Streptococcus pneumoniae

  • Elaine Tuomanen
Reference work entry


Pneumococcus is a fragile body and contains within itself enzymatic forces that lead to its disruption and disintegration, rob the substrate in which it lives of nutrient substances, and from these substances evolve chemical agents that arrest further growth, cause the death of the organism, and morbidly affect the cells of the animal body into which the microbe may find its way (B. White, 1938).

Streptococcus pneumoniaeis currently the leading cause of invasive bacterial disease in children and the elderly. Its original role in causing disease was appreciated by studies on lobar pneumonia in the late 1880s. By the turn of the 20th century, it was determined that antiserum from animals conferred excellent passive protection and even therapeutic benefit to humans stricken with disease. Thus was born the appreciation of the general role of antibodies in host defense and of capsular polysaccharide as a protective target. Antiserum also allowed classification of pneumococci...


Platelet Activate Factor Pneumococcal Infection Teichoic Acid Penicillin Resistance Multiple Antibiotic Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Atkin, E. 1926 The rationale of the bile solubility of pneumococcus Br. J. Exp. Path. 7 167–167Google Scholar
  2. Austrian, R., R. Douglas, G. Schiffman, and et al. 1976 Prevention of pneumococcal pneumonia by vaccination Trans. Assoc. Am. Physicians 89 184–194PubMedGoogle Scholar
  3. Avery, O., C. MacLeod, and M. McCarty. 1944 Studies on the chemical nature of the substance inducing transformation of pneumococcal types J. Exp. Med. 79 137–158PubMedCrossRefGoogle Scholar
  4. Braun, J., G. Gao, and J. Shenep. In Press Production of nitric oxide by pneumococci Infection and Immunity in pressGoogle Scholar
  5. Braun, J., R. Novak, S. Bodmer, J. Cleveland, and E. Tuomanen. 1999 Neuroprotection by a caspase inhibitor in acute bacterial meningitis Nature Medicine 5 298–302PubMedCrossRefGoogle Scholar
  6. Brieman, R. 1994 Emergence of drug-resistant pneumococcal infections in the United States JAMA 271 1831–1835CrossRefGoogle Scholar
  7. Brieman, R. 1998 Prevention of pneumococcal disease—a new romance begins Clin. Infect. Dis. 26 1124–1126CrossRefGoogle Scholar
  8. Campbell, E., S. Choi, and H. Masure. 1998 A competence regulon in Streptococcus pneumoniae revealed by genomic analysis Mol. Microbiol. 27 929–939PubMedCrossRefGoogle Scholar
  9. Carlsen, B. D., M. Kawana, C. Kawana, A. Tomasz, and G. S. Giebink. 1992 Role of the bacterial cell wall in middle ear inflammation caused by Streptococcus pneumoniae Infect. Immun. 60 2850–2854PubMedGoogle Scholar
  10. Freyer, D., M. Weih, J. R. Weber, W. Burger, P. Scholz, R. Manz, A. Ziegenhorn, K. Angestworm, and U. Dirnagle. 1996 Pneumococcal cell wall components induce nitric oxide synthase and TNF alpha in astrogial-enriched cultures Glia 16 1–6PubMedCrossRefGoogle Scholar
  11. Cauwels, A., E. Wan, M. Leismann, and E. Tuomanen. 1997 Coexistance of CD14-dependent and independent pathways for stimulation of human monocytes by gram positive bacteria Infect. Immun. 65 3255–3260PubMedGoogle Scholar
  12. Cheng, Q., E. Campbell, A. Naughton, S. Johnson, and H. Masure. 1997 The com locus controls genetic transformation in Streptococcus pneumoniae Mol. Microbiol. 23 683–692PubMedCrossRefGoogle Scholar
