Advertisement

The Genus Lactococcus

  • Michael Teuber
  • Arnold Geis

Introduction

The importance of lactococci in the development of basic microbiology, genetics, molecular biology, general microbial biochemistry, food science, and biotechnology has been profound. Their present-day large-scale use in industrial fermentations, especially in the manufacture of dairy products has particular significance.

The first studies of the lactococci were by Joseph Lister (Lister, 1873), who was attempting to prove Pasteur’s germ theory of fermentative changes. In Lister’s experiments with boiled milk as a nutrient medium, he obtained by chance the first pure bacterial culture. It is worthwhile to recall in the context of this handbook his original discussion of this discovery, marking the dawn of bacterial taxonomy:

Admitting then that we had here to deal with only one bacterium, it presents such peculiarities both morphologically and physiologically as to justify us, I think, in regarding it a definite and recognizable species for which I venture to suggest the...

Keywords

Lactic Acid Bacterium Starter Culture Casein Micelle Temperate Phage Cottage Cheese 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Aguirre, M., and M. D. Collins. 1993 Lactic acid bacteria and human clinical infection J. Appl. Bacteriol. 75 95–107PubMedGoogle Scholar
  2. Allen, L. K., W. E. Sandine, and P. R. Elliker. 1963 Transduction of lactose metabolism in Streptococcus lactis J. Dairy Res. 30 351–357Google Scholar
  3. Anderson, A. W., and P. R. Elliker. 1953 The nutritional requirements of lactic streptococci isolated from starter cultures. I: Growth in a synthetic medium J. Dairy Sci. 36 161–167Google Scholar
  4. Andresen, A., A. Geis, U. Krusch, and M. Teuber. 1984 Plasmid profiles of mesophilic dairy starter cultures Milchwissenschaft 39 140–143Google Scholar
  5. Barach, J. T. 1979 Improved enumeration of lactic acid streptococci on Elliker agar containing phosphate Appl. Environ. Microbiol. 38 173–l74PubMedGoogle Scholar
  6. Bardowski, J., S. D. Ehrlich, and A. Chopin. 1992 Tryptophan biosynthesis genes in Lactococcus lactis subsp. lactis J. Bacteriol. 174 6563–6570PubMedGoogle Scholar
  7. Bauer, S., A. Tholen, J. Overmann, and A. Blume. 2000 Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood-and soil-feeding termites by molecular and culture-dependent techniques Arch. Microbiol. 173 126–137PubMedGoogle Scholar
  8. Beimfohr, C., A. Krause, R. Amann, W. Ludwig, and K.-H. Schleifer. 1993 In situ identification of lactococci, enterococci and streptococci Syst. Appl. Microbiol. 16 450–456Google Scholar
  9. Betzl, D., W. Ludwig, and K.-H. Schleifer. 1990 Identification of lactococci and enterococci by colony hybridization with 23S rRNA-targeted oligonucleotide probes Appl. Environ. Microbiol. 56 2927–2929PubMedGoogle Scholar
  10. Bolotin, A., S. Manger, K. Malarme, S. D. Ehrlich, and A. Sorokin. 1999 Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome Ant. v. Leeuwenhoeck 76 27–76Google Scholar
  11. Bolotin, A., P. Wincker, S. Mauger, O. Jaillon, K. Malarme, J. Weissenbach, S. D. Ehrlich, and A. Sorokin. 2001 The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403 Genome Res. 11 731–753PubMedGoogle Scholar
  12. Braun Jr., V., S. Hertwig, H. Neve, A. Geis, and M. Teuber. 1989 Taxonomic differentiation of bacteriophages of Lactococcus lactis by electron microscopy, DNA-DNA hybridization, and protein profiles J. Gen. Microbiol. 135 2551–2560Google Scholar
  13. Brüssow, H. 2001 Phages of dairy bacteria Ann. Rev. Microbiol. 55 283–303Google Scholar
  14. Buchman, G. W., S. Banerjee, and J. N. Hansen. 1988 Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic J. Biol. Chem. 263 16260–16266PubMedGoogle Scholar
  15. Budde-Niekiel, A., V. Möller, J. Lembke, and M. Teuber. 1985 Oekologie von Phagen in einer Frischkäserei Milchwissenschaft 40 477–481Google Scholar
  16. Budde-Niekiel, A., and M. Teuber. 1987 Electron microscopy of the adsorption of bacteriophages to lactic acid streptococci Milchwissenschaft 42 551–554Google Scholar
