The Family Chlorobiaceae

  • Jörg Overmann


Green sulfur bacteria (Chlorobiaceae) represent a phylogenetically coherent and isolated group within the domain Bacteria (see “Phylogeny”). As a distinct cytological feature, Chlorobiaceaecontain special light-harvesting complexes, so-called chlorosomes which harbor bacteriochlorophylls and carotenoids. Furthermore, green sulfur bacteria differ from most other phototrophic organisms with respect to the chemical structure of the antenna bacteriochlorophylls. Similar antenna complexes have only been found in the phylogenetically distant bacterial family Chloroflexaceae.

Green sulfur bacteria are obligate photolithotrophs and are similar to the Chloroflexaceae, Chromatiaceae, and phototrophic species of the α- and β-proteobacteria, such that water cannot serve as electron donating substrate of the photosynthetic reaction center and molecular oxygen is not generated during anoxygenic photosynthesis. Instead, the electrons which are ultimately required for the assimilatory...


Green Sulfur Bacterium Purple Sulfur Bacterium Ternary Fission Anoxygenic Photosynthesis Phototrophic Sulfur Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Abella, C. A., X. P. Cristina, A. Martinez, I. Pibernat, and X. Vila. 1998 Two motile phototrophic consortia: “Chlorochromatium lunatum” and “Pelochromatium selenoides” Arch. Microbiol. 169 452–459PubMedGoogle Scholar
  2. Amesz, J. 1991 Green photosynthetic bacteria and heliobacteria In: L. L. Barton and J. M. Shively (Eds.) Variations in Autotrophic Life Academic Press London 99–119Google Scholar
  3. Bergstein, T., Y. Henis, and B. Z. Cavari. 1979 Investigations on the photosynthetic sulfur bacterium Chlorobium phaeobacteroides causing seasonal blooms in Lake Kinneret Can. J. Microbiol. 25 999–1007PubMedGoogle Scholar
  4. Bias, U., and H. G. Trüper. 1987 Species specific release of sulfate from adenylyl sulfate by ATP sulfurylase or ADP sulfurylase in the green sulfur bacteria Chlorobium limicola and Chlorobium vibrioforme Arch. Microbiol. 147 406–410Google Scholar
  5. Biebl, H., and N. Pfennig. 1978 Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria Arch. Microbiol. 117 9–16Google Scholar
  6. Blankenship, R. E., J. M. Olson, and M. Miller. 1995 Antenna complexes from green photosynthetic bacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht, Boston, London 399–435Google Scholar
  7. Borrego, C. M., and L. J. Garcia-Gil. 1994 Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC Photosynth. Res. 41 157–163Google Scholar
  8. Broch-Due, M., J. G. Ormerod, and B. S. Fjerdingen. 1978 Effect of light intensity on vesicle formation in Chlorobium Arch. Microbiol. 116 269–274PubMedGoogle Scholar
  9. Brune, D. C. 1989 Sulfur oxidation by phototrophic bacteria Biochem. Biophys. Acta 975 189–221PubMedGoogle Scholar
  10. Buder, J. 1914 Chloronium mirabile Berichte Dtsch. Bot. Ges. 31 80–97Google Scholar
  11. Caldwell, D. E., and J. M. Tiedje. 1975 The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes Can. J. Microbiol. 21 377–385PubMedGoogle Scholar
  12. Castenholz, R. W., J. Bauld, and B. B. Jørgensen. 1990 Anoxygenic microbial mats of hot springs: thermophilic Chlorobium sp FEMS Microbiol. Ecol. 74 325–336Google Scholar
  13. Caumette, P. 1984 Distribution and characterization of phototrophic bacteria isolated from the water of Bietri Bay (Ebrie Lagoon, Ivory Coast) Can. J. Microbiol. 30 273–284Google Scholar
  14. Chung, S., G. Frank, H. Zuber, and D. A. Bryant. 1994 Genes encoding two chlorosome components from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidum Photosynth. Res. 41 261–275Google Scholar
