The Family Heliobacteriaceae

  • Michael T. Madigan


The family Heliobacteriaceae consists of phototrophic bacteria that contain bacteriochlorophyll (Bchl) g (Fig. 1). This unique Bchl, found only in the heliobacteria, distinguishes them from all other anoxygenic phototrophic bacteria (Madigan, 2001; Madigan and Ormerod, 1995b). The heliobacteria were discovered in a very serendipitous fashion by Howard Gest and Jeff Favinger in the early 1980s; a fascinating account of this discovery can be found in Gest (1994). The unique characteristics of heliobacteria were first revealed a few years later with publication of the description of Heliobacterium chlorum (Gest and Favinger, 1983) and the structure of Bchl g (Brockmann and Lipinski, 1983). Subsequent research in the Gest laboratory led to the discovery of Heliobacillus, and with this, the establishment of the family Heliobacteriaceae (Beer-Romero and Gest, 1987). Four genera of heliobacteria are currently recognized: Heliobacterium, Heliobacillus, Heliophilum and Heliorestis...


Paddy Soil Ethylene Diamine Tetraacetic Acid Ethylene Diamine Tetraacetic Acid Soda Lake Purple Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Albert, I., A. W. Rutherford, H. Grau, J. Kellermann, and H. Michel. 1998 The 18 kDa cytochrome c553 from Heliobacterium gestii: Gene sequence and characterization of the mature protein Biochemistry 37 9001–9008PubMedCrossRefGoogle Scholar
  2. Amesz, J. 1995 The antenna-reaction center complex of heliobacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer, Dordrecht 687–697Google Scholar
  3. Bauer, C. E. 1995 Regulation of photosynthesis gene expression In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer, Dordrecht 1221–1234Google Scholar
  4. Beck, H., G. D. Hegeman, and D. White. 1980 Fatty acid and lipopolysaccharide analyses of three Heliobacterium spp FEMS Microbiol. Lett. 69 229–232CrossRefGoogle Scholar
  5. Beer-Romero, P. 1986 Comparative Studies on Heliobacterium chlorum, Heliospirillum gestii, and Heliobacillus mobilis (MA Thesis) Department of Biology, Indiana University, Bloomington, ILGoogle Scholar
  6. Beer-Romero, P., and H. Gest. 1987 Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacteriochlorophyll g FEMS Microbiol. Lett. 41 109–114CrossRefGoogle Scholar
  7. Beer-Romero, P. Favinger, J. L., and H. Gest. 1988 Distinctive properties of bacilliform photosynthetic heliobacteria FEMS Microbiol. Lett. 49 451–454CrossRefGoogle Scholar
  8. Brockmann Jr., H., and A. Lipinski. 1983 Bacteriochlorophyll g: A new bacteriochlorophyll from Heliobacterium chlorum Arch. Microbiol. 136 17–19CrossRefGoogle Scholar
  9. Bryantseva, I. A., V. M. Gorlenko, E. I. Kompantseva, L. A. Achenbach, and M. T. Madigan. 1999 Heliorestis daurensis gen. nov. sp.nov., an alkaliphilic rod to coiled-shaped phototrophic heliobacterium from a Siberian soda lake Arch. Microbiol. 172 167–174PubMedCrossRefGoogle Scholar
  10. Bryantseva, I. A., V. M. Gorlenko, E. I. Kompantseva, T. P. Tourova, B. B. Kuznetsov, and G. A. Osipov. 2000 Alkaliphilic heliobacterium Heliorestis baculata sp. nov., and emended description of the genus Heliorestis Arch. Microbiol. 174 283–291PubMedCrossRefGoogle Scholar
  11. Buresh, R. J., M. E. Casselman, and W. H. Patrick Jr. 1980 Nitrogen fixation in flooded soil systems, a review Adv. Agron. 33 149–192CrossRefGoogle Scholar
  12. Gest, H., and J. L. Favinger. 1983 Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll Arch. Microbiol. 136 11–16CrossRefGoogle Scholar