  17. Buist, G. 1997 AcmA of Lactococcus lactis, a Cell-binding Major Autolysin (Ph.D. thesis) University of Groningen Haren The Netherlands 1–125Google Scholar
  18. Chopin, A., A. Borodin, A. Sorokin, S. D. Ehrlich, and M.-C. Chopin. 2001 Analysis of six prophages in Lactococcus lactis IL1403: Different genetic structure of temperate and virulent phage populations Nucleic Acid Res. 29 644–651PubMedGoogle Scholar
  19. Christensen, J. E., E. G. Dudley, J. A. Pederson, and J. L. Steele. 1999 Peptidases and amino acid catabolism in lactic acid bacteria Ant. v. Leeuwenhoek 76 217–246Google Scholar
  20. Cogan, T. M., and J.-P. Accolas. 1996 Dairy Starter Cultures Verlag Chemie Publishers New York NYGoogle Scholar
  21. Collins, M. D., and D. Jones. 1979 The distribution of isoprenoid quinones in streptococci of serological groups D and N J. Gen. Microbiol. 11 427–433Google Scholar
  22. Cords, B. R., L. L. McKay, and P. Guerry. 1974 Extrachromosomal elements in group N streptococci J. Bacteriol. 117 1149–l152PubMedGoogle Scholar
  23. Deasy, B. M., M. C. Rea, G. F. Fitzgerald, T. M. Cogan, and T. P. Beresford. 2000 A rapid PCR based method to distinguish between Lactococcus and Enterococcus Syst. Appl. Microbiol. 23 510–522PubMedGoogle Scholar
  24. Delorme, C., J. J. Godon, S. D. Ehrlich, and P. Renault. 1993 Gene inactivation in Lactococcus lactis: Histidine biosynthesis J. Bacteriol. 175 4391–4399PubMedGoogle Scholar
  25. De Ruyter, P. G. G. A., O. P. Kuiper, and W. M. de Vos. 1996 Controlled gene expression for Lactococcus lactis with the food-grade inducer nisin Appl. Environ. Microbiol. 62 3662–3667PubMedGoogle Scholar
  26. de Vos, M. W. 1986 Genetic improvement of starter-streptococci by the cloning and expression of a gene coding for a non-bitter proteinase In: E. Magnien (Ed.) Biomolecular Engineering in the European Community Martinus Nijhoff Dordrecht The Netherlands 465–472Google Scholar
  27. de Vos, W. M., J. W. M. Mulders, J. R. Siezen, J. Hugenholtz, and O. P. Kuipers. 1992 Properties of nisin Z and the distribution of its gene, nisZ, in Lactococcus lactis Appl. Environ. Microbiol. 59 213–218Google Scholar
  28. Dodd, H. M., N. Horn, and M. J. Gasson. 1990 Analysis of the genetic determinant for production of the peptide antibiotic nisin J. Gen. Microbiol. 136 555–566PubMedGoogle Scholar
  29. Domenech, A., J. Prieta, J. F. Fernandez-Garayzabal, M. D. Collins, D. Jones, and L. Dominguez. 1993 Phenotypic and phylogenetic evidence for a close relationship between Lactococcus garviae and Enterococcus seriolocida Microbiologia 9 63–68PubMedGoogle Scholar
  30. Duwat, P., S. Sourice, B. Cesselin, G. Lamberet, K. Vido, P. Gaudu, Y. Le Loir, F. Violet, P. Loubière, and A. Gruss. 2001 Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival J. Bacteriol. 183 4509–4516PubMedGoogle Scholar
  31. Eldar, A., M. Goria, C. Ghittino, A. Zlotkin, and H. Bercovier. 1999 Biodiversity of Lactococcus garviae strains isolated from fish in Europe, Asia and Australia Appl. Environ. Microbiol. 65 1005–1008PubMedGoogle Scholar
  32. Elliker, P. R., A. W. Anderson, and G. Hannesson. 1956 An agar medium for lactic acid streptococci and lactobacilli J. Dairy Sci. 39 1611–1612Google Scholar
  33. Everson, T. C. 1991 Control of phage in the dairy plant Bull. Int. Dairy Fed. 263 24–28Google Scholar
  34. Facklam, R. R., and J. A. Elliot. 1995 Identification, classification, and clinical relevance of catalase-negative, Gram-positive cocci, excluding the streptococci and enterococci Clin. Microbiol. Rev. 8 479–495PubMedGoogle Scholar
  35. Food, and Agriculture Organization of the United Nations. 2001 2000 production [{http://apps.fao.org/}{URL: http://apps.fao.org/}]Google Scholar
  36. Fitzgerald, G. F., and M. J. Gasson. 1988 In vivo gene transfer systems and transposons Biochimie 70 489–502PubMedGoogle Scholar
  37. Franke, C. M. 1998 Topology of type I secretion system for bacteriocins of Lactococcus lactis (PhD thesis) University of Groningen Haren The Netherlands 1–97Google Scholar
