. Chem. 53 2015–2017Google Scholar
  70. Janikowski, T. B., D. Velicogna, M. Punt, and A. J. Daugulis. 2002 Use of a two-phase partitioning bioreactor for degrading polycyclic aromatic hydrocarbons by a Sphingomonas sp Appl. Microbiol. Biotechnol. 59 368–376PubMedGoogle Scholar
  71. Jiang, S. C., C. A. Kellogg, and J. H. Paul. 1998 Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii Appl. Environ. Microbiol. 64 535–542PubMedGoogle Scholar
  72. Johnsen, A. R., M. Hausner, A. Schnell, and S. Wuertz. 2000 Evaluation of fluorescently labeled lectins for noninvasive localization of extracellular polymeric substances in Sphingomonas biofilms Appl. Environ. Microbiol. 66 3487–3491PubMedGoogle Scholar
  73. Ka, J. O., W. E. Holben, and J. M. Tiedje. 1994 Analysis of competition in soil among 2,4-dichlorophenoxyacetic acid-degrading bacteria Appl. Environ. Microbiol. 60 1121–1128PubMedGoogle Scholar
  74. Kämpfer, P., E. B. M. Denner, S. Meyer, E. R. B. Moore, and H.-J. Busse. 1997 Classification of “Pseudomonas azotocolligans” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov Int. J. Syst. Bacteriol. 47 577–583PubMedGoogle Scholar
  75. Kaneko, A., H. Miyadai, H. Danbara, and K. Kawahara. 2000 Construction of mutants of Sphingomonas paucimobilis defective in terminal mannose in the glycosphingolipid Biosci. Biotechnol. Biochem. 64 1298–1301PubMedGoogle Scholar
  76. Karberg, M., H. Guo, J. Zhong, R. Coon, J. Perutka, and A. M. Lambowitz. 2001 Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria Nature Biotechnol. 19 1162–1167Google Scholar
  77. Kasai, Y., H. Kishira, K. Syutsubo, and S. Harayama. 2001 Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker off-spill accident Environ. Microbiol. 3 246–255PubMedGoogle Scholar
  78. Katayama, Y., S. Nishikawa, A. Murayama, M. Yamasaki, N. Morohoshi, and T. Haraguchi. 1988 The metabolism of biphenyl structure in lignin of the soil bacterium (Pseudomonas paucimobilis SYK-6) FEBS Lett. 233 129–133Google Scholar
  79. Kawahara, K., U. Seydel, M. Matsuura, H. Danbara, E. T. Reitschel, and U. Zähringer. 1991 Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis FEBS Lett. 292 107–110PubMedGoogle Scholar
  80. Kawahara, K., I. Mizuta, W. Katabami, M. Koizumi, and S. Wakayama. 1994 Isolation of Sphingomonas strains from ears of rice and other plants of family Gramineae Biosci. Biotech. Biochem. 58 600–601Google Scholar
  81. Kawahara, K., H. Kuraishi, and U. Zähringer. 1999 Chemical structure and function of glycosphingolipids of Sphingomonas spp and their distribution among members of the α-4 subclass of Proteobacteria J. Ind. Microbiol. Biotechnol. 23 408–413PubMedGoogle Scholar
  82. Kawahara, K., B. Lindner, Y. Isshiki, K. Jakob, Y. A. Knirel, and U. Zähringer. 2001 Structural analysis of a new glycosphingolipid from the lipopolysaccharide-lacking bacterium Sphingomonas adhaesiva Carbohydr. Res. 333 87–93PubMedGoogle Scholar
  83. Kawai, F., T. Kimura, Y. Tani, and H. Yamada. 1984 Involvement of a polyethylene glycol (PEG)-oxidizing enzyme in the bacterial metabolism of PEG Agric. Biol. Chem. 48 1349–1351Google Scholar
  84. Kawai, F. 1999 Sphingomonads involved in the biodegradation of xenobiotic polymers J. Ind. Microbiol. Biotechnol. 23 400–407PubMedGoogle Scholar
  85. Kawasaki, S., R. Moriguchi, K. Sekiya, T. Nakai, E. Ono, K. Kume, and K. Kawahara. 1994 The cell envelope structure of the lipopolysaccharide-lacking Gram-negative bacterium Sphingomonas paucimobilis J. Bacteriol. 176 284–290PubMedGoogle Scholar