  13. Comis, S. D., M. P. Osborne, J. Stephen, M. J. Tarlow, T. L. Hayward, T. J. Mitchell, P. W. Andrew, and G. J. Boulnois. 1993 Cytotoxic effects on hair cells of guinea pig cochlea produced by pneumolysin, the thiol activated toxin of Streptococcus pneumoniae Acta. Otolaryngol. (Stockh) 113 152–159CrossRefGoogle Scholar
  14. Cundell, D., and E. Tuomanen. 1994 Receptor specificity of adherence of Streptococcus pneumoniae to human type II pneumocytes and vascular endothelial cells in vitro Microb. Pathog. 17 361–374PubMedCrossRefGoogle Scholar
  15. Cundell, D., N. Gerard, C. Gerard, I. Idanpaan-Heikkila, and E. Tuomanen. 1995 Streptococcus pneumoniae anchors to activated eukaryotic cells by the receptor for platelet activating factor Nature 377 435–438PubMedCrossRefGoogle Scholar
  16. Dintilhac, A., G. Alloing, C. Granadel, and J. Claverys. 1997 Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for An and Mn resulting from inactivation of putative ABC metal permeases Mol. Microbiol. 25 727–739PubMedCrossRefGoogle Scholar
  17. Douglas, R., D. Hansman, H. Miles, and J. Paton. 1986 Pneumococcal carriage and type specific antibody. Failure of the 14-valent vaccine to reduce carriage in healthy children Am. J. Dis. Child. 140 1183–1185PubMedGoogle Scholar
  18. Dowson, C., B. Barcus, S. King, P. Pickerill, A. Whatmore, and M. Yeo. 1997 Horizontal gene transfer and the evolution of resistance and virulence determinants in Streptococcus J. Applied. Microb. 83 42S–51SCrossRefGoogle Scholar
  19. Enright, M., and B. Spratt. 1998 A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease Microbiol. 144 3049–3060CrossRefGoogle Scholar
  20. Figueiredo, A. M., J. D. Connor, A. Severin, P. M. Vaz, and A. Tomasz. 1992 A pneumococcal clinical isolate with high-level resistance to cefotaxime and ceftriaxone Antimicrob. Agents Chemother. 36 886–889PubMedGoogle Scholar
  21. Garcia, J., R. Sanchez-Beato, F. Medrano, and R. Lopez. 1998 Versatility of choline-binding domain Microb. Drug Res. 4 25–36CrossRefGoogle Scholar
  22. Garcia, P., M. Gonzalez, E. Garcia, J. Garcia, and R. Lopez. 1999a The molecular characterization of the first autolytic lysozyme of Streptcoccus pneumoniae reveals evolutionary mobile domains Molec. Microbiol. 33 128–138CrossRefGoogle Scholar
  23. Garcia, P., M. Gonzalez, E. Garcia, R. Lopez, and J. Garcia. 1999b Lyt B, a novel pneumococcal murein hydrolase essential for cell separation Mol. Microbiol. 31 1275–1277PubMedCrossRefGoogle Scholar
  24. Garcia-Bustos, J., and A. Tomasz. 1990 A biological price of antibiotic resistance: Major changes in the peptidoglycan structure of penicillin-resistant pneumococci Proc. Natl. Acad. Sci. U. S. A. 87 5415–5419PubMedCrossRefGoogle Scholar
  25. Gardner, P., and W. Schaffner. 1993 Immunization of adults N. Engl. J. Med. 328 1251–1258Google Scholar
  26. Geelen, S., C. Bhattacharyya, and E. Tuomanen. 1992 Induction of procoagulant activity on human endothelial cells by Streptococcus pneumoniae Infect. Immun. 60 4179–4183PubMedGoogle Scholar
  27. Gosink, K., E. Tuomanen, and R. Masure. 1999 The family of pneumococcal choline binding proteins Proc. Natl. Acad. Sci. In PressGoogle Scholar
  28. Gray, B., and H. Dillon. 1986 Clinical and epidemiologic studies of pneumococcal infection in children Pediatr. Infect. Dis. 5 201–207PubMedCrossRefGoogle Scholar
  29. Griffith, F. 1928 The significance of pneumococcal types J. Hygiene. 27 113–159CrossRefGoogle Scholar
  30. Hammerschmidt, S., S. Talay, P. Brandtzaeg, and G. Chhatwal. 1997 SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component Mol. Micro. 25 1113–1124CrossRefGoogle Scholar
