The Prokaryotes pp 991-1001 | Cite as

The Genus Sporomusa

  • John A. Breznak


The genus Sporomusa was created in 1984 (Möller et al., 1984) to accommodate a number of strains of anaerobic, homoacetogenic bacteria distinguished by having a Gram-negative cell wall and an ability to form endospores-two properties whose coincidence is uncommon in the microbial world. The genus name means “spore-bearing banana,” and reflects the slightly curved, rod shape of the cells. Two species, S. sphaeroides and S. ovata, were distinguished from each other on the bases of endospore shape, substrate utilization pattern, and G+C content of their genomic DNA. Subsequently, five additional species were revealed, and the phylogenetic position of Sporomusa was clarified. This chapter will update our understanding of Sporomusa, including several of their more notable properties: their common occurrence in anoxic (and even seemingly well-aerated) environments, their ability to grow by decarboxylation of organic acids, and their possession of unusual corrinoids.




Dipicolinic Acid Rice Paddy Soil Roll Tube Ferrous Sulfide Bromcresol Green 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Baena, S., M. L. Fardeau, T. H. S. Woo, B. Ollivier, M. Labat, and B. K. C. Patel. 1999 Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, “Selenomonas acidaminophila” and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov and Anaeromusa acidaminophila gen. nov., comb. nov Int. J. Syst. Bacteriol. 49 969–974PubMedCrossRefGoogle Scholar
  2. Balch, W. E., and R. S. Wolfe. 1976 New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere Appl. Environ. Microbiol. 32 781–791PubMedGoogle Scholar
  3. Biebl, H., H. Schwab-Hanisch, C. Sproer, and H. Lunsdorf. 2000 Propionispora vibrioides, nov gen., nov sp., a new Gram-negative, spore-forming anaerobe that ferments sugar alcohols Arch. Microbiol. 174 239–247PubMedCrossRefGoogle Scholar
  4. Braun, M., S. Schoberth, and G. Gottschalk. 1979 Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats Arch. Microbiol. 120 201–204PubMedCrossRefGoogle Scholar
  5. Braus-Stromeyer, S. A., G. Schnappauf, G. H. Braus, A. S. Gossner, and H. L. Drake. 1997 Carbonic anhydrase in Acetobacterium woodii and other acetogenic bacteria J. Bacteriol. 179 7197–7200PubMedGoogle Scholar
  6. Breznak, J. A., and J. M. Switzer. 1986 Acetate synthesis from H2 plus CO2 by termite gut microbes Appl. Environ. Microbiol. 52 623–630PubMedGoogle Scholar
  7. Breznak, J. A., J. M. Switzer, and H.-J. Seitz. 1988 Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites Arch. Microbiol. 150 282–288CrossRefGoogle Scholar
  8. Breznak, J. A., and J. S. Blum. 1991 Mixotrophy in the termite gut acetogen, Sporomusa termitida Arch. Microbiol. 156 105–110CrossRefGoogle Scholar
  9. Breznak, J. A. 1994a Acetogenesis from carbon dioxide in termite guts In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall New York NY 303–330Google Scholar
  10. Breznak, J. A., and R. N. Costilow. 1994b Physicochemical factors in growth In: P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg (Eds.) Methods for General and Molecular Bacteriology American Society for Microbiology Washington DC 137–154Google Scholar
  11. Brune, A., D. Emerson, and J. A. Breznak. 1995 The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites Appl. Environ. Microbiol. 61 2681–2687PubMedGoogle Scholar
  12. Collins M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, J. A. E. Farrow. 1994 The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations Int. J. Syst. Bacteriol. 44 812–826PubMedCrossRefGoogle Scholar