  86. Kilpi, S., V. Backström, and M. Korhola. 1980 Degradation of 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D), benzoic acid and salicylic acid by Pseudomonas sp. HV3 FEMS Microbiol. Lett. 8 177–182Google Scholar
  87. Kim, C. K., J. W. Kim, Y. C. Kim and T. I. Mheen. 1986 Isolation of aromatic hydrocarbon-degrading bacteria and genetic characterization of their plasmid genes Korean J. Microbiol. 24 67–72Google Scholar
  88. Kim, E., and G. J. Zylstra. 1995 Molecular and biochemical characterization of two meta-cleavage dioxygenases involved in biphenyl and m-xylene degradation by Beijerinckia sp. strain B1 J. Bacteriol. 177 3095–3103PubMedGoogle Scholar
  89. Kim, E. 1996a Molecular analysis of aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1 [PhD thesis] Rutgers State University of New Jersey New Brunswick, NJGoogle Scholar
  90. Kim, E., P. J. Aversano, M. F. Romine, R. P. Schneider, and G. J. Zylstra. 1996b Homology between genes for aromatic hydrocarbon degradation in surface and deep-subsurface Sphingomonas strains Appl. Environ. Microbiol. 62 1467–1470PubMedGoogle Scholar
  91. Kim, S.-J., J. Chun, K. S. Bae, and Y.-C. Kim. 2000 Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas, as Sphingomonas chungbukensis sp. nov Int. J. Syst. Evol. Microbiol. 50 1641–1647PubMedGoogle Scholar
  92. Knoop, V., and A. Brennicke. 1994 Evidence for a group II intron in Escherichia coli inserted into a highly conserved reading frame associated with mobile DNA sequences Nucleic Acids Res. 22 1167–1171PubMedGoogle Scholar
  93. Kohler, H. P. E. 1999 Sphingomonas herbicidovorans MH: A versatile phenoxyalkonic acid herbicide degrader J. Ind. Microbiol. Biotechnol. 23 336–340PubMedGoogle Scholar
  94. Kuehn, M., M. Mehl, M. Hausner, H. J. Bungartz, and S. Wuertz. 2001 Time-resolved study of biofilm architecture and transport processes using experimental and simulation techniques: the role of EPS Water Sci. Technol. 43 143–150PubMedGoogle Scholar
  95. Kulaeva, O. I, E. V. Koonin, J. C. Wootton, A. S. Levine, and R. Woodgate. 1998 Unusual insertion element polymorphisms in the promoter and terminator regions of the mucAB-like genes of R471a and R446b Mutation Res. 397 247–262PubMedGoogle Scholar
  96. Lee, J.-S., Y. K. Shin, J.-H. Yoon, M. Takeuchi, Y.-R. Pyun, and Y.-H. Park. 2001 Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov. and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water Int. J. Syst. Evol. Microbiol. 51 1491–1498PubMedGoogle Scholar
  97. Leifson, E. 1962 The bacterial flora of distilled and stored water. III: New species of the genera Corynebacterium, Flavobacterium, Spirillum, and Pseudomonas Int. Bull. Bacteriol. Nom. Tax. 12 161–170Google Scholar
  98. Lemaitre, D., A. Elaichouni, M. Hundhausen, G. Claeys, P. Vanhaesebrouck, M. Vaneechoutte, and G. Verschraegen. 1996 Tracheal colonization with Sphingomonas paucimobilis in mechanically ventilated neonates due to contaminated ventilator temperature probes J. Hosp. Infect. 32 199–206PubMedGoogle Scholar
  99. Leung, K. T., O. Tresse, D. Errampalli, H. Lee, and J. T. Trevors. 1997 Mineralization of p-nitrophenol by pentachlorophenol-degrading Sphingomonas spp FEMS Microbiol. Lett. 155 107–114Google Scholar
  100. Li, Z., H.-J. Feiten, J. B. van Beilen, W. Duetz, and B. Witholt. 1999 Preparation of optically active N-benzyl-3-hydroxypyrrolidine by enzymatic hydroxylation Tetrahedron: Asymmetry 10 1323–1333Google Scholar