  13. Gest, H., J. L. Favinger, and M. T. Madigan. 1985 Exploitation of N2-fixation capacity for enrichment of anoxygenic photosynthetic bacteria in ecological studies FEMS Microbiol. Ecol. 31 317–322CrossRefGoogle Scholar
  14. Gest, H., and J. L. Favinger. 1989 Genus Heliobacterium In: J. Staley (Ed.) [{} Bergey’s Manual of Systematic Bacteriology] Williams & Wilkins, Baltimore, MD 3 1707–1708Google Scholar
  15. Gest, H. 1994 Discovery of the heliobacteria Photosynth. Res. 41 17–21CrossRefGoogle Scholar
  16. Gherna, R. L. 1981 Preservation In: P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, and G. B. Philips (Eds.) Manual of Methods for General Bacteriology American Society for Microbiology, Washington DC 208–217Google Scholar
  17. Gloe, A., N. Pfennig, H. Brockmann Jr., and W. Trowitzsch. 1975 A new bacteriochlorophyll from brown-colored Chlorobiaceae Arch. Microbiol. 102 103–109PubMedCrossRefGoogle Scholar
  18. Gupta, R. S., T. Mukhtar, and B. Singh. 1999 Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum, and proteobacteria): Implications regarding the origin of photosynthesis Molec. Microbiol. 32 893–906CrossRefGoogle Scholar
  19. Habte, M., and M. Alexander. 1980 Nitrogen fixation by photosynthetic bacteria in lowland rice culture Appl. Environ. Microbiol. 39 342–347PubMedGoogle Scholar
  20. Kimble, L. K., and M. T. Madigan. 1992a Nitrogen fixation and nitrogen metabolism in heliobacteria Arch. Microbiol. 158 155–161CrossRefGoogle Scholar
  21. Kimble, L. K., and M. T. Madigan. 1992b Evidence for an alternative nitrogenase in Heliobacterium gestii FEMS Microbiol. Lett. 100 255–260Google Scholar
  22. Kimble, L. K., A. K. Stevenson, and M. T. Madigan. 1994 Chemotrophic growth of heliobacteria in darkness FEMS Microbiol. Lett. 115 51–56PubMedCrossRefGoogle Scholar
  23. Kimble, L. K., L. Mandelco, C. R. Woese, and M. T. Madigan. 1995 Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils Arch. Microbiol. 163 259–267CrossRefGoogle Scholar
  24. Loveless, T. M., and P. E. Bishop. 1999 Identification of genes unique to Mo-independent nitrogenase systems in diverse diazotrophs Can. J. Microbiol. 45 312–317PubMedCrossRefGoogle Scholar
  25. Madigan, M. T. 1988 Microbiology, physiology, and ecology of phototrophic bacteria In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms John Wiley & Sons, New York, NY 39–111Google Scholar
  26. Madigan, M. T. 1995a Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer, Dordrecht 915–928Google Scholar
  27. Madigan, M. T., and J. G. Ormerod. 1995b Taxonomy, physiology, and ecology of heliobacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishers, Dordrecht 17–30Google Scholar
  28. Madigan, M. T. 2001 Family “Heliobacteriaceae” In: G. Garrity (Ed.) [{}Bergey’s Manual of Systematic Bacteriology, 2nd ed.] Springer-VerlagGoogle Scholar
  29. Michalski, T. J., J. E. Hunt, M. K. Bowman, K. Bardenn, H. Gest, J. R. Norris, and J. J. Katz. 1987 Bacteriopheophytin g: Properties and some speculations on a possible primary role for bacteriochlorophylls b and g in the biosynthesis of chlorophylls Proc. Natl. Acad. Sci. USA 84 2570–2574PubMedCrossRefGoogle Scholar
  30. Miller, K. R., J. S. Jacob, U. Smith, S. Kolaczkowski, and M. K. Bowman. 1986 Heliobacterium chlorum: Cell organization and structure Arch. Microbiol. 146 111–114PubMedCrossRefGoogle Scholar
  31. Oelze, J. 1985 Analysis of bacteriochlorophylls Methods Microbiol. 18 257–284CrossRefGoogle Scholar
  32. Ormerod, J., T. Nesbakken, and Y. Torgersen. 1990 Phototrophic bacteria that form heat-resistant endospores In: M. Baltscheffsky (Ed.) Current Research in Photosynthesis Kluwer, Dordrecht 4 935–938Google Scholar