  13. Cord-Ruwisch, R., and B. Ollivier. 1986 Interspecific hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes Arch. Microbiol. 144 163–165CrossRefGoogle Scholar
  14. Cord-Ruwisch, R., H.-J. Seitz, and R. Conrad. 1988 The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor Arch. Microbiol. 149 350–357CrossRefGoogle Scholar
  15. Dehning, I., M. Stieb, and B. Schink. 1989 Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate Arch. Microbiol. 151 421–426CrossRefGoogle Scholar
  16. Dehning, I., and B. Schink. 1994 Anaerobic degradation of malonate via malonyl-CoA by Sporomusa malonica, Klebsiella oxytoca, and Rhodobacter capsulatus Ant. v. Leeuwenhoek 66 343–350CrossRefGoogle Scholar
  17. Dimroth, P., and B. Schink. 1998 Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria Arch. Microbiol. 170 69–77PubMedCrossRefGoogle Scholar
  18. Dobrindt, U., and M. Blaut. 1996 Purification and characterization of a membrane-bound hydrogenase from Sporomusa sphaeroides involved in energy-transducing electron transport Arch. Microbiol. 165 141–147PubMedCrossRefGoogle Scholar
  19. Drake, H. L. 1994 Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: Past and current perspectives In: H. L. Drake(Ed.) Acetogenesis Chapman and Hall New York NY 3–60Google Scholar
  20. Ebert, A., and A. Brune. 1997 Hydrogen concentration profiles at the oxic-anoxic interface: A microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar) Appl. Environ. Microbiol. 63 4039–4046PubMedGoogle Scholar
  21. Eichler, B., and B. Schink. 1984 Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe Arch. Microbiol. 140 147–152CrossRefGoogle Scholar
  22. Garrity, G. M., and J. G. Holt. 2000 An overview of the road map to the manual In: G. M. Garrity and J. G. Holt (Eds.) [{}Bergey’s Manual of Systematic Bacteriology, 2nd ed.]Springer-Verlag New York NY 2 1–19Google Scholar
  23. Hamana, K. 1999 Distribution of cell wall-linked polyamines within the Gram-negative anaerobes of the subbranch Sporomusa belonging phylogenetically to Gram-positive taxa Microbios. 100 145–157Google Scholar
  24. Heijthuijsen, J. H. F. G., and T. A. Hansen. 1986 Interspecies hydrogen transfer in co-cultures of methanol-utilizing acidogens and sulfate-reducing or methanogenic bacteria FEMS Microbiol. Ecol. 38 57–64CrossRefGoogle Scholar
  25. Hermann, M., K. M. Noll, and R. S. Wolfe. 1986 Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere Appl. Environ. Microbiol. 51 1124–1126PubMedGoogle Scholar
  26. Hermann, M., M. R. Popoff, and M. Sebald. 1987 Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide Int. J. Syst. Bacteriol. 37 93–101CrossRefGoogle Scholar
  27. Hungate, R. E. 1969 A roll tube method for the cultivation of strict anaerobes In: D. W. Ribbons (Eds.) Methods in Microbiology Academic Press New York NY 117–132Google Scholar
  28. Janssen, P. H., and K. A. O’Farrell. 1999 Succinispira mobilis gen. nov., sp nov., a succinate-decarboxylating anaerobic bacterium Int. J. Syst. Bacteriol. 49 1009–1013PubMedCrossRefGoogle Scholar
  29. Kamlage, B., and M. Blaut. 1993a Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides not capable of oxidizing methyl groups J. Bacteriol. 175 3043–3050PubMedGoogle Scholar
  30. Kamlage, B., A. Boelter, and M. Blaut. 1993b Spectroscopic and potentiometric characterization of cytochromes in two Sporomusa species and their expression during growth on selected substrates Arch. Microbiol. 159 189–196CrossRefGoogle Scholar