  101. Li, Z., H.-J. Feiten, D. Chang, W. A. Duetz, J. B. van Beilen, and B. Witholt. 2001 Preparation of (R)-and (S)-N-protected 3-hydroxypyrrolidines by hydroxylation with Sphingomonas sp. HXN-200, a highly active, regio-and stereoselective, and easy to handle biocatalyst J. Org. Chem. 66 8424–8430PubMedGoogle Scholar
  102. Lloyd-Jones, G. and P. C. K. Lau. 1997 Glutathione s-transferase-encoding gene as a potential probe for environmental bacterial isolates capable of degrading polycyclic aromatic hydrocarbons Appl. Environ. Microbiol. 63 3286–3290PubMedGoogle Scholar
  103. Lobas, D., S. Schumpe, and W. D. Deckwer. 1992 The production of gellan exopolysaccharide with Sphingomonas paucimobilis E2 (DSM 6314) Appl. Microbiol. Biotechnol. 37 411–415Google Scholar
  104. Lobas, D., M. Nimtz, V. Wray, A. Schumpe, C. Proppe, and W.-D. Deckwer. 1994 Structure and physical properties of the extracellular polysaccharide PS-P4 produced by Sphingomonas paucimobilis P4 (DSM 6418) Carbohydr. Res. 251 303–313PubMedGoogle Scholar
  105. Lu, J., T. Nakajima-Kambe, T. Shigeno, A. Ohbo, N. Nomura, and T. Nakahara. 1999 Biodegradation of dibenzothiophene and 4,6-dimethyldibenzothiophene by Sphingomonas paucimobilis strain TZS-7 Biosci. Bioengin. 88 293–299Google Scholar
  106. Macur, R. E., J. T. Wheeler, T. R. McDermott, and W. P. Inskeep. 2001 Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings Environ. Sci. Technol. 35 3676–3682PubMedGoogle Scholar
  107. Männistö, M. K., M. A. Tirola, M. S. Salkinoja-Salonen, M. S. Kulomaa, and J. A. Puhakka. 1999 Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater Arch. Microbiol. 171 189–197PubMedGoogle Scholar
  108. Martínez-Abarca, F., S. Zekri, and N. Toro. 1998 Characterization and splicing in vivo of a Sinorhizobium meliloti group II intron associated with particular insertion sequences of the IS630-Tcl/IS3 transposon superfamily Molec. Microbiol. 28 1295–1306Google Scholar
  109. Martino, R., C. Martinez, R. Pericas, R. Salazar, C. Sola, S. Brunet, A. Sureda, and A. Domingo-Albos. 1996 Bacteremia due to glucose non-fermenting Gram-negative bacilli in patients with hematological neoplasias and solid tumors Eur. J. Clin. Microbiol. Infect. Dis. 15 610–615PubMedGoogle Scholar
  110. Martins, L. O., A. M. Fialho, P. L. Rodrigues, and I. Sá-Correia. 1996 Gellan gum production and activity of biosynthetic enzymes in Sphingomonas paucimobilis mucoid and non-mucoid variants Biotechnol. Appl. Biochem. 24 47–54Google Scholar
  111. Masai, E., Y. Katayama, S. Nishikawa, and K. Fukuda. 1999 Characterization of Sphingomonas paucimobilis SYK-6 genes involved in degradation of lignin-related compounds J. Ind. Microbiol. Biotechnol. 23 364–373PubMedGoogle Scholar
  112. Mills, D. A., L. L. McKay, and G. M. Dunny. 1996 Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci J. Bacteriol. 178 3531–3538PubMedGoogle Scholar
  113. Mohn, W. W. 1995 Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid Appl. Environ. Microbiol. 61 2145–2150PubMedGoogle Scholar
  114. Mohn, W. R., and G. R. Stewart. 1997 Bacterial metabolism of chlorinated dehydroabietic acids occurring in pulp and paper mill effluents Appl. Environ. Microbiol. 63 3014–3020PubMedGoogle Scholar
  115. Mohn, W. W., Z. Yu, E. R. B. Moore, and A. F. Muttray. 1999 Lessons learned from Sphingomonas species that degrade abietane triterpenoids J. Ind. Microbiol. Biotechnol. 23 374–379PubMedGoogle Scholar
  116. Momma, K., W. Hashimoto, O. Miyake, H.-J. Yoon, S. Kawai, Y. Mishima, B. Mikami, and K. Murata. 1999 Special cell surface structure, and novel macromolecule transport/depolymerization system of Sphingomonas sp. A1 J. Ind. Microbiol. Biotechnol. 23 425–435PubMedGoogle Scholar