  33. Ormerod, J. G., L. K. Kimble, T. Nesbakken, Y. A. Torgersen, C. R. Woese, and M. T. Madigan. 1996 Heliophilum fasciatum gen. nov. sp. nov. and Heliobacterium gestii sp. nov: Endospore-forming heliobacteria from rice field soils Arch. Microbiol. 165 226–234PubMedCrossRefGoogle Scholar
  34. Pfennig, N. 1989 Ecology of phototrophic purple and green sulfur bacteria In: H. G. Schlegel and B. Bowien (Eds.) Autotrophic Bacteria Springer-Verlag, New York, NY 97–116Google Scholar
  35. Pickett, M. W., N. Weiss, and D. J. Kelly. 1994 Gram-positive cell wall structure of the A3 gamma type in heliobacteria FEMS Microbiol. Lett. 122 7–12PubMedCrossRefGoogle Scholar
  36. Schubert, W. D., O. Klukas, W. Saenger, H. T. Witt, P. Fromme, and N. Krauss. 1998 A common ancestor for oxygenic and anoxygenic photosynthetic systems: A comparison based on the structural model of photosystem I J. Molec. Biol. 280 297–314PubMedCrossRefGoogle Scholar
  37. Setlow, P. 1988 Small, acid-soluble spore proteins of Bacillus species: Structure, synthesis, genetics, function and degradation Ann. Rev. Microbiol. 42 319–338CrossRefGoogle Scholar
  38. Stackebrandt, E., F. A. Rainey, and N. Ward-Rainey. 1996 Anoxygenic phototrophy across the phylogenetic spectrum: Current understanding and future perspectives Arch. Microbiol. 166 211–223PubMedCrossRefGoogle Scholar
  39. Stevenson, A. K., L. K. Kimble, and M. T. Madigan. 1997 Characterization of new heliobacteria and their habitats Photosynth. Res. 53 1–12CrossRefGoogle Scholar
  40. Tabita, F. R. 1995 The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria In: R. E. Blankenship, M. T. Madigan, and C. E. Bauer (Eds.) Anoxygenic Photosynthetic Bacteria Kluwer, Dordrecht 885–914Google Scholar
  41. Takaichi, S., K. Inoue, M. Akaike, M. Kobayashi, H. Oh-oka, and M. T. Madigan. 1997 The major carotenoid in all species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene not neurosporene Arch. Microbiol. 168 277–281PubMedCrossRefGoogle Scholar
  42. Takaichi, S. 1999 Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria In: H. A. Frank, R. J. Cogdell, A. Young, and G. Britton (Eds.) The Photochemistry of Carotenoids: Applications in Biology Kluwer Academic Publishers, Dordrecht 39–69Google Scholar
  43. Thauer, R. K., K. Jungermann, and K. Decker. 1977 Energy conservation in chemotrophic anaerobic bacteria Bacteriol. Rev. 41 100–180PubMedGoogle Scholar
  44. Van Dorssen, R. J., H. Vasmel, and J. Amesz. 1985 Antenna organization and energy transfer in membranes of Heliobacterium chlorum Biochim. Biophys. Acta 809 199–203CrossRefGoogle Scholar
  45. Ward, D. M., R. Weller, J. Shiea, R. W. Castenholz, and Y. Cohen. 1989 Hot spring microbial mats: Anoxygenic and oxygenic mats of possible evolutionary significance In: Y. Cohen, and E. Rosenberg (Eds.) Microbial Mats: Physiological Ecology of Benthic Microbial Communities American Society for Microbiology, Washington DC 3–15Google Scholar
  46. Woese, C. R., B. A. Debrunner-Vossbrinck, H. Oyaizu, E. Stackebrandt, and W. Ludwig. 1985 Gram-positive bacteria: Possible photosynthetic ancestry Science 229 762–765PubMedCrossRefGoogle Scholar
  47. Woese, C. R. 1987 Bacterial evolution Microbiol. Rev. 51 221–271PubMedGoogle Scholar
  48. Xiong, J., W. M. Fischer, K. Inove, M. Nokahara, and C. E. Bauer. 2000 Molecular evidence for the early evolution of photosynthesis Science 289 1724–1730PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Michael T. Madigan

There are no affiliations available

Personalised recommendations