  31. Kane, M. D., and J. A. Breznak. 1991 Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis Arch. Microbiol. 156 91–98PubMedCrossRefGoogle Scholar
  32. Karnholz, A., K. Kusel, and H. Drake. 2000 Growth and metabolism of acetogenic bacteria in the presence of oxygen Abstr. Am. Soc. Microbiol. I-91 401Google Scholar
  33. Kuhner, C. H., C. Frank, A. Griesshammer, M. Schmittroth, G. Acker, A. Gossner, H. L. Drake. 1997 Sporomusa silvacetica sp. nov., an acetogenic bacterium isolated from aggregated forest soil Int. J. Syst. Bacteriol. 47 352–358PubMedCrossRefGoogle Scholar
  34. Miller, T. L., and M. J. Wolin. 1974 A serum bottle modification of the Hungate technique forcultivating obligate anaerobes Appl. Microbiol. 27 985–987PubMedGoogle Scholar
  35. Möller, B., R. Ossmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984 Sporomusa, a new genus of Gram-negative anaerobic-bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov Arch. Microbiol. 139 388–396CrossRefGoogle Scholar
  36. Müller, V., and S. Bowien. 1995 Differential effects of sodium ions on motility in the homoacetogenic bacteria Acetobacterium woodii and Sporomusa sphaeroides Arch. Microbiol. 164 363–369CrossRefGoogle Scholar
  37. Ollivier, B., R. Cordruwisch, A. Lombardo, and J. L. Garcia. 1985 Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium Arch. Microbiol. 142 307–310CrossRefGoogle Scholar
  38. Oremland, R. S. 1988 Biogeochemistry of methanogenic bacteria In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms John Wiley and Sons New York NY 641–705Google Scholar
  39. Oren, A., H. Pohla, and E. Stackebrandt. 1987 Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb. nov., and description of Sporohalobacter marismortui sp. nov Syst. Appl. Microbiol. 9 239–246CrossRefGoogle Scholar
  40. Peters, V., P. H. Janssen, and R. Conrad. 1999 Transient production of formate during chemolithotrophic growth of anaerobic microorganisms on hydrogen Curr. Microbiol. 38 285–289CrossRefGoogle Scholar
  41. Rosencrantz, D., F. A. Rainey, and P. H. Janssen. 1999 Culturable populations of Sporomusa spp. and Desulfovibrio spp. in the anoxic bulk soil of flooded rice microcosms Appl. Environ. Microbiol. 65 3526–3533PubMedGoogle Scholar
  42. Sass, H., H. Cypionka, and H. D. Babenzien. 1997 Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin FEMS Microbiol. Ecol. 22 245–255CrossRefGoogle Scholar
  43. Sass, H., E. Wieringa, H. Cypionka, H. D. Babenzien, and J. Overmann. 1998 High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment Arch. Microbiol. 170 243–251PubMedCrossRefGoogle Scholar
  44. Sawada, S., S. Kokeguchi, F. Nishimura, S. Takashiba, and Y. Murayama. 1999 Phylogenetic characterization of Centipeda periodontii, Selenomonas sputigena and Selenomonas species by 16S rRNA gene sequence analysis Microbios. 98 133–140PubMedGoogle Scholar
  45. Stackebrandt, E., H. Pohla, R. Kroppenstedt, H. Hippe, and C. R. Woese. 1985 16S ribosomal-RNA analysis of Sporomusa, Selenomonas, and Megasphaera: On the phylogenetic origin of Gram-positive Eubacteria Arch. Microbiol. 143 270–276CrossRefGoogle Scholar
  46. Stankewich, J. P., B. J. Cosenza, and A. L. Shigo. 1971 Clostridium quercicolum sp. n., isolated from discolored tissues in living oak trees Ant. v. Leeuwenhoek 37 299–302CrossRefGoogle Scholar
  47. Strömpl, C., B. J. Tindall, G. N. Jarvis, H. Lunsdorf, E. R. B. Moore, and H. Hippe. 1999 A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen, nov., comb, nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov Int. J. Syst. Bacteriol. 49 1861–1872PubMedCrossRefGoogle Scholar