  117. Morrison Jr., A. J., and J. A. Shulman. 1986 Community-acquired bloodstream infection caused by Pseudomonas paucimobilis: case report and review of the literature J. Clin. Microbiol. 24 853–855PubMedGoogle Scholar
  118. Mueller, J. G., P. J. Chapman, B. O. Blattmann, and P. H. Pritchard. 1990 Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis Appl. Environ. Microbiol. 56 1079–1086PubMedGoogle Scholar
  119. Mullany, P., M. Pallen, M. Wilks, J. R. Stephen, and S. Tabaqchali. 1996 A group II intron in a conjugative transposon from the Gram-positive bacterium, Clostridium difficile Gene 174 145–150PubMedGoogle Scholar
  120. Murphy, E. M., J. A. Schramke, J. K. Fredrickson, H. W. Bledsoe, A. J. Francis, D. S. Sklarew, and J. C. Linehan. 1992 The influence of microbial activity and sedimentary organic carbon on the isotope geochemistry of the Middendorf Aquifer Water Resource Res. 28 723–740Google Scholar
  121. Nagata, Y., K. Miyauchi, and M. Takagi. 1999 Complete analysis of genes and enzymes for γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26 J. Ind. Microbiol. Biotechnol. 23 380–390PubMedGoogle Scholar
  122. Nishiyama, M., K. Senoo, H. Wada, and S. Matsumoto. 1992 Identification of soil micro-habitats for growth, death and survival of a bacterium, g-1,2,3,4,5,6-hexachlorocyclohexane-assimilating Sphingomonas paucimobilis, by fractionation of soil FEMS Microbiol. Ecol. 101 145–150Google Scholar
  123. Nohynek, L. J., E. L. Suhonen, E.-L. Nurmiaho-Lassila, J. Hantula, and M. Salkinoja-Salonen. 1995 Description of four pentachlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov Syst. Appl. Microbiol. 18 527–538Google Scholar
  124. Nohynek, L. J., E.-L. Nurmiaho-Lassila, E. L. Suhonen, H.-J. Busse, M. Mohammadi, J. Hantula, F. Rainey, and M. S. Salkinoja-Salonen. 1996 Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov Int. J. Syst. Bacteriol. 46 1042–1055PubMedGoogle Scholar
  125. Nörtemann, B., J. Baumgarten, H. G. Rast, and H.-J. Knackmuss. 1986 Bacterial communities degrading amino-and hydroxynaphthalene-2-sulfonates Appl. Environ. Microbiol. 52 1195–1202PubMedGoogle Scholar
  126. Oakley, A. J., Z. Prokop, M. Bohác, J. Kmunícek, T. Jedlicka, M. Monincová, I. Kutá-Smatanová, Y. Nagata, J. Damborsky, and M. C. J. Wilce. 2002 Exploring the structure and activity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26: evidence for product-and water-mediated inhibition Biochemistry 41 4847–4855PubMedGoogle Scholar
  127. Ohe, T., T. Ohmoto, Y. Kobayashi, A. Sato, and Y. Watanabe. 1990 Metabolism of naphthalenesulfonic acids by Pseudomonas sp. TA-2 Agric. Biol. Chem. 54 669–675Google Scholar
  128. Parsons, J. R., J. A. de Bruijne, and A. R. Weiland. 1998 Biodegradation pathway of 2-chlorodibenzo-p-dioxin and 2-chlorodibenzofuran in the biphenyl-utilising strain JB1 Chemosphere 37 1915–1922PubMedGoogle Scholar
  129. Paster, B. J., W. A. Falkler Jr., C. O. Enwonwu, E. O. Idigbe, K. O. Savage, V. A. Levanos, M. A. Tamer, R. L. Ericson, C. N. Lau, and F. E. Dewhirst. 2002 Prevalent bacterial species and novel phenotypes in advanced noma lesions J. Clin. Microbiol. 40 2187–2191PubMedGoogle Scholar
  130. Perola, O., T. Nousiainen, S. Suomalainen, S. Aukee, U. M. Kärkkäinen, J. Kauppinen, T. Ojanen, and M.-L. Katila. 2002 Recurrent Sphingomonas paucimobilis-bacteraemia associated with a multi-bacterial water-borne epidemic among neutropenic patients J. Hosp. Infect. 50 196–201PubMedGoogle Scholar