  15. Chung, S., and D. A. Bryant. 1996 Characterization of csmB genes, encoding a 7.5-kDa protein of the chlorosome envelope, from the green sulfur bacteria Chlorobium vibrioforme 8327D and Chlorobium tepidum Arch. Microbiol. 166 234–244PubMedGoogle Scholar
  16. Chung, S., G. Shen, J. Ormerod, and D. A. Bryant. 1998 Insertional inactivation studies of the csmA and csmC genes of the green sulfur bacterium Chlorobium vibrioforme 8327: The chlorosome protein CsmA is required for viability but CsmC is dispensable FEMS Microbiol. Lett. 164 353–361PubMedGoogle Scholar
  17. Clark, A. E., and A. E. Walsby. 1978 The occurrence of gas-vacuolate bacteria in lakes Arch. Microbiol. 118 223–228Google Scholar
  18. Cork, D. J., and M. A. Cusanovich. 1979 Continuous disposal of sulfate by a bacterial mutualism Dev. Ind. Microbiol. 20 591–602Google Scholar
  19. Cork, D. J. 1982a Acid waste gas bioconversion-an alternative to the Claus desulfurization process Dev. Ind. Microbiol. 23 379–387Google Scholar
  20. Cork, D. J., and S. Ma. 1982b Acid-gas bioconversion favors sulfur production Biotech. Bioeng. 12 285–290Google Scholar
  21. Cork, D. J., R. Garunas, and A. Sajjad. 1983 Chlorobium limicola forma thiosulfatophilum: Biocatalyst in the production of sulfur and organic carbon from a gas stream containing H2S and CO2 Appl. Environ. Microbiol. 45 913–918PubMedGoogle Scholar
  22. Cork, D. J., J. Mathers, A. Maka, and A. Srnak. 1985 Control of oxidative sulfur metabolism of Chlorobium limicola f. thiosulfatophilum Appl. Environ. Microbiol. 49 269–272PubMedGoogle Scholar
  23. Culver, D. A., and G. J. Brunskill. 1969 Fayetteville Green Lake, New York. V: Studies of primary production and zooplankton in a meromictic marl lake Limnol. Oceanogr. 14 862–873Google Scholar
  24. Czeczuga, B. 1968 Primary production of the green hydrosulfuric bacteria Chlorobium limicola Nads. (Chlorobacteriaceae) Photosynthetica 2 11–15Google Scholar
  25. Drews, G. 1989 Energy transduction in phototrophic bacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Science Tech and Springer Madison, WI 461–480Google Scholar
  26. Dubinina, G. A., and S. I. Kuznetsov. 1976 The ecological and morphological characteristica of microorganisms in Lesnaya Lamba (Karelia) Int. Rev. Ges. Hydrobiol. 61 1–19Google Scholar
  27. Figueras, J. B., L. J. Garcia-Gil, and C. A. Abella. 1997 Phylogeny of the genus Chlorobium based on 16S rDNA sequence FEMS Microbiol. Lett. 152Google Scholar
  28. Fischer, U. 1984 Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteria In: A. Miller and B. Krebs (Eds.) Sulfur, Its Significance for Chemistry, for the Geo-, Bio-and Cosmosphere and Technology Elsevier Amsterdam 383–407Google Scholar
  29. Frigaard, N.-U., S. Takaichi, M. Hirota, K. Shimada, and K. Matsuura. 1997 Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates Arch. Microbiol. 167 343–349Google Scholar
  30. Fröstl, J. M., and J. Overmann. 1998 Physiology and tactic response of the phototrophic consortium “Chlorochromatium aggregatum” Arch. Microbiol. 169 129–135PubMedGoogle Scholar
  31. Fuchs, G., E. Stupperich, and R. Jaenchen. 1980 Autotrophic CO2 fixation in Chlorobium limicola: Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells Arch. Microbiol. 128 64–72Google Scholar
  32. Fuhrmann, S., J. Overmann, N. Pfennig, and U. Fischer. 1993 Influence of vitamin B12 and light on the formation of chlorosomes in green-and brown-colored Chlorobium species Arch. Microbiol. 160 193–198Google Scholar
  33. Gibson, J., N. Pfennig, and J. B. Waterbury. 1984 Chloroherpeton thalassium gen. nov. et spec. nov., a nonfilamentous, flexing and gliding green sulfur bacterium Arch. Microbiol. 138 96–101PubMedGoogle Scholar