  38. Galesloot, T. E., E. Hassing, and J. Stadhouders. 1961 Agar media voor het isoleren en tellen van aromabacterien in zuursels Neth. Milk Dairy J. 15 127–l50Google Scholar
  39. Gasson, M. J., and F. L. Davies. 1980 High frequency conjugation associated with Streptococcus lactis donor cell aggregation J. Bacteriol. 143 1260–1264PubMedGoogle Scholar
  40. Gasson, M. J. 1983 Plasmid complements of Streptococcus lactis NCDO and other lactic streptococci after protoplast-induced curing J. Bacteriol. 154 1–9PubMedGoogle Scholar
  41. Gasson, M. J. 1984 Transfer of sucrose fermenting ability, nisin resistance and nisin production in Streptococcus lactis 712 FEMS Microbiol. Lett. 21 7–10Google Scholar
  42. Gasson, M. J. 1990 In vivo genetic systems in lactic acid bacteria FEMS Microbiol. Rev. 87 43–60Google Scholar
  43. Geis, A. 1982 Transfection of protoplasts of Streptococcus lactis subsp. diacetylactis FEMS Microbiol. Lett. 15 119–122Google Scholar
  44. Geis, A., J. Singh, and M. Teuber. 1983 Potential of lactic streptococci to produce bacteriocin Appl. Environ. Microbiol. 45 205–211PubMedGoogle Scholar
  45. Geis, A., T. Janzen, M. Teuber, and F. Wirsching. 1992 Mechanism of plasmid-mediated bacteriophage resistance in lactococci FEMS Microbiol. Lett. 94 7–14Google Scholar
  46. Godon, J. J., C. Delorme, J. Bardowski, M. C. Chopin, S. D. Ehrlich, and P. Renault. 1993 Gene inactivation in Lactococcus lactis: Branched-chain amino acid biosynthesis J. Bacteriol. 175 4383–4390PubMedGoogle Scholar
  47. Gonzales, C. F., and B. S. Kunka. 1985 Transfer of sucrose-fermenting ability and nisin production phenotype among lactic streptococci Appl. Environ. Microbiol. 49 627–633Google Scholar
  48. Griffin, H. G., and M. J. Gasson. 1995 Genetic aspects of aromatic amino acids biosynthesis in Lactococcus lactis Molec. Gen. Genet. 246 119–127PubMedGoogle Scholar
  49. Gross, E., and J. L. Morell. 1971 The structure of nisin J. Am. Chem. Soc. 93 4634–4635PubMedGoogle Scholar
  50. Haandrikman, A. J., J. Kok, H. Laan, S. Soemitso, A. M. Ledeboer, W. N. Konings, and G. Venema. 1989 Identification of a gene required for the maturation of an extracellular serine proteinase J. Bacteriol. 171 2789–2794PubMedGoogle Scholar
  51. Haandrikman, A. J., J. Kok, and G. Venema. 1991 Lactococcal proteinase maturation protein PrtM is a lipoprotein J. Bacteriol. 173 4517–4525PubMedGoogle Scholar
  52. Hardie, J. M. 1986 Genus Streptococcus Rosenbach 1884, 22 In: P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore MD 2 1043–1071Google Scholar
  53. Harlander, S. K. 1987 Transformation of Streptococcus lactis by electroporation In: J. J. Ferretti and R. Curtiss 3rd (Eds.) Streptococcal Genetics American Society for Microbiology Washington DC 229–233Google Scholar
  54. Hill, C. 1993 Bacteriophage and bacteriophage resistance in lactic acid bacteria FEMS Microbiol. Lett. 12 87–108Google Scholar
  55. Hirsch, A., and E. Grinsted. 1951 The differentiation of lactic streptococci and their antibiotics J. Dairy Res. 18 198–204Google Scholar
  56. Hirsch, A. 1953 The evolution of lactic streptococci J. Dairy Res. 20 290–293Google Scholar
  57. Holo, H., and I. F. Nes. 1989 High-frequency transformation by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media Appl. Environ. Microbiol. 55 3119–3123PubMedGoogle Scholar
  58. Holo, H., O. Nilssen, and J. F. Nes. 1991 Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: Isolation and characterization of the protein and its gene J. Bacteriol. 173 3879–3887PubMedGoogle Scholar
  59. Horn, N., S. Swindell, H. Dodd, and M. J. Gasson. 1991 Nisin biosynthesis genes are encoded by a novel conjugative transposon Molec. Gen. Genet. 228 129–135PubMedGoogle Scholar
  60. Jarvis, A. W., and J. M. Wolff. 1979 Grouping of lactic streptococci by gel electrophoresis of soluble cell extracts Appl. Environ. Microbiol. 37 391–398PubMedGoogle Scholar