  131. Pollock, T. J. 1993 Gellan-related polysaccharides and the genus Sphingomonas J. Gen. Microbiol. 139 1939–1945Google Scholar
  132. Pollock, T. J., W. A. T. van Workam, L. Thorne, M. J. Mikolajczak, M. Yamazaki, J. W. Kijne, and R. W. Armentrout. 1998 Assignment of biochemical functions to glycosyl transferase genes which are essential for biosynthesis of exopolysaccharides in Sphingomonas strain S88 and Rhizobium leguminosarum J. Bacteriol. 180 586–593PubMedGoogle Scholar
  133. Pollock, T. J., and R. W. Armentrout. 1999 Planktonic/sessile dimorphism of polysaccharide-encapsulated sphingomonads J. Ind. Microbiol. Biotechnol. 23 436–441PubMedGoogle Scholar
  134. Puhakka, J. A., R. P. Herwig, P. M. Koro, G. V. Wolfe, and J. F. Ferguson. 1995 Biodegradation of chlorophenols by mixed and pure cultures from a fluidized-bed reactor Appl. Microbiol. Biotechnol. 42 951–957PubMedGoogle Scholar
  135. Radehaus, P. M., and S. K. Schmidt. 1992 Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol Appl. Environ. Microbiol. 58 2879–2885PubMedGoogle Scholar
  136. Reasoner, D. J., and E. E. Geldreich. 1985 A new medium for the enumeration and subculture of bacteria from potable water Appl. Environ. Microbiol. 46 1–7Google Scholar
  137. Reina, J., A. Bassa, I. Llompart, D. Portela, and N. Borell. 1991 Infections with Pseudomonas paucimobilis: report of four cases and review Rev. Infect. Dis. 13 1072–1076PubMedGoogle Scholar
  138. Resnick, S. M., and P. J. Chapman. 1994 Physiological properties and substrate specificity of a pentachlorophenol-degrading Pseudomonas species Biodegradation 5 47–54PubMedGoogle Scholar
  139. Richardson, L. L. 1997 Occurrence of the black band disease cyanobacterium on healthy corals of the Florida Keys Bull. Mar. Sci. 61 485–490Google Scholar
  140. Richardson, L. L., W. M. Goldberg, K. G. Kuta, R. B. Aronson, G. W. Smith, K. B. Ritchie, J. C. Halas, J. S. Feingold, and S. L. Miller. 1998 Florida’s mystery coral-killer identified Nature 392 557–558Google Scholar
  141. Rickard, A. H., S. A. Leach, L. S. Hall, C. M. Buswell, N. J. High, and P. S. Handley. 2002 Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria Appl. Environ. Microbiol. 68 3644–3650PubMedGoogle Scholar
  142. Riegert, U., G. Heiss, A. E. Kuhm, C. Müller, M. Contzen, H.-J. Knackmuss, and A. Stolz. 1999 Catalytic properties of the 3-chlorocatechol-oxidizing 2,3-dihydroxybiphenyl 1,2-dioxygenase from Sphingomonas sp. strain BN6 J. Bacteriol. 181 4812–4817PubMedGoogle Scholar
  143. Romine, M. F., L. C. Stillwell, K.-K. Wong, S. J. Thurston, E. C. Sisk, C. Sensen, T. Gaasterland, J. K. Fredrickson, and J. D. Saffer. 1999 Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199 J. Bacteriol. 181 1585–1602PubMedGoogle Scholar
  144. Ryeom, T. K., I. G. Lee, S. Y. Son, and T. Y. Ahn. 2000 Degradation of phenanthrene by Sphingomonas sp. 1-21 isolated from oil-contaminated soil J. Microbiol. Biotechnol. 10 724–727Google Scholar
  145. Sabaté, J., M. Grifoll, M. Viñas, and A. M. Solanas. 1999 Isolation and characterization of a 2-methylphenanthrene utilizing bacterium: Identification of ring cleavage metabolites Appl. Microbiol. Biotechnol. 52 704–712Google Scholar
  146. Saber, D. L., and R. L. Crawford. 1985 Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol Appl. Environ. Microbiol. 50 1512–1518PubMedGoogle Scholar
  147. Schmidt, S., R.-M. Wittich, D. Erdmann, H. Wilkes, W. Francke, and P. Fortnagel. 1992 Biodegradation and diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3 Appl. Environ. Microbiol. 58 2744–2750PubMedGoogle Scholar