  34. Gibson, J., W. Ludwig, W. Stackebrandt, and C. R. Woese. 1985 The phylogeny of green photosynthetic bacteria: Absence of a close relationship between Chlorobium and Chloroflexus Syst. Appl. Microbiol. 6 152–156Google Scholar
  35. Glaeser, J., and J. Overmann. 1999 Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties Arch. Microbiol.Google Scholar
  36. Gloe, A., N. Pfennig, H. Brockmann, and W. Trowitzsch. 1975 A new bacteriochlorophyll from brown-colored Chlorobiaceae Arch. Microbiol. 102 103–109PubMedGoogle Scholar
  37. Gogotov, I. N. 1986 Hydrogenases of phototrophic microorganisms Biochimie 68 181–187PubMedGoogle Scholar
  38. Gorlenko, V. M., and S. I. Kuznetsov. 1971a Vertical distribution of photosynthetic bacteria in the Konoer Lake of the Mari ASSR Microbiology 40 651–652Google Scholar
  39. Gorlenko, V. M., and E. V. Lebedeva. 1971b New green sulphur bacteria with apophyses (in Russian, with English summary) Mikrobiologiya 40 1035–1039Google Scholar
  40. Gorlenko, V. M., and S. I. Kusnezow. 1972 Über die photosynthetisierenden Bakterien des Kononjer-Sees Arch. Hydrobiol. 70 1–13Google Scholar
  41. Gorlenko, V. M., E. N. Chebotarev, and V. I. Kachalkin. 1973 Microbial processes of oxidation of hydrogen sulfide in the Repnoe lake (Slavonic lakes) Microbiology (English translation of Mikrobiologiya) 42 723–728Google Scholar
  42. Gruber, T. M., and D. A. Bryant. 1998a Characterization of the group 1 and group 2 sigma factors of the green sulfur bacterium Chlorobium tepidum and the green non-sulfur bacterium Chloroflexus aurantiacus Arch. Microbiol. 170 285–296PubMedGoogle Scholar
  43. Gruber, T. M., J. A. Eisen, K. Gish, and D. A. Bryant. 1998b The phylogenetic relationships of Chlorobium tepidum and Chloroflexus aurantiacus based upon their RecA sequences FEMS Microbiol. Lett. 162 53–60PubMedGoogle Scholar
  44. Hallenbeck, P. C. 1987 Molecular aspects of nitrogen fixation by photosynthetic prokaryotes Crit. Rev. Microbiol. 14 1–48PubMedGoogle Scholar
  45. Hartgers, W. A., J. A. Sinninghe Damsté, A. G. Requejo, J. Allan, J. M. Hayes, and J. W. de Leeuw. 1994 Evidence for only minor contributions from bacteria to sedimentary organic carbon Nature 369 224–227PubMedGoogle Scholar
  46. Holt, S. C., S. F. Conti, and R. C. Fuller. 1966 Effects of light intensity on the formation of the photochemical apparatus in the green bacterium Chloropseudomonas ethylicum J. Bacteriol. 91 349–355PubMedGoogle Scholar
  47. Huster, M. S., and K. M. Smith. 1990 Biosynthetic studies of substituent homologation in bacteriochlorophylls c and d Biochemistry 29 4348–4355PubMedGoogle Scholar
  48. Imhoff, J. F. 1988 Lipids, fatty acids and quinones in taxonomy and phylogeny of anoxygenic phototrophic bacteria In: J. M. Olson, E. Stackebrandt, and H. G. Trüper (Eds.) Green Photosynthetic Bacteria Plenum Publishing New York, NY 223–232Google Scholar
  49. Kenyon, C. N., and A. M. Gray. 1974 Preliminary analysis of lipids and fatty acids of green bacteria and Chloroflexus J. Bacteriol. 120 131–138PubMedGoogle Scholar
  50. Khanna, S., and D. J. D. Nicholas. 1983 Substrate phosphorylation in Chlorobium vibrioforme f. sp. thiosulfatophilum J. Gen. Microbiol. 129 1365–1370Google Scholar
  51. Kirchhoff, J., and H. G. Trüper. 1974 Adenylylsulfate reductase of Chlorobium limicola Arch. Microbiol. 100 115–120Google Scholar
  52. Kjaer, B., N. U. Frigaard, F. Yang, B. Zybailov, M. Miller, J. H. Golbeck, and H. V. Scheller. 1998 Menaquinone-7 in the reaction center complex of the green sulfur bacterium Chlorobium vibrioforme functions as the electron acceptor A1 Biochemistry 37 3237–3242PubMedGoogle Scholar