  61. Jarvis, A. W., G. F. Fitzgerald, M. Mata, A. Mercenier, H. Neve, I. B. Powell, C. Ronda, M. Saxelin, and M. Teuber. 1991 Species and type phages of lactococcal bacteriophages Intervirology 32 2–9PubMedGoogle Scholar
  62. Jensen, P. R., and K. Hammer. 1993 Minimal requirements for exponential growth of Lactococcus lactis Appl. Environ. Microbiol. 59 4363–4366PubMedGoogle Scholar
  63. Jung, G. 1991 Lantibiotics: A survey In: G. Jung and H. G. Sahl (Eds.) Nisin and Novel Lantibiotics Escom Leiden The Netherlands 1–34Google Scholar
  64. Kaletta, C., and K. D. Entian. 1989 Nisin, a peptide antibiotic: Cloning and sequencing of the nisA gene and posttranslational processing of its peptide product J. Bacteriol. 171 1597–1601PubMedGoogle Scholar
  65. Kiefer-Partsch, B., W. Bockelmann, A. Geis, and M. Teuber. 1989 Purification of an X-prolyl-dipeptidyl aminopeptidase from the cell wall proteolytic system of Lactococcus lactis subsp. cremoris Appl. Microbiol. Biotechnol. 31 75–78Google Scholar
  66. Kiwaki, M., H. Ikemura, M. Shimizu-Kadoka, and A. Hirashima. 1989 Molecular characterization of a cell-wall-associated proteinase gene from Streptococcus lactis NCDO 763 Molec. Microbiol. 3 359–369Google Scholar
  67. Klaenhammer, T. R. 1993 Genetics of bacteriocins produced by lactic acid bacteria FEMS Microbiol. Rev. 12 39–86PubMedGoogle Scholar
  68. Klijn, N., A. H. Weerkamp, and W. M. de Vos. 1995 Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems Appl. Environ. Microbiol. 61 788–792PubMedGoogle Scholar
  69. Knittel, M. D. 1965 Genetic homology and exchange in lactic acid streptococci (Ph.D. thesis) Oregon State University Corvallis OR 1–85Google Scholar
  70. Kok, J., J. M. B. M. van der Vossen, and G. Venema. 1984 Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli Appl. Environ. Microbiol. 48 726–731PubMedGoogle Scholar
  71. Kok, J., and G. Venema. 1988a Genetics of proteinase of lactic acid bacteria Biochimie 70 475–488PubMedGoogle Scholar
  72. Kok, J., K. J. Leenhouts, A. J. Haandrikman, A. M. Ledeboer, and G. Venema. 1988b Nucleotide sequence of the cell wall proteinase of Streptococcus cremoris WG2 Appl. Environ. Microbiol. 54 231–238PubMedGoogle Scholar
  73. Kok, J., and W. M. de Vos. 1994 The proteolytic system of lactic acid bacteria In: M. J. Gasson and W. M. de Vos (Eds.) Genetic and Biotechnology of Lactic Acid Bacteria Blackie London UK 169–210Google Scholar
  74. Kondo, J. K., and L. L. McKay. 1984 Plasmid transformation of Streptococcus lactis protoplasts: Optimization and use in molecular cloning Appl. Environ. Microbiol. 48 252–259PubMedGoogle Scholar
  75. Kuhl, S. A., L. D. Larsen, and L. L. McKay. 1979 Plasmid profiles of lactose-negative and proteinase-deficient mutants of Streptococcus lactis C10, ML3, and ML18 Appl. Environ. Microbiol. 37 1193–1195PubMedGoogle Scholar
  76. Kunji, E. R. S., J. Mierau, A. Hagting, B. Poolman, and W. N. Konings. 1996 The proteolytic system of lactic acid bacteria Ant. v. Leeuwenhoek 70 87–221Google Scholar
  77. Lancefield, R. C. 1933 A serological differentiation of human and other groups of hemolytic streptococci J. Exp. Med. 57 571–595PubMedGoogle Scholar
  78. Le Bourgeois, P., M. Lautier, M. Mata, and P. Ritzenthaler. 1992 Physical and genetic map of the chromosome of Lactococcus lactis subsp. lactis IL1403 J. Bacteriol. 174 6752–6762PubMedGoogle Scholar
  79. Leenhouts, K., A. Bolhuis, G. Venema, and J. Kok. 1998 Construction of a food-grade multiple-copy integration system for Lactococcus lactis Appl. Environ. Microbiol. 49 417–423Google Scholar
  80. Leenhouts, K., G. Buist, and J. Kok. 1999 Anchoring of proteins to lactic acid bacteria Ant. v. Leeuwenhoek 76 367–376Google Scholar
  81. Lembke, J., U. Krusch, A. Lompe, and M. Teuber. 1980 Isolation and ultrastructure of bacteriophages of group N (lactic) streptococci Zentralbl. Bakteriol. Hyg., I Abt. Orig. C 1 79–91Google Scholar
  82. Lembke, J., and M. Teuber. 1981 Inaktivierung von Bakteriophagen durch Desinfektionsmittel Deutsche Molkerei-Zeitung 102 2–6Google Scholar