  148. Schmidt, C. 1994 Isolation and growth physiology of N,N-dimethylaniline and 2,4-dimethylaniline degrading Sphingomonas sp. [PhD thesis No. 10710] ETH Zürich Zurich, SwitzerlandGoogle Scholar
  149. Schut, F., J. C. Gottschal, and R. A. Prins. 1997 Isolation and characterisation of the marine ultramicrobacterium Sphingomonas sp. strain RB2256 FEMS Microbiol. Rev. 20 363–369Google Scholar
  150. Segers, P., M. Vancanneyt, B. Pot, U. Torck, B. Hoste, D. Dewettinck, E. Falsen, K. Kersters, and P. De Vos. 1994 Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively Int. J. Syst. Bacteriol. 44 499–510PubMedGoogle Scholar
  151. Senoo, K., and H. Wada. 1989 Isolation and identification of an aerobic γ-HCH-decomposing bacterium from soil Soil. Sci. Plant Nutr. 35 79–87Google Scholar
  152. Senoo, K., M. Nishiyama, and S. Matsumoto. 1996 Bioremediation of gamma-HCH-polluted field soil by inoculation with an aerobic gamma-HCH-decomposing bacterium (Sphingomonas paucimobilis SS86) Soil Sci. Plant Nutr. 42 11–19Google Scholar
  153. Shah, A. K., and A. A. Ashtaputre. 1999 Evaluation of rheological properties of the exopolysaccharide of Sphingomonas paucimobilis GS-1 for application in oil exploration J. Ind. Microbiol. Biotechnol. 23 442–445PubMedGoogle Scholar
  154. Shearman, C., J. J. Godon, and M. Gasson. 1996 Splicing of a group II intron in a functional transfer gene of Lactococcus lactis Molec. Microbiol. 21 45–53Google Scholar
  155. Sly, L. I. 1985 Emendation of the genus Blastobacter Zavarzin 1961 and description of Blastobacter natatorius sp. nov Int. J. Syst. Bacteriol. 35 40–45Google Scholar
  156. Sly, L. I., and M. M. Cahill. 1997 Transfer of Blastobacter natatorius (Sly 1985) to the genus Blastomonas gen. nov. as Blastomonas natatoria comb. nov Int. J. Syst. Bacteriol. 47 566–568PubMedGoogle Scholar
  157. Smalley, D. L., V. R. Hansen, and V. S. Baselski. 1983 Susceptibility of Pseudomonas paucimobilis to 24 anti-microbial agents Antimicrob. Agents Chemother. 23 161–162PubMedGoogle Scholar
  158. Sonoki, T., T. Obi, S. Kubota, M. Higashi, E. Masai, and Y. Katayama. 2000 Coexistence of two different O demethylation systems in lignin metabolism by Sphingomonas paucimobilis SKY-6: Cloning and sequencing of the lignin biphenyl-specific O-demethylase (LigX) gene Appl. Environ. Microbiol. 66 2125–2132PubMedGoogle Scholar
  159. Sørensen, S. R., Z. Ronen, and J. Aamand. 2001 Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide Isoproturon Appl. Environ. Microbiol. 67 5403–5409PubMedGoogle Scholar
  160. Stackebrandt, E., R. G. E. Murray, and H. G. Trüper. 1988 Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol. 38 321–325Google Scholar
  161. Stackebrandt, E., and B. M. Goebel. 1994 Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology Int. J. Syst. Bacteriol. 44 846–849Google Scholar
  162. Staley, J. T. 1968 Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria J. Bacteriol. 95 1921–1942PubMedGoogle Scholar
  163. Stillwell, L. C., S. J. Thurston, R. P. Schneider, M. F. Romine, J. K. Fredrickson, and J. D. Saffer. 1995 Physical mapping and characterization of a catabolic plasmid from the deep-subsurface bacterium Sphingomonas sp. strain F199 J. Bacteriol. 177 4537–4539PubMedGoogle Scholar
  164. Stolz, A., C. C Schmidt-Maag, E. B. M. Denner, H.-J. Busse, T. Egli, and P. Kämpfer. 2000 Description of Sphingomonas xenophaga sp. nov. for strains BN6T and N,N which degrade xenobiotic aromatic compounds Int. J. Syst. Evol. Microbiol. 50 35–41PubMedGoogle Scholar