  53. Kjaerulff, S., D. B. Diep, J. S. Okkels, H. V. Scheller, and J. G. Ormerod. 1994 Highly efficient integration of foreign DNA into the genome of the green sulfur bacterium, Chlorobium vibrioforme, by homologous recombination Photosynth. Res. 41 277–283Google Scholar
  54. Klarskov, K., F. Verte, G. van Driessche, T. E. Meyer, M. A. Cusanovich, and J. van Beeumen. 1998 The primary structure of soluble cytochrome C-551 from the phototrophic green sulfur bacterium Chlorobium limicola, strain Tassajara, reveals a novel c-type cytochrome Biochemistry 37 10555–10562PubMedGoogle Scholar
  55. Knudsen, E., E. Jantzen, K. Bryn, J. G. Ormerod, and R. Sirevåg. 1982 Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus Arch. Microbiol. 132 149–154Google Scholar
  56. Kobayashi, H. A., M. Stenstrom, and R. Mah. 1983 Use of photosynthetic bacteria for hydrogen sulfide removal from anaerobic waste treatment effluent Water Res. 17 579–587Google Scholar
  57. Kohnen, M. E. L., S. Schouten, J. A. Sinninghe Damsté, J. W. de Leeuw, D. A. Merritt, and J. M. Hayes. 1992 Recognition of paleochemicals by a combined molecular sulfur and isotope geochemical approach Science 256 358–362PubMedGoogle Scholar
  58. Kopczynski, E. D., M. M. Bateson, and D. M. Ward. 1994 Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms Appl. Environ. Microbiol. 60 746–748PubMedGoogle Scholar
  59. Kuznetsov, S. I. 1977 Trends in the development of ecological microbiology Adv. Aquat. Microbiol. 1 1–48Google Scholar
  60. Lapage, S. P., P. H. A. Sneath, E. F. Lessel, V. B. D. Skerman, H. P. R. Seeliger, and W. A. Clark. 1975 In: S. P. Lapage, P. H. A. Sneath, E. F. Lessel, V. B. D. Skerman, H. P. R. Seeliger, and W. A. Clark (Eds.) International Code of Nomenclature of Bacteria American Society of Microbiology Washington DCGoogle Scholar
  61. Lauterborn, R. 1915 Die sapropelische Lebewelt Verhandlungen der naturhistorisch-medizinischen Vereinigung zu Heidelberg, Neue Folge 13 395–481Google Scholar
  62. Lippert, K. D., and N. Pfennig. 1969 Die Verwertung von molekularem Wasserstoff durch Chlorobium thiosulfatophilum: Wachstum und CO2-Fixierung Arch. Microbiol. 65 29–47Google Scholar
  63. Maidak, B. L., N. Larsen, M. J. McCaughey, R. Overbeek, G. J. Olsen, K. Fogel, J. Blandy, and C. R. Woese. 1994 The ribosomal database project Nucleic Acids Res. 22 3485–3487PubMedGoogle Scholar
  64. Majumdar, D., and J. H. Wyche. 1997 Molecular cloning and nucleotide sequence of the porphobilinogen deaminase gene, hemC, from Chlorobium vibrioforme Curr. Microbiol. 34 258–263PubMedGoogle Scholar
  65. Matheron, R., and R. Baulaigue. 1972 Bactéries photosynthetique sulfureuses marines: Assimilation des substances organiques et minérales, et influence de la teneur en chlorure de sodium du milieu de culture sur leur développement Arch. Mikrobiol. 86 291–304PubMedGoogle Scholar
  66. Méndez-Alvarez, S., V. Pavón, I. Esteve, R. Guerrero, and N. Gaju. 1994 Transformation of Chlorobium limicola by a plasmid that confers the ability to utilize thiosulfate J. Bacteriol. 176 7395–7397PubMedGoogle Scholar
  67. Méndez-Alvarez, S., I. Esteve, R. Guerrero, and N. Gaju. 1996 Genomic analysis of different Chlorobium strains by pulsed-field gel electrophoresis and ribotyping Int. J. Syst. Bacteriol. 46 1177–1179Google Scholar
  68. Meyer, T. E., and T. J. Donohue. 1995 Cytochromes, iron-sulfur, and copper proteins mediating electron transfer from cyt bc1 complex to photosynthetic reaction center complexes In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht, Boston, London 725–745Google Scholar
