Advertisement

The Genus Pelobacter

  • Bernhard Schink

Abstract

The genus Pelobacter was proposed as a taxonomic entity consisting of strictly anaerobic, Gram-negative, nonsporeforming, rod-shaped bacteria that use only a very limited number of substrates. The members of the genus are all unable to ferment sugars and therefore cannot be grouped with any other genus in the family Bacteroidaceae (Krieg and Holt, 1984). The genus comprises five different species, P. acidigallici (Schink and Pfennig, 1982), P. venetianus (Schink and Stieb, 1983), P. carbinolicus (Schink, 1984), P. propionicus (Schink, 1984), and P. acetylenicus (Schink, 1985), which all are based on 3–5 described strains.

Comparisons of the various Pelobacter species by DNA-DNA hybridization experiments revealed that the genus is rather inhomogenous; therefore, a reorganization may perhaps be necessary in the future (J. P. Touzel and B. Schink, unpublished observations). Whereas the species P. venetianus, P. carbinolicus, and P. acetylenicus form a homogenous cluster, P. acidigallici and P. propionicus appear to be only distantly related to the others. These findings are consistent to some extent with the fermentation patterns of these species (see below). Comparison of three Pelobacter species with other anaerobes on the basis of 16S rRNA structure analysis supports this view. Whereas P. venetianus and P. carbinolicus exhibit a rather high similarity, with an SAB of 0.70, P. acidigallici is related to both at an SAB of only 0.53 (Stackebrandt et al., 1989). It is interesting to note that these three Pelobacter strains did not show any resemblance to other fermenting Gram-negative strict anaerobes; instead, they appeared to be highly related to several strains of sulfur-reducing anaerobes, namely, Desulfuromonas succinoxidans, D. acetexigens, and D. acetoxidans, to which they are even more closely related than P. acidigallici is to the other two Pelobacter species. Since Pelobacter species and the obligately sulfur-respiring bacteria are quite diverse metabolically and the latter are supposed to have derived directly from phototrophic ancestors, it has been suggested that the genus Pelobacter represents a group of fermenting bacteria that developed a fermentative metabolism as a “secondary” evolutionary event and that they are separate from the first fermentative bacteria (Stackebrandt et al., 1989).

Keywords

Sewage Sludge Polyethylene Glycol Agar Bottle Primary Aliphatic Alcohol Interspecies Hydrogen Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments.

The author wishes to thank N. Pfennig and H. G. Trüper for their help on all questions concerning bacterial taxonomy and in the establishment of this new genus. The assistance of Martin Bomar in compiling the phase contrast photomicrographs shown in Fig. 1 is highly appreciated.