  83. Lister, J. 1873 A further contribution to the natural history of bacteria and the germ theory of fermentative changes Quart. Microbiol. Sci. 13 380–408Google Scholar
  84. Löhnis, F. 1909 Die Benennung der Milchsaurebakterien Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg. Abt. B 22 553–555Google Scholar
  85. Lowe, T. M., and S. R. Eddy. 1997 tRNA scan-SE: a program for improved detection of transfer RNA genes in genomic sequences Nucleic Acid Res. 25 955–964PubMedGoogle Scholar
  86. Madsen, S. M., B. Albrechtsen, E. B. Hansen, and H. Israelsen. 1996 Cloning and transcriptional analysis of two threonine biosynthetic genes from Lactococcus lactis MG1614 J. Bacteriol. 178 3689–3694PubMedGoogle Scholar
  87. Maguin, E., H. Prevost, S. D. Ehrlich, and A. Gruss. 1996 Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria J. Bacteriol. 178 931–935PubMedGoogle Scholar
  88. McKay, L. L., B. R. Cords, and K. A. Baldwin. 1973 Transduction of lactose metabolism in Streptococcus lactis C2 J. Bacteriol. 115 810–815PubMedGoogle Scholar
  89. Mierau, I., E. R. S. Kunji, G. Venema, and J. Kok. 1997 Casein and peptide degradation in lactic acid bacteria Biotechnol. Genet. Engin. Rev. 14 279–301Google Scholar
  90. Moineau, S., S. Pandian, and T. R. Klaenhammer. 1993 Restriction/modification systems and restriction endonucleases are more effective on lactococcal bacteriophages that have emerged recently in the dairy industry Appl. Environ. Microbiol. 59 197–202PubMedGoogle Scholar
  91. Möller, V., and M. Teuber. 1988 Selection and characterization of phage-resistant mesophilic lactococci from mixed-strain dairy starter cultures Milchwissenschaft 43 482–486Google Scholar
  92. Mulders, J. W., J. J. Boerrigter, H. S. Rollema, R. J. Siezen, and W. M. de Vos. 1991 Identification and characterization of the lantibiotic nisin Z, a natural nisin variant Eur. J. Biochem. 201 581–584PubMedGoogle Scholar
  93. Nes, J. F., D. B. Diep, L. S. Håvarstein, M. B. Brurberg, V. Eijsink, and H. Holo. 1996 Biosynthesis of bacteriocine in lactic acid bacteria Ant. v. Leeuwenhoek 70 113–128Google Scholar
  94. Nes, J. F., and H. Holo. 2000 Class II antimicrobial peptides from lactic acid bacteria Biopolymers 55 50–61PubMedGoogle Scholar
  95. Neve, H., A. Geis, and M. Teuber. 1984 Conjugal transfer and characterization of bacteriocin plasmids in group N (lactic acid) streptococci J. Bacteriol. 157 833–838PubMedGoogle Scholar
  96. Neve, H., A. Geis, and M. Teuber. 1987 Conjugation, a common plasmid transfer mechanism in lactic acid streptococci of dairy starter cultures Syst. Appl. Microbiol. 9 151–157Google Scholar
  97. Neve, H., A. Geis, and M. Teuber. 1988 Plasmid-encoded functions of ropy lactic acid streptococcal strains from Scandinavian fermented milk Biochimie 70 437–442PubMedGoogle Scholar
  98. Neve, H., and M. Teuber. 1991 Basic microbiology, and molecular biology of bacteriophage of lactic acid bacteria in dairies Bull. Int. Dairy Fed. 263 3–15Google Scholar
  99. Nickels, C., and H. Leesment. 1964 Methode zur Differenzierung und quantitativen Bestimmung von Säureweckerbakterien Milchwissenschaft 19 374–378Google Scholar
  100. Nissen-Meyer, J., H. Holo, L. S. Håvarstein, K. Sletten, and J. F. Nes. 1992 A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides J. Bacteriol. 174 5686–5692PubMedGoogle Scholar
  101. Norton, P. M., R. W. F. LePage, and J. M. Wells. 1995 Progress in the developement of Lactococcus lactis as a recombinant mucosal vaccine delivery system Folia Microbiol. 40 225–230Google Scholar
  102. Norton, P. M., H. W. G. Brown, J. M. Wells, A. M. Macpherson, P. W. Wilson, and R. W. F. LePage. 1996 Factors affecting the immunogenicity of tetanusd toxin fragment C expressed in Lactococcus lactis FEMS Immunol. Med. Microbiol. 14 167–177PubMedGoogle Scholar
  103. Olson, N. F., R. E. Anderson., and R. Sellars. 1978 Microbiological methods for cheese and other cultured products In: E. H. Marth (Ed.) Standard Methods for the Examination of Dairy Products, 14th ed American Public Health Association Washington DC 161–164Google Scholar