  48. Strömpl, C., B. J. Tindall, H. Lunsdorf, T. Y. Wong, E. R. B. Moore, and H. Hippe. 2000 Reclassification of Clostridium quercicolum as Dendrosporobacter quercicolus gen. nov., comb. nov Int. J. Syst. Evol. Microbiol. 50 101–106PubMedCrossRefGoogle Scholar
  49. Stupperich, E., H. J. Eisinger, and B. Krautler. 1988 Diversity of corrinoids in acetogenic bacteria: P-cresolylcobamide from Sporomusa ovata, 5-methoxy-6-methylbenzimidazolylcobamide from Clostridium formicoaceticum and vitamin B12 from Acetobacterium woodii Eur. J. Biochem. 172 459–464PubMedCrossRefGoogle Scholar
  50. Stupperich, E., H. J. Eisinger, and B. Krautler. 1989 Identification of phenolyl cobamide from the homoacetogenic bacterium Sporomusa ovata Eur. J. Biochem. 186 657–661PubMedCrossRefGoogle Scholar
  51. Stupperich, E., P. Aulkemeyer, and C. Eckerskorn. 1992 Purification and characterization of a methanol-induced cobamide-containing protein from Sporomusa ovata Arch. Microbiol. 158 370–373PubMedCrossRefGoogle Scholar
  52. Stupperich, E., and R. Konle. 1993 Corrinoid-dependent methyl transfer reactions are involved in methanol and 3,4-dimethoxybenzoate metabolism by Sporomusa ovata Appl. Environ. Microbiol. 59 3110–3116PubMedGoogle Scholar
  53. Stupperich, E., R. Konle, and C. Eckerskorn. 1996 Anaerobic O-demethylations of methoxynaphthols, methoxyfuran, and fluoroanisols by Sporomusa ovata Biochem. Biophys. Res. Commun. 223 770–777PubMedCrossRefGoogle Scholar
  54. Terzenbach, D. P., and M. Blaut. 1994 Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria FEMS Microbiol. Lett. 123 213–218PubMedCrossRefGoogle Scholar
  55. Van Gylswyk, N. O. 1995 Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism Int. J. Syst. Bacteriol. 45 297–300PubMedCrossRefGoogle Scholar
  56. Van Gylswyk, N. O., H. Hippe, and F. A. Rainey. 1997 Schwartzia succinivorans gen. nov., sp. nov., another ruminal bacterium utilizing succinate as the sole energy source Int. J. Syst. Bacteriol. 47 155–159PubMedCrossRefGoogle Scholar
  57. Widdel, F., G.-W. Kohring, and F. Mayer. 1983 Studies on dissimilatory silfate-reducing bacteria that decompose fatty acids. III: Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov Arch. Microbiol. 134 286–294CrossRefGoogle Scholar
  58. Willems, A., and M. D. Collins. 1995a 16S rRNA gene similarities indicate that Hallella seregens (Moore and Moore) and Mitsuokella dentalis (Haapsalo et al.) are genealogically highly related and are members of the genus Prevotella: Emended description of the genus Prevotella (Shah and Collins) and description of Prevotella dentalis comb. nov Int. J. Syst. Bacteriol. 45 832–836PubMedCrossRefGoogle Scholar
  59. Willems, A., and M. D. Collins. 1995b Phylogenetic placement of Dialister pneumosintes (formerly Bacteroides pneumosintes) within the Sporomusa subbranch of the Clostridium subphylum of the Gram-positive bacteria Int. J. Syst. Bacteriol. 45 403–405PubMedCrossRefGoogle Scholar
  60. Wohlfarth, G., and G. Diekert. 1991 Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria Arch. Microbiol. 155 378–381CrossRefGoogle Scholar
  61. Wolin, E. A., R. S. Wolfe, and M. J. Wolin. 1964 Viologen dye inhibition of methane formation by Methanobacillus omelianskii J. Bacteriol. 87 993–998PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • John A. Breznak

There are no affiliations available

Personalised recommendations