  69. Montesinos, E. R., R. Guerrero, C. Abella, and I. Esteve. 1983 Ecology and physiology of the competition for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural habitats Appl. Environ. Microbiol. 46 1007–1016PubMedGoogle Scholar
  70. Nicholson, J. A. M., J. F. Stolz, and B. K. Pierson. 1987 Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts FEMS Microbiol. Ecol. 45 343–364Google Scholar
  71. Nogales, B., R. Guerrero, and I. Esteve. 1997 A heterotrophic bacterium inhibits growth of several species of the genus Chlorobium Arch. Microbiol. 167 396–399Google Scholar
  72. Olson, J. M. 1998 Chlorophyll organization and function in green photosynthetic bacteria Photochem. Photobiol. 67 61–75Google Scholar
  73. Ormerod, J. G. 1988 Natural genetic transformation in Chlorobium In: J. M. Olson, E. Stackebrandt, and H. G. Trüper (Eds.) Green Photosynthetic Bacteria Plenum Publishing New York, NY 315–319Google Scholar
  74. Overmann, J., and N. Pfennig. 1989a Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies Arch. Microbiol. 152 401–406Google Scholar
  75. Overmann, J., and M. M. Tilzer. 1989b Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake, Mittlerer Buchensee, West Germany Aquatic Sciences 51 261–278Google Scholar
  76. Overmann, J., S. Lehmann, and N. Pfennig. 1991a Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (Green sulfur bacteria) Arch. Microbiol. 157 29–37Google Scholar
  77. Overmann, J., J. T. Beatty, K. J. Hall, N. Pfennig, and T. G. Northcote. 1991b Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake Limnol. Oceanogr. 36 846–859Google Scholar
  78. Overmann, J., H. Cypionka, N. Pfennig. 1992 An extremely low-light adapted phototrophic sulfur bacterium from the chemocline of the Black Sea Limnol. Oceanogr. 37 150–155Google Scholar
  79. Overmann, J. 1997a Mahoney Lake: A case study of the ecological significance of phototrophic sulfur bacteria Adv. Microbiol. Ecol. 15 251–288Google Scholar
  80. Overmann, J., and C. Tuschak. 1997b Phylogeny and molecular fingerprinting of green sulfur bacteria Arch. Microbiol. 167 302–309PubMedGoogle Scholar
  81. Overmann, J., C. Tuschak, J. M. Fröstl, and H. Sass. 1998 The ecological niche of the consortium “Pelochromatium roseum” Arch. Microbiol. 169 120–128PubMedGoogle Scholar
  82. Overmann, J. 1999a Green sulfur bacteria In: G. M. Garrity, et al. (Eds.) [{}Bergey’s Manual of Systematic Bacteriology] Springer-Verlag New York, NYGoogle Scholar
  83. Overmann, J., M. J. L. Coolen, and C. Tuschak. 1999b Specific detection of different phylogenetic groups of chemocline bacteria based on PCR and denaturing gradient gel electrophoresis of 16S rRNA gene fragments Arch. Microbiol.Google Scholar
  84. Parkin, T. B., and T. D. Brock. 1980 The effects of light quality on the growth of phototrophic bacteria in lakes Arch. Microbiol. 125 19–27, 31–36Google Scholar
  85. Parkin, T. B., and T. D. Brock. 1981 The role of phototrophic bacteria in the sulfur cycle of a meromictic lake Limnol. Oceanogr. 26 880–890Google Scholar
  86. Paschinger, H., J. Paschinger, and H. Gaffron. 1974 Photochemical disproportionation of sulfur into sulfide and sulfate by Chlorobium limicola forma thiosulfatophilum Arch. Microbiol. 96 341–351Google Scholar
  87. Passier, H. F., H.-J. Bosch, I. A. Nijenhuis, L. J. Lourens, M. E. Böttcher, A. Leenders, J. A. Sinninghe Damsté, and G. J. de Lange. 1999 Sulphidic mediterranean surface waters during Pliocene sapropel formation Nature 397 146–149Google Scholar
  88. Perfiliev, B. V. 1914 On the theory of symbiosis of Chlorochromatium aggregatum Lauterb. and Cylindrogloea bacterifera n.g. n.sp J. Microbiol. Petrogr. 1 222–224Google Scholar