  104. Orla-Jensen, S. 1919 In: The Lactic Acid Bacteria Host & Son Copenhagen DenmarkGoogle Scholar
  105. O’Sullivan, D. J., S. A. Walker, S. G. West, and T. R. Klaenhammer. 1996 Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression Bio/Technol. 14 82–87Google Scholar
  106. Pechmann, H., and M. Teuber. 1980 Plasmid pattern of group N (lactic) streptococci Zentralbl. Bakteriol. Int. J. Mikrobiol. Hyg., Abt. 1 Orig. C 1 133–136Google Scholar
  107. Perreten, V., F. Schwarz, L. Cresta, M. Boeglin, G. Dasen, and M. Teuber. 1997 Antibiotic resistance spread in food Nature 389 801–802PubMedGoogle Scholar
  108. Perreten, V., F. V. Schwarz, M. Teuber, and S. B. Levy. 2001 Mdt(A), a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactis and Escherichia coli Antimicrob. Agents Chemother. 45 1109–1114PubMedGoogle Scholar
  109. Piard, J. C., I. Hauteford, V. A. Fischetti, S. D. Ehrlich, M. Fons, and A. Gruss. 1997 Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria J. Bacteriol. 179 3068–3072PubMedGoogle Scholar
  110. Poquet, I., S. D. Ehrlich, and A. Gruss. 1998 An export-specific reporter designed for Gram-positive bacteria: Application to Lactococcus lactis J. Bacteriol. 180 1904–1912PubMedGoogle Scholar
  111. Pot, B., L. A. Devriese, D. Ursi, P. Vandamme, F. Haesebrouck, and K. Kersters. 1996 Phenotypic identification and differentiation of Lactococcus strains isolated from animals Syst. Appl. Microbiol. 19 213–222Google Scholar
  112. Powell, I. B., M. G. Achen, A. J. Hillier, and B. E. Davidson. 1988 A simple and rapid method for genetic transformation of lactic streptococci by electroporation Appl. Environ. Microbiol. 54 655–660PubMedGoogle Scholar
  113. Prichard, G. G., and T. Coolbear. 1993 The physiology and biochemistry of the proteolytic system in lactic acid bacteria FEMS Microbiol. Lett. 12 179–206Google Scholar
  114. Rauch, P. J. G., M. M. Beerthuyzen, and W. M. de Vos. 1990 Nucleotide sequence of IS904 from Lactococcus lactis subspl. lactis strain NIZO R5 Nucleic Acid Res. 18 4253–4254PubMedGoogle Scholar
  115. Rauch, P. J. G., and W. M. de Vos. 1992 Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis J. Bacteriol. 174 1280–1287PubMedGoogle Scholar
  116. Robinson, K., L. M. Chamberlain, K. M. Schofield, J. K. Wells, and R. W. F. LePage. 1997 Oral vaccination of mice against tetanus with recombinant Lactococcus lactis Nature Biotechnol. 15 653–657Google Scholar
  117. Sahl, H. G., M. Kordel, and R. Benz. 1987 Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin Arch. Microbiol. 149 120–124PubMedGoogle Scholar
  118. Sakala, R. M., H. Hayashidani, Y. Kato, T. Hirata, Y. Makino, A. Fukishima, T. Yamada, C. Kaneuchi, and M. Ogawa. 2002 Change in composition of the microflora on vacuum-packed beef during chiller storage Int. J. Food Microbiol. 74 87–99PubMedGoogle Scholar
  119. Salama, M., W. Sandine, and S. Giovannoni. 1991 Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris Appl. Environm. Microbiol. 57 1313–1318Google Scholar
  120. Salama, M. S., W. E. Sandine, and S. J. Giovannoni. 1993 Insolation of Lactococcus lactis subsp. cremoris from nature by colony hybridization with rRNA probes Appl. Environ. Microbiol. 59 3941–3945PubMedGoogle Scholar
  121. Sandine, W. E., C. Radich, and P. R. Elliker. 1972 Ecology of lactic streptococci: A review J. Milk Food Technol. 35 176–184Google Scholar
  122. Sandine, W. E. 1996 Commercial production of dairy starter cultures In: T. M. Cogan and J.-P. Accolas (Eds.) Dairy Starter Cultures VCH Publishers New York NY 191–206Google Scholar
  123. Schleifer, K. H., J. Kraus, G. Dvorak, R. Kilpper-Balz, M. D. Collins, and W. Fischer. 1985 Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. nov Syst. Appl. Microbiol. 6 183–195Google Scholar
  124. Shankar, P. A., and E. L. Davies. 1977 A note on the suppression of Lactobacillus bulgaricus in media containing β-glycerophosphate and application of such media to selective isolation of Streptococcus thermophilus from yoghurt J. Dairy Technol. 30 8–30Google Scholar