  31. Handwerger, S., and A. Tomasz. 1985 Antibiotic tolerance among clinical isolates of bacteria Rev. Infect. Dis. 7 368–386PubMedCrossRefGoogle Scholar
  32. Havarstein, L., G. Coomaraswamy, and D. Morrison. 1995 An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae Proc. Nat. Acad. Sci., USA 92 11140–11144CrossRefGoogle Scholar
  33. Havarstein, L., P. Gaustad, I. Nes, and D. Morrison. 1996 Identification of the streptococcal competence pheromone receptor Mol. Mcirobiol. 21 965–971Google Scholar
  34. Hostetter, M. 1986 Serotypic variations among virulent pneumococci in deposition and degradation of covalently bound C3b: implications for phagocytosis and antibody production J. Infect. Dis. 153 682–693PubMedCrossRefGoogle Scholar
  35. Hui, F., and D. Morrison. 1991 Genetic trasformation in Streptococcus pneumoniae: Nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of the bacterial ATP-dependent trasport protein family J. Bacteriol. 173 372–381PubMedGoogle Scholar
  36. Idanpaan-Heikkila, I., P. Simon, C. Cahill, K. Sokol, and E. Tuomanen. 1997 Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia J. Infect. Dis. 176 704–712PubMedCrossRefGoogle Scholar
  37. Klein, J., D. Teele, and J. Sloyer. 1982 Use of pneumococcal vaccine for prevention of recurrent episodes of otitis media Seminars in Infectious Disease 305–310Google Scholar
  38. Kruse, W., and S. Pansini. 1891 Untersuchungen uber den diplococcus pneumoniae und verwandte streptokokken Ztschr. f. Hyg. u. Infektionskr. 11 279–279CrossRefGoogle Scholar
  39. Lebel, M. H., B. Freij, G. Syrogiannopoulos, D. Chrane, M. Hoyt, S. Stewart, B. Kennard, K. Olsen, and G. J. McCracken. 1988 Dexamethasone therapy for bacterial meningitis N. Engl. J. Med. 15 964–971CrossRefGoogle Scholar
  40. Linder, T., R. Dandiles, D. Lime, and T. DeMaria. 1994 Effect of intranasal inoculation of Streptococcus pneumoniae on the structure of the surface carbohydrates of the chinchilla eustachian tube and middle ear mucosa Microbial Pathogenesis 16 435–441PubMedCrossRefGoogle Scholar
  41. MacLeod, C., R. Hodges, M. Heidelberger, and W. Bernhard. 1945 Prevention of pneumococcal pneumonia by immunisation with specific capsular polysaccharides J. Exp. Med. 82 445–465CrossRefGoogle Scholar
  42. Marrie, T., H. Durant, and L. Yates. 1989 Community-acquired pneumonia reguiring hospitalization Rev. Infect. Dis. 11 568–568CrossRefGoogle Scholar
  43. Mazmanian, S., G. Liu, H. Ton-That, and O. Schneewind. 1999 Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall Science 285 760–763PubMedCrossRefGoogle Scholar
  44. McDaniel, L. S., J. S. Sheffield, E. Swiatlo, J. Yother, M. J. Crain, and D. E. Briles. 1992 Molecular localization of variable and conserved regions of pspA and identification of additional pspA homologous sequences in Streptococcus pneumoniae Microb. Pathog. 13 261–269PubMedCrossRefGoogle Scholar
  45. McDougal, L. 1992 Analysis of multiply antimicrobial-resistant isolates of Streptococcus pneumoniae from the United States Antimicrob. Ag. Chemother. 36 2176–2184Google Scholar
  46. Mitchell, T., and P. Andrew. 1997 Biological properties of pneumolysin Microb. Drug Res. 3 19–26CrossRefGoogle Scholar
  47. Morrison, D., and M. Baker. 1979 Competence for genetic transformation in pneumococcus depends on synthesis of a small set of proteins Nature 282 215–217PubMedCrossRefGoogle Scholar
  48. Munoz, R., J. M. Musser, M. Crain, D. E. Briles, A. Marton, A. J. Parkinson, U. Sorensen, and A. Tomasz. 1992 Geographic distribution of penicillin-resistant clones of Streptococcus pneumoniae: characterization by penicillin-binding protein profile, surface protein A typing, and multilocus enzyme analysis Clin. Infect. Dis. 15 112–118PubMedCrossRefGoogle Scholar