  89. Pfennig, N., and K. D. Lippert. 1966 Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien Arch. Mikrobiol. 55 245–256Google Scholar
  90. Pfennig, N. 1968 Chlorobium phaeobacteroides nov. spec. und C. phaeovibrioides nov. spec., zwei neue Arten der grünen Schwefelbakterien Arch. Mikrobiol. 63 224–226PubMedGoogle Scholar
  91. Pfennig, N. 1980 Syntrophic mixed cultures and symbiotic consortia with phototrophic bacteria: A review In: G. Gottschalk, N. Pfennig, and Werner (Eds.) Anaerobes and Anaerobic Infections Stuttgart and Fischer New York, NY 127–131Google Scholar
  92. Pfennig, N. 1989 Green sulfur bacteria In: J. T. Staley, M. P. Bryant, N. Pfennig, and J. C. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams & Wilkins Baltimore, MD 1682–1697Google Scholar
  93. Pfennig, N., and H. G. Trüper. 1992 The family Chromatiace ae In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (Eds.) [{}The Prokaryotes] Springer-Verlag New York, NY 3200–3221Google Scholar
  94. Pierson, B., A. Oesterle, and G. L. Murphy. 1987 Pigments, light penetration, and photosynthetic activity in the multi-layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts FEMS Microbiol. Ecol. 45 365–376Google Scholar
  95. Pringault, O., M. Kühl, R. de Wit, and P. Caumette. 1998 Growth of green sulphur bacteria in experimental benthic oxygen, sulphide, pH and light gradients Microbiology 144 1051–1061Google Scholar
  96. Repeta, D. J., D. J. Simpson, B. B. Jørgensen, and H. W. Jannasch. 1989 Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea Nature (London) 342 69–72Google Scholar
  97. Rodriguez-Tomé, P., P. J. Stoehr, G. N. Cameron, and T. P. Flores. 1996 The European Bioinformatics Institute (EBI) databases Nucleic Acids Res. 24 6–12PubMedGoogle Scholar
  98. Shiozawa, J. A. 1995 A foundation for the genetic analysis of green sulfur, green filamentous and Heliobacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Dordrecht 1159–1173Google Scholar
  99. Siefert, E., and N. Pfennig. 1984 Convenient method to prepare neutral sulfide solution for cultivation of phototrophic sulfur bacteria Arch. Microbiol. 139 100–101Google Scholar
  100. Sinninghe Damsté, J. A., and J. Köster. 1998 A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event Earth Planet Sci. Lett. 158 165–173Google Scholar
  101. Sirevåg, R., and J. G. Ormerod. 1977a Synthesis, storage, and degradation of polyglucose in Chlorobium thiosulfatophilum Arch. Mikrobiol. 111 239–244Google Scholar
  102. Sirevåg, R., B. B. Buchanan, J. A. Berry, and J. H. Troughton. 1977b Mechanisms of CO2 fixation in bacterial photosynthesis studied by carbon isotope fractionation technique Arch. Microbiol. 112 35–38PubMedGoogle Scholar
  103. Skuja, H. 1957 Taxonomische und biologische Studien Über das Phytoplankton schwedischeer Binnengewässer Nova Acta Reg. Soc. Sci. Uppsala, Ser. IV 16 1–404Google Scholar
  104. Stackebrandt, E., F. A. Rainey, N. Ward-Rainey. 1996 Anoxygenic phototrophy across the phylogenetic spectrum: current understanding and future perspectives Arch. Microbiol. 166 211–223PubMedGoogle Scholar
  105. Steinmetz, M., and U. Fischer. 1982 Cytochromes of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum, purification, characterization and sulfur metabolism Arch. Microbiol. 131 19–26Google Scholar
  106. Streszewski, B. 1913 Beitrag zur Kenntnis der Schwefelflora in der Umgebung von Krakau Bulletin de L’Academie des Sciences de Cracovie Serie B 309–334Google Scholar
  107. Szafer, W. 1910 Zur Kenntnis der Schwefelflora in der Umgebung von Lemberg Bulletin de L’Academie des Sciences de Cracovie Serie B 161–167Google Scholar