  165. Story, S. P., S. H. Parker, S. S. Hayasaka, M. B. Riley, and E. L. Kline. 2001 Convergent and divergent points in catabolic pathways involved in utilization of fluoranthene, naphthalene, anthracene, and phenanthrene by Sphingomonas paucimobilis var. EPA505 J. Ind. Microbiol. Biotechnol. 26 369–382PubMedGoogle Scholar
  166. Sutherland, I. W., and L. Kennedy. 1996 Polysaccharide lyases from gellan-producing Sphingomonas spp Microbiology 142 867–872PubMedGoogle Scholar
  167. Sutherland, I. W. 1999 Microbial polysaccharide products Biotechnol. Genet. Engin. Rev. 16 217–229Google Scholar
  168. Suzuki, M. T., M. S, Rappe, Z. W., Haimberger, H. Winfield, N. Adair, J. Ströbel, and S. Giovannoni. 1997 Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample Appl. Environ. Microbiol. 63 983–989PubMedGoogle Scholar
  169. Tabata, K., K.-I. Kasuya, H. Abe, K. Masuda, and Y. Doi. 1999 Poly(aspartic acid) degradation by a Sphingomonas sp. isolated from freshwater Appl. Environ. Microbiol. 65 4268–4270PubMedGoogle Scholar
  170. Takeuchi, M., F. Kawai, Y. Shimada, and A. Yokota. 1993 Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov Syst. Appl. Microbiol. 16 227–238Google Scholar
  171. Takeuchi, M., H. Sawada, H. Oyaizu, and A. Yakota. 1994 Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria Int. J. Syst. Bacteriol. 44 308–314PubMedGoogle Scholar
  172. Takeuchi, M., T. Sakane, M. Yanagi, K. Yamasato, K. Hamana, and A. Yokota. 1995 Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov Int. J. Syst. Bacteriol. 45 334–341PubMedGoogle Scholar
  173. Takeuchi, M., K. Hamana, and A. Hiraishi. 2001 Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis on the basis of phylogenetic and chemotaxonomic analyses Int. J. Syst. Evol. Microbiol. 51 1405–1417PubMedGoogle Scholar
  174. Tirola, M. A., M. K. Männistö, J. A. Puhakka, and M. S. Kulomaa. 2002 Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system Appl. Environ. Microbiol. 68 173–180Google Scholar
  175. van Bruggen, A. H. C., K. N. Jochimsen, and P. R. Brown. 1990 Rhizomonas suberifaciens gen. nov., sp. nov., the causal agent of corky root of lettuce Int. J. Syst. Bacteriol. 40 175–188Google Scholar
  176. van Bruggen, A. H. C., K. N. Jochimsen, E. M. Steinberger, P. Segers, and M. Gillis. 1993 Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV Int. J. Syst. Bacteriol. 43 1–7PubMedGoogle Scholar
  177. Vancanneyt, M., F. Schut, C. Snauwaert, J. Goris, J. Swings, and J. C. Gottschal. 2001 Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment Int. J. Syst. Evol. Microbiol. 51 73–79PubMedGoogle Scholar
  178. van Kranenburg, R., I. C. Boels, M. Kleerebezem, and W. M. de Vos. 1999 Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides Curr. Opin. Biotechnol. 10 498–504PubMedGoogle Scholar
  179. Vartak, N. B., C. C. Lin, J. M. Cleary, M. J. Fagan, and M. H. Saier Jr. 1995 Glucose metabolism in “Sphingomonas elodea”: Pathway engineering via construction of a glucose-6-phosphate dehydrogenase insertion mutant Microbiology 141 2339–2350PubMedGoogle Scholar
  180. Vuilleumier, S., Z. Ucurum, S. Oelhafen, T. Leisinger, J. Armengaud, R.-M. Wittich, and K. N. Timmis. 2001 The glutathione S-transferase OrfE3 of the dioxin-degrading bacterium Sphingomonas sp. RW1 displays maleylpyruvate isomerase activity Chem.-Biol. Interact. 133 265–267Google Scholar
  181. White, D. C., S. D. Sutton, and D. B. Ringelberg. 1996 The genus Sphingomonas: physiology and ecology Curr. Opin. Biotechnol. 7 301–306PubMedGoogle Scholar