  125. Siezen, R. J. 1999 Multi-domain, cell-envelope proteinases of lactic acid bacteria Ant. v. Leeuwenhoek 76 139–155Google Scholar
  126. Simon, D., A. Rouault, and M.-C. Chopin. 1986 High-efficiency transformation of Streptococcus lactis protoplasts by plasmid DNA Appl. Environ. Microbiol. 52 394–395PubMedGoogle Scholar
  127. Simon, D., and A. Chopin. 1988 Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis Biochimie 70 559–566PubMedGoogle Scholar
  128. Sorensen, K. J., R. Larsen, A. Kibenich, M. P. Junge, and E. Johansen. 2000 A food-grade cloning system for industrial strains of Lactococcus lactis Appl. Environ. Microbiol. 66 1253–1258PubMedGoogle Scholar
  129. Stackebrandt, E., and M. Teuber. 1988 Molecular taxonomy and phylogenetic position of lactic acid bacteria Biochimie 70 317–324PubMedGoogle Scholar
  130. Stadhouders, J., and G. J. M. Leenders. 1984 Spontaneous development mixed-strain cheese-starters: Their behaviour towards phages and their use in the Dutch cheese industry Neth. Milk Dairy J. 38 157–181Google Scholar
  131. Steele, J. L., and L. L. McKay. 1986 Partial characterization of the genetic basis for sucrose metabolism and nisin production Appl. Environ. Microbiol. 51 57–64PubMedGoogle Scholar
  132. Steidler, L., J. Viaene, W. Fiers, and E. Remaut. 1998 Functional display of a heterologous protein on the surface of Lactococcus lactis by means of the cell wall anchor of Staphylococcus aureus protein A Appl. Environ. Microbiol. 65 342–345Google Scholar
  133. Tailliez, P. 2001 Mini-revue: Les bactéries lactiques, ces etre vivants apparus il y a près de 3 milliards d’années Lait 81 1–11Google Scholar
  134. Terzaghi, B. E., and W. E. Sandine. 1975 Improved medium for lactic streptococci and their bacteriophages Appl. Microbiol. 29 807–813PubMedGoogle Scholar
  135. Teuber, M., and J. Lembke. 1983 The bacteriophages of lactic acid bacteria with emphasis on genetic aspects of group N lactic streptococci Ant. v. Leeuwenhoek 49 283–295Google Scholar
  136. Teuber, M., A. Geis, U. Krusch, and J. Lembke. 1994 Biotechnologische Verfahren zur Herstellung von Lebensmitteln und Futtermitteln In: P. Präve, U. Faust, W. Sittig, and D. A. Sukatsch (Eds.) Handbuch der Biotechnologie, 4th ed Oldenbourg Verlag Munich Germany 479–540Google Scholar
  137. Teuber, M. 1995 The Genus Lactococcus In: B. J. B. Wood and W. H. Holzapfel (Eds.) The Genera of Lactic Acid Bacteria Blackie London UK 173–234Google Scholar
  138. Teuber, M., L. Meile, and F. Schwarz. 1999 Aquired antibiotic resistance in lactic acid bacteria from food Ant. v. Leeuwenhoek 76 115–137Google Scholar
  139. Teuber, M. 2000 Fermented milk products In: B. M. Lund, T. C. Baird-Parker, and G. W. Gould (Eds.) The Microbiological Safety and Quality of Food Aspen Publishers Gaitherburg MD 1 535–589Google Scholar
  140. Thomas, T. D., and G. G. Pritchard. 1987 Proteolytic enzymes of dairy starter cultures FEMS Microbiol. Rev. 46 245–268Google Scholar
  141. Thompson, J., N. Y. Nguyen, D. L. Sackett, and J. A. Donkersloot. 1991 Transposon-encoded sucrose metabolism in Lactococcus lactis J. Biol. Chem. 266 14573–14579PubMedGoogle Scholar
  142. van Belkum, M. J., B. J. Hayema, A. Geis, J. Kok, and G. Venema. 1989 Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid Appl. Environ. Microbiol. 55 1187–1191PubMedGoogle Scholar
  143. van Belkum, M. J., B. J. Hayema, R. E. Jeeninga, J. Kok, and G. Venema. 1991 Organization and nucleotide sequence of two lactococcal bacteriocin operons Appl. Environ. Microbiol. 57 492–498PubMedGoogle Scholar
  144. van Belkum, M. J., J. Kok, and G. Venema. 1992 Cloning, sequencing and expression in Escherichia coli of lcnB, a third bacteriocin determinant from the lactococcal plasmid p9B4-6 Appl. Environ. Microbiol. 58 572–577PubMedGoogle Scholar
  145. van der Guchte, M., J. M. B. M. van der Vossen, J. Kok, and G. Venema. 1989 Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis Appl. Envir. Microbiol. 55 224–228Google Scholar