  108. Trüper, H. G., and S. Genovese. 1968 Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily) Limnol. Oceanogr. 13 225–232Google Scholar
  109. Trüper, H. G. 1970a Culture and isolation of phototrophic sulfur bacteria from the marine environment Helgoländer wiss Meeresunters 20 6–16Google Scholar
  110. Trüper, H. G., and H. D. Peck. 1970b Formation of adenylylsulfate in photosynthetic bacteria Arch. Mikrobiol. 73 125–142PubMedGoogle Scholar
  111. Trüper, H. G., and N. Pfennig. 1971 Family of phototrophic Green Sulfur Bacteria: Chlorobiaceae Copeland, the correct family name; rejection of Chlorobacterium Lauterborn; and the taxonomic situation of the consortium-forming species Int. J. Syst. Bacteriol. 21 8–10Google Scholar
  112. Trüper, H. G., and U. Fischer. 1982 Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis Phil. Trans. R. Soc. B 298 529–542Google Scholar
  113. Trüper, H. G. 1984 Phototrophic bacteria and their sulfur metabolism In: A. Müller and B. Krebs (Eds.) Studies in Inorganic Chemistry, Vol. 5: Sulfur, Its Significance for the Geo-, Bio-, and Cosmosphere and Technology Elsevier Amsterdam 367–382Google Scholar
  114. Trüper, H. G., C. Lorenz, M. Schedel, and M. Steinmetz. 1988 Metabolism of thiosulfate in Chlorobium In: J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. Trüper (Eds.) Green Photosynthetic Bacteria Plenum Press New York, NY 189–200Google Scholar
  115. Trüper, H. G., and N. Pfennig. 1992 The family Chlorobiaceae In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (Eds.) [{}The Prokaryotes] Springer-Verlag Berlin, Heidelberg, New York, NY 3583–3592Google Scholar
  116. Tuschak, C., J. Glaeser, and J. Overmann. 1999 Specific detection of green sulfur bacteria by in situ-hybridization with a fluorescently labeled oligonucleotide probe Arch. Microbiol.Google Scholar
  117. Van Gemerden, H., and J. Mas. 1995 Ecology of phototrophic sulfur bacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers Dordrecht, Boston, London 49–85Google Scholar
  118. Van Noort, P. I., Y. Zhu, R. LoBrutto, and R. E. Blankenship. 1997 Redox effects on the excited-state lifetime in chlorosomes and bacteriochlorophyll c oligomers Biophys. J. 72 316–325PubMedGoogle Scholar
  119. Veldhuis, M. J. W., and H. van Gemerden. 1986 Competition between purple and brown phototrophic bacteria in stratified lakes: sulfide, acetate, and light as limiting factors FEMS Microbiol. Ecol. 38 31–38Google Scholar
  120. Vignais, P. M., A. Colbeau, J. C. Willison, and Y. Jouanneau. 1985 Hydrogenase, nitrogenase, and hydrogen metabolism in photosynthetic bacteria Adv. Microb. Physiol. 26 155–234PubMedGoogle Scholar
  121. Wahlund, T. M., R. W. Woese, R. W. Castenholz, and M. T. Madigan. 1991 A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov Arch. Microbiol. 156 81–90Google Scholar
  122. Wahlund, T. M., and M. T. Madigan. 1995 Genetic transfer by conjugation in the thermophilic green sulfur bacterium Chlorobium tepidum J. Bacteriol. 177 2583–2588PubMedGoogle Scholar
  123. Ward, D. M., M. M. Bateson, R. Weller, and A. L. Ruff-Roberts. 1992 Ribosomal RNA analysis of microorganisms as they occur in nature Adv. Microb. Ecol. 12 219–286Google Scholar
  124. Warthmann, R., H. Cypionka, and N. Pfennig. 1992 Photoproduction of H2 and acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria Arch. Microbiol. 157 343–348Google Scholar
  125. Woese, C. R., E. Stackebrandt, T. J. Macke, and G. E. Fox. 1985 The phylogenetic definition of the major eubacterial taxa Syst. Appl. Microbiol. 6 143–151PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jörg Overmann

There are no affiliations available

Personalised recommendations