  49. Neufeld, F. 1900 Ueber eine specifische bacteriolytische wirkung der galle Ztschr. f. Hyg. u. Infectionskr. 34 34–454Google Scholar
  50. Neufeld, F., and R. Etinger-Tulczunska. 1932 Untersuchungen uber die pneumokokkenseuche des meerschweinchens Ztschr. f. Hyg. u. Infecktionskr. 114 324–324CrossRefGoogle Scholar
  51. Novak, R., J. Braun, E. Charpentier, and E. Tuomanen. 1998 Penicillin tolerance genes of Streptococcus pneumoniae: the ABC-type manganese permease complex PsaA Molec. Micro. 29 1285–1296CrossRefGoogle Scholar
  52. Novak, R., B. Henriques, E. Charpentier, S. Normark, and E. Tuomanen. 1999 Emergence of vancomycin tolerance in Streptococcus pneumoniae Nature 399 590–593PubMedCrossRefGoogle Scholar
  53. Pearce, B., Y. Yin, and H. Masure. 1993 Genetic identification of exported proteins in Streptococcus pneumoniae Molec. Microbiol. 9 1037–1050CrossRefGoogle Scholar
  54. Pearce, B., A. Naughton, and H. Masure. 1994 Peptide permeases modulate transformation in Streptococcus pneumoniae Mol. Microbiol. 12 881–892PubMedCrossRefGoogle Scholar
  55. Preisz, H. 1915 Untersuchungen uber die wirkungsweise des antipneumokokkenserums Centralbl. f. fakt. 77 89–89Google Scholar
  56. Pugin, J., D. Heumann, A. Tomasz, V. Kravchenki, Y. Akamatsu, M. Nishijima, M. Lauser, P. Tobias, and R. Ulevitch. 1994 CD14 is a pattern recognition receptor Immunity 1 509–516PubMedCrossRefGoogle Scholar
  57. Quagliarello, V., and W. Scheld. 1997 Treatment of Bacterial Meningitis N. Engl. J. Med. 336 708–716PubMedCrossRefGoogle Scholar
  58. Ring, A., J. Weiser, and E. Tuomanen. 1998 Pneumococcal penetration of the blood brain barrier: molecular analysis of a novel re-entry path J. Clin. Invest. 102 347–360PubMedCrossRefGoogle Scholar
  59. Rosenow, C., P. Ryan, J. Weiser, S. Johnson, P. Fontan, A. Ortqvist, and H. Masure. 1997 Contribution of a novel choline binding protein to adherence, colonization, and immunogenicity of Streptococcus pneumoniae Mol. Microbiol. 25 819–829PubMedCrossRefGoogle Scholar
  60. Schneewind, O., A. Fowler, and K. Faull. 1995 Structure of the cell wall anchor of surface proteins in Staphylococcus aureus Science 269 103–106CrossRefGoogle Scholar
  61. Schuchat, A., K. Robinson, J. Wenger, L. Harrison, M. Farley, A. Reingold, L. Lefkowitz, and B. Perkins. 1997 Bacterial meningitis in the United States N. Eng. J. Med. 337 970–976CrossRefGoogle Scholar
  62. Schumann, R., D. Pfeil, D. Freyer, W. Buerger, N. Lamping, C. Kirschning, U. Goebel, and J. Weber. 1998 Lipopolysaccharide and pneumococcal cell wall components activate the mitogen activated protein kinases (MAPK) erk-1, erk-2, and p38 in astrocytes Glia 22 295–305PubMedCrossRefGoogle Scholar
  63. Smith, B., and M. Hostetter. 1998 Characterization of a pneumococcal surface protein that binds complement protein C3 and its role in adhesion Proceedings of the Meeting of the American Society of Microbiology (abstract D122) 98 233–233Google Scholar
  64. Spellerberg, B., S. Prasad, C. Cabellos, M. Burroughs, P. Cahill, and E. Tuomanen. 1995 Penetration of the blood brain barrier: enhancement of drug delivery and imaging by bacterial glycopeptides J. Exp. Med. 182 1037–1044PubMedCrossRefGoogle Scholar
  65. Spellerberg, B., C. Rosenow, W. Sha, and E. Tuomanen. 1996 Pneumococcal cell wall activates NF-kB in human monocytes Microb. Pathogen. 20 309–317CrossRefGoogle Scholar