  182. Wittich, R.-M., H. Wilkes, V. Sinnwell, W. Francke, and P. Fortnagel. 1992 Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1 Appl. Environ. Microbiol. 58 1005–1010PubMedGoogle Scholar
  183. Wittmann C., A.-P. Zeng, and W.-D. Deckwer. 1998 Physiological characterization and cultivation strategies of the pentachlorophenol-degrading bacteria Sphingomonas chlorophenolica RA2 and Mycobacterium chlorophenolicum PCP-1 J. Ind. Microbiol. Biotechnol. 21 315–321Google Scholar
  184. Woese, C. R. 1987 Bacterial evolution Microbiol. Rev. 51 221–272PubMedGoogle Scholar
  185. Xun, L., J. Bohuslavek, and M. Cai. 1999 Characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) of Sphingomonas chlorophenolica ATCC 39723 Biochem. Biophys. Res. Commun. 266 323–325Google Scholar
  186. Yabuuchi, E., I. Yano, H. Oyaizu, Y. Hashimoto, T. Ezaki, and H. Yamamoto. 1990 Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas Microbiol. Immunol. 34 99–119PubMedGoogle Scholar
  187. Yabuuchi, E., Y. Kosako, T. Naka, S. Suzuki, and I. Yano. 1999 Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas Microbiol. Immunol. 43 339–349PubMedGoogle Scholar
  188. Yabuuchi, E., H. Yamamoto, S. Terakubo, N. Okamura, T. Naka, N. Fujiwara, K. Kobayashi, Y. Kosako, and A. Hiraishi. 2001 Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer Int. J. Syst. Evol. Microbiol. 51 281–292PubMedGoogle Scholar
  189. Yamazaki, M., L. Thorne, M. Mikolajczak, R. W. Armentrout, and T. J. Pollock. 1996 Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88 J. Bacteriol. 178 2676–2687PubMedGoogle Scholar
  190. Ye, D., M. A. Siddiqi, A. E. Maccubbin, S. Kumar, and H. C. Sikka. 1996 Degradation of polynuclear aromatic hydrocarbons by Sphingomonas paucimobilis Environ. Sci. Technol. 30 136–142Google Scholar
  191. Yeo, C. C., J. M Tham, M. W.-C. Yap, and C. L. Poh. 1997 Group II intron from Pseudomonas alcaligenes NCIB 9867 (P25X): entrapment in plsmid RP4 and sequence analysis Microbiology 143 2833–2840PubMedGoogle Scholar
  192. Yrjälä, K., S. Suomalainen, E. L. Suhonen, S. Kilpi, L. Paulin, and M. Romantschuk. 1998 Characterization and reclassification of an aromatic-and chloroaromatic-degrading Pseudomonas sp., strain HV3, as Sphingomonas sp. HV3 Int. J. Syst. Bacteriol. 48 1057–1062PubMedGoogle Scholar
  193. Yun, N. R., Y. K. Shin, S. Y. Hwang, H. Kuraishi, J. Sugiyama, and K. Kawahara. 2000 Chemotaxonomic and phylogenetic analyses of Sphingomonas strains isolated from ears of plants in the family Gramineae and a proposal of Sphingomonas roseoflava sp. nov J. Gen. Appl. Microbiol. 46 9–18PubMedGoogle Scholar
  194. Yurkov, V., E. Stackebrandt, O. Buss, A. Vermeglio, V. Gorlenko, and J. T. Beatty. 1997 Reorganization of the genus Erythromicrobium: description of “Erythromicrobium sibiricum” as Sandaracinobacter sibiricus gen. nov., sp. nov., and of “Erythromicrobium ursincola” as Erythromonas ursincola gen. nov., sp. nov Int. J. Syst. Bacteriol. 47 1172–1178PubMedGoogle Scholar
  195. Zipper, C., K. Nickel, W. Angst, and H.-P. E. Kohler. 1996 Complete microbial degradation of both enantiomers of the chiral herbicide Mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid] in an enantioselective manner by Sphingomonas herbicidovorans sp. nov Appl. Environ. Microbiol. 62 4318–4322PubMedGoogle Scholar
  196. Zylstra, G. J., and E. Kim. 1997 Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1 J. Ind. Microbiol. Biotechnol. 19 408–414Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • David L. Balkwill
  • J. K. Fredrickson
  • M. F. Romine

There are no affiliations available

Personalised recommendations