  146. van der Vossen, J. M. B. M., J. Kok, and G. Venema. 1985 Construction of cloning, promoter-screening and terminator-screening shuttle vectors for Bacillus subtilis and Streptococcus lactis Appl. Environ Microbiol. 50 540–542PubMedGoogle Scholar
  147. van Kranenburg, R., H. R. Vos, J. J. van Swam, M. Kleerebezem, and W. M. de Vos. 1999 Functional analysis of glycosyltransferase genes from Lactococcus lactis and other Gram-positive cocci: Complementation, expression, and diversity J. Bacteriol. 181 6247–6253Google Scholar
  148. Van Kranenburg, R., M. Kleerebezem, and W. M. de Vos. 2000 Nucleotide sequence analysis of the lactococcal EPS plasmid pNZ4000 Plasmid 43 130–136PubMedGoogle Scholar
  149. van Rooijen, R. J., and W. M. de Vos. 1990 Molecular cloning, transcriptional analysis and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system in Lactococcus lactis J. Biol. Chem. 265 8499–18503Google Scholar
  150. van Rooijen, R. J., S. van Schalkwijk, and W. M. de Vos. 1991 Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis J. Biol. Chem. 266 7176–7181PubMedGoogle Scholar
  151. van Rooijen, R. J., M. J. Gasson, and W. M. de Vos. 1992 Characterization of the Lactococcus lactis lactose operon promoter: Contribution of flanking sequences and LacR repressor to promoter activity J. Bacteriol. 174 2273–2280PubMedGoogle Scholar
  152. Vedamuthu, E. R., and J. M. Neville. 1986 Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures by Streptococcus cremoris Appl. Environ. Microbiol. 51 677–682PubMedGoogle Scholar
  153. Vela, A. I., J. Vazquez, A. Gibello, M. M. Blanco, M. A. Moreno, P. Liébana, C. Albendea, B. Alcala, A. Mendez, L. Dominguez, and J. F. Fernandez-Garayazabal. 2000 Phenotypic and genetic characterization of Lactococcus garviae isolated in Spain from lactococcosis outbreaks and comparison withn isolates of other countries and sources J. Clin. Microbiol. 38 3791–3795PubMedGoogle Scholar
  154. Vesa, T., P. Pochart, and P. Marteau. 2000 Pharmacokinetics of Lactobacillus plantarum NCIMB8826, Lactobacillus fermenetum KLD, and Lactococcus lactis MG1363 in the human gastrointestinal tract Aliment. Pharmacol. Ther. 14 823–828PubMedGoogle Scholar
  155. Visser, S., F. A. Exterkate, C. J. Slangen, and G. J. C. M. De Veer. 1986 Comparative study of action of cell wall proteinases from various strains of Streptococcus cremoris on bovine αs1-, β-and κ-casein Appl. Environ. Microbiol. 52 1162–1166PubMedGoogle Scholar
  156. Vogensen, E. K., T. Karst, J. J. Larsen, B. Kringelum, D. Ellekjaer, and E. Waagner Nielsen. 1987 Improved direct differentiation between Leuconostoc cremoris, Streptococcus lactis and Streptococcus cremoris/Streptococcus lactis on agar Milchwissenschaft 42 646–648Google Scholar
  157. von Wright, A., and S. Tynkkynen. 1987 Construction of Streptococcus lactis sup. lactis strains with a single plasmid associated with mucoid phenotype Appl. Environ. Microbiol. 53 1385–1386Google Scholar
  158. Walsh, P. M., and L. L. McKay. 1981 Recombinant plasmid associated with cell aggregation and high frequency conjugation of Streptococcus lactis ML3 J. Bacteriol. 146 937–944PubMedGoogle Scholar
  159. Weigmann, H. 1905–1908 Das Reinzuchtsystem in der Butterbereitung und in der Käserei In: E. Lafar (Ed.) Handbuch der Technischen Mykologie. Volume 2: Mykologie der Nahrugsmittelgewerbe Gustav Fischer Verlag Jena Germany 293–309Google Scholar
  160. Weiler, H. G., and E. Radler. 1970 Milchsäurebakterien aus Wein und von Rebenblättern Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg., Abt. 2 Orig. 124 707–732Google Scholar
  161. Whittenbury, R. 1965 The enrichment and isolation of lactic acid bacteria from plant material Zentralbl. Bakteriol. Parasitenk. Infektionskr. Hyg., Abt. 1 Suppl. 1 395–398Google Scholar
  162. Williams, A. M., J. L. Fryer, and M. D. Collins. 1990 Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish FEMS Microbiol. Lett. 68 109–114Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Michael Teuber
  • Arnold Geis

There are no affiliations available

Personalised recommendations