  66. Spellerberg, B., D. Cundell, J. Sandros, B. Pearce, I. Idänpään-Heikkilä, C. Rosenow, and H. Masure. 1996 Pyruvate oxidase as a determinant of virulence in Streptococcus pneumoniae Mol. Micro. 19 803–813CrossRefGoogle Scholar
  67. Spratt, B. 1983 Penicillin binding proteins and the future of beta lactam antibiotics: The seventh Fleming lecture J. Gen. Micro. 129 1247–1260Google Scholar
  68. Stryker, L. 1916 Variations in the pneumococcus induced by growth in immune serum J. Exp. Med. 24 49–49PubMedCrossRefGoogle Scholar
  69. Tomasz, A. 1967 Choline in the cell wall of a bacterium: novel type of polymer-linked choline in pneumococcus Science 157 694–697PubMedCrossRefGoogle Scholar
  70. Tomasz, A., A. Albino, and E. Zanati. 1970 Multiple antibiotic resistance in a bacterium with suppressed autolytic system Nature 227 138–140PubMedCrossRefGoogle Scholar
  71. Tu, A., R. Fulgham, M. McCrory, D. Briles, and A. Szalai. 1999 Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae Infect. Immun. 67 4720–4724PubMedGoogle Scholar
  72. Tuomanen, E., H. Liu, B. Hengstler, O. Zak, and A. Tomasz. 1985 The induction of meningeal inflammation by components of the pneumococcal cell wall J. Infec. Dis. 151 859–868CrossRefGoogle Scholar
  73. Tuomanen, E., B. Hengstler, R. Rich, M. Bray, O. Zak, and A. Tomasz. 1987 Nonsteroidal anti-inflammatory agents in the therapy of experimental pneumococcal meningitis J. Infect. Dis. 155 985–990PubMedCrossRefGoogle Scholar
  74. Tuomanen, E., R. Austrian, and H. Masure. 1995 The pathogenesis of pneumococcal infection N. Engl. J. Med. 332 1280–1284PubMedCrossRefGoogle Scholar
  75. Wani, J., J. Gilbert, A. Plaut, and J. Weiser. 1996 Identification, cloning, and sequencing of the immunoglobulin A1 protease gene of Streptococcus pneumoniae Infect. Immun. 64 2240–2245PubMedGoogle Scholar
  76. Weiser, J., R. Austrian, P. Sreenivasan, and H. Masure. 1994 Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization Infect. Immun. 62 2582–2589PubMedGoogle Scholar
  77. Weiser, J., M. Shchepetov, and S. Chong. 1997 Decoration of lipopolysaccharide with phosphorylcholine: a phase-variable characteristic of Haemophilus influenzae Infect. Immun. 65 943–950PubMedGoogle Scholar
  78. Winkelstein, J., and A. Tomasz. 1978 Activation of the alternative complement pathway by pneumococcal cell wall teichoic acid J. Immunol. 120 174–178PubMedGoogle Scholar
  79. White, B. 1938 The biology of pneumococcus The Commonwealth Fund New York NY 799Google Scholar
  80. Yoshimura, A., E. Lien, R. Ingalls, E. Tuomanen, R. Dziarski, and D. Golenbock. 1999 Recognition of gram positive bacterial cell wall components by the innate immune system occurs via toll like receptor 2 J. Immunol. 63 1–5Google Scholar
  81. Zhang, J., I. Idanpaan-Heikkila, W. Fischer, and E. Tuomanen. 1999 The pneumococcal lic D2 is involved in phosphorylcholine metabolism Molec. Micro. 31 1477–1488CrossRefGoogle Scholar
  82. Zighelboim, S., and A. Tomasz. 1981 Multiple antibiotic resistance in South African strains of Streptococcus pneumoniae: mechanism of resistance to beta lactam antibiotics Revs. Infect. Dis. 3 267–276CrossRefGoogle Scholar
  83. Zysk, G., W. Bruck, J. Gerber, Y. Bruck, H. Prange, and R. Nau. 1996 Anti-inflammatory treatment influences neuronal apoptosis cell death in the dentate gyrus in experimental pneumococcal meningitis J. Neuropath. and Exp. Neurol. 55 722–728CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Elaine Tuomanen

There are no affiliations available

Personalised recommendations