Literature Cited

  1. Brune, A., B. Schink. 1990 Conversion of pyrogallol to phloroglucinol, and other hydroxyl transfer reactions catalyzed by cell-free extracts of Pelobacter acidigallici J. Bacteriol. 172 070–1076Google Scholar
  2. Bryant, M. P., E. A. Wolin, M. J. Wolin, R. S. Wolfe. 1967 Methanobacillus omelianskii, a symbiotic association of two species of bacteria Arch. Mikrobiol. 59 20–31PubMedCrossRefGoogle Scholar
  3. Conrad, R., F. Bak, H. J. Seitz, B. Thebrath, H. P. Mayer, H. Schütz. 1989 Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment FEMS Microbiol. Ecol. 62 285–294CrossRefGoogle Scholar
  4. deBont, J. A. M., M. W. Peck. 1980 Metabolism of acetylene by Rhodococcus A 1 Arch. Microbiol. 127 99–104CrossRefGoogle Scholar
  5. Dubourguier, H. C., E. Samain, G. Prensier, G. Albagnac. 1986 Characterization of two strains of Pelobacter carbinolicus isolated from anaerobic digestors Arch. Microbiol. 145 248–253CrossRefGoogle Scholar
  6. Dwyer, D. F., J. M. Tiedje. 1986 Metabolism of polyethylene glycol by two anaerobic bacteria, Desulfovibrio desulfuricans and a Bacteroides sp Appl. Environ. Microbiol. 52 852–856PubMedGoogle Scholar
  7. Eichler, B., B. Schink. 1984 Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe Arch. Microbiol. 140 47–152CrossRefGoogle Scholar
  8. Eichler, B., B. Schink. 1985 Fermentation of primary alcohols and diols and pure culture of syntrophically alcohol-oxidizing anaerobes Arch. Microbiol. 143 60–66CrossRefGoogle Scholar
  9. Evans, W. C. 1977 Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments Nature 270 7–22Google Scholar
  10. Goldberg, J., C. L. Cooney. 1981 Formation of short-chain fatty acids from H2 and CO2 by a mixed culture of bacteria Appl. Environ. Microbiol. 41 48–154Google Scholar
  11. Krieg, N. R., J. G. Holt. 1984 Bergey’s manual of systematic bacteriology, vol. 1 Williams and Wilkins BaltimoreGoogle Scholar
  12. Krumholz, L. R., M. P. Bryant. 1986 Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin Arch. Microbiol. 144 8–14CrossRefGoogle Scholar
  13. Oppermann, F. B., A. Steinbüchel, H. G. Schlegel. 1988 Utilization of methylacetoin by the strict anaerobe Pelobacter carbinolicus and consequences for the catabolism of acetoin FEMS Microbiol. Lett. 55 47–52CrossRefGoogle Scholar
  14. Pfennig, N. 1978 Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae Int. J. Syst. Bacteriol. 23 283–288CrossRefGoogle Scholar
  15. Samain, E., G. Albagnac, H. C. Dubourguier, J. P. Touzel. 1982 Characterization of a new propionic acid bacterium that ferments ethanol and displays a growth factor dependent association with a Gram-negative homoacetogen FEMS Microbiol. Lett. 15 69–74CrossRefGoogle Scholar
  16. Samain, E., G. Albagnac, H. C. Dubourguier. 1986 Initial steps of catabolism of trihydroxybenzenes in Pelobacter acidigallici Arch. Microbiol. 144 242–244CrossRefGoogle Scholar
  17. Schink, B. 1984 Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds Arch. Microbiol. 137 33–41CrossRefGoogle Scholar
  18. Schink, B. 1985 Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov Arch. Microbiol. 142 295–301CrossRefGoogle Scholar
  19. Schink, B., N. Pfenning. 1982 Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov., sp. nov., a new strictly anaerobic, nonsporeforming bacterium Arch. Microbiol. 133 95–201Google Scholar
  20. Schink, B., M. Stieb. 1983 Fermentative degradation of polyethylene glycol by a strictly anaerobic, Gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov Appl. Environ. Microbiol. 45 905–1913Google Scholar
  21. Schink, B., D. R. Kremer, T. A. Hansen. 1987 Pathway of propionate formation from ethanol in Pelobacter propionicus Arch. Microbiol. 147 321–327CrossRefGoogle Scholar
  22. Schink, B., T. J. Phelps, B. Eichler, J. G. Zeikus. 1985 Comparison of ethanol degradation pathways in anoxic freshwater environments J. Gen. Microbiol. 131 651–660Google Scholar
  23. Seitz H.-J., B. Schink, R. Conrad. 1988 Thermodynamics of hydrogen metabolism in methanogenic cocultures degrading ethanol or lactate FEMS Microbiol. Lett. 55 19–124CrossRefGoogle Scholar
  24. Stackebrandt, E., U. Wehmeyer, B. Schink. 1989 The phylogenetic status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus 1989. System. Appl. Microbiol. 11 257–260CrossRefGoogle Scholar
  25. Stams, A. J. M., D. R. Kremer, K. Nicolay, G. H. Wenk, T. A. Hansen. 1984 Pathway of propionate formation in Desulfobulbus propionicus Arch. Microbiol. 139 67–173CrossRefGoogle Scholar
  26. Strass, A., B. Schink. 1986 Fermentation of polyethylene glycol via acetaldehyde in Pelobacter venetianus Appl. Microbiol. Biotechnol. 35 37–42Google Scholar
  27. Tanaka, K., N. Pfenning. 1988 Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus Arch. Microbiol. 149 81–187CrossRefGoogle Scholar
  28. Wagener, S., B. Schink. 1987 Anaerobic degradation of nonionic and anionic surfactants in enrichment cultures and fixed-bed reactors Wat. Res. 21 615–622CrossRefGoogle Scholar
  29. Wagener, S., B. Schink. 1988 Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria Appl. Environ. Microbiol. 54 561–565PubMedGoogle Scholar
  30. Widdel, F., N. Pfenning. 1981 Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov Arch. Microbiol. 129 395–400PubMedCrossRefGoogle Scholar
  31. Widdel, F., G.-W. Kohring, F. Mayer. 1983 Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov Arch. Microbiol. 134 286–294CrossRefGoogle Scholar
  32. Wieringa, K. T. 1940 The formation of acetic acid from CO2 and H2 by anaerobic bacteria Antonie van Leeuwenhoek 6 251–262CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bernhard Schink

There are no affiliations available

Personalised recommendations