The Genus Eubacterium and Related Genera

  • William G. Wade


The genus Eubacterium, because of its loose definition (see Taxonomy section below), includes species with a diverse range of phenotypes. Not surprisingly, therefore, 16S rRNA gene sequence comparison has revealed that the species of this genus are widely distributed within the phylogenetic tree. At present, 16S rRNA sequences have been determined for 45 of the 46 species and subspecies. These all fall within the phylum Firmicutes (Fig. 1). The type species, Eubacterium limosum belongs to a cluster with Eubacterium callanderi and Eubacterium barkeri, and it has been suggested that the genus Eubacterium sensu stricto should be restricted to these species (Willems and Collins, 1996), with the possible addition of Eubacterium aggregans, which also belongs to this phylogenetic group. Other major clusters of Eubacterium species within the Firmicutes include one consisting of Eubacterium biforme, Eubacterium cylindroides, Eubacterium dolichum and Eubacterium tortuosumwithin the...


Chenodeoxycholic Acid Rumen Fluid Isovaleric Acid Exogenous Electron Donor Reduce Blood Cholesterol Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Akao, T., T. Akao, and K. Kobashi. 1988 Glycyrrhizin stimulates growth of Eubacterium sp. strain GLH, a human intestinal anaerobe Appl. Environ. Microbiol. 54 2027–2030PubMedGoogle Scholar
  2. Allen, S. D. 1985 Gram-positive, nonsporeforming anaerobic bacilli In: E. H. Lennette, A. Balows, W. J. Hausler, and H. J. Shadomy (Eds.) Manual of Clinical Microbiology, 4th ed American Society for Microbiology Washington DC 461–472Google Scholar
  3. Andreesen, J. R., H. Bahl, and G. Gottschalk. 1989 Introduction to the physiology and biochemistry of the genus Clostridium In: N. P. Minton and D. J. Clarke (Eds.) Clostridia Plenum Press New York NY 27–62Google Scholar
  4. Baardsen, R., V. Bakken, H. B. Jensen, and T. Hofstad. 1988 Outer membrane protein pattern of Eubacterium plautii J. Gen. Microbiol. 134 1561–1564PubMedGoogle Scholar
  5. Bahl, H., and G. Gottschalk. 1988 Microbial production of butanol/acetone In: H. J. Rehm and G. Reed (Eds.) Biotechnology VCH Verlagsgesellschaft Weinheim Germany 6b 1–30Google Scholar
  6. Bailey, G. D., and D. N. Love. 1986 Eubacterium fossor sp. nov., an agar-corroding organism from normal pharynx and oral and respiratory tract lesions of horses Int. J. Syst. Bacteriol. 36 383–387Google Scholar
  7. Beuscher, H. U., and J. R. Andreesen. 1984 Eubacterium angustum sp. nov., a Gram-positive anaerobic, nonsporeforming, obligate purine fermenting organism Arch. Microbiol. 140 2–8Google Scholar
  8. Bokkenheuser, V. D., J. Winter, P. Dehazya, and W. G. Kelly. 1977 Isolation and characterization of human fecal bacteria capable of 21-dehydroxylating corticoids Appl. Environ. Microbiol. 34 571–575PubMedGoogle Scholar
  9. Bokkenheuser, V. D., J. Winter, S. M. Finegold, V. L. Sutter, A. E. Ritchie, W. E. C. Moore, and L. V. Holdeman. 1979 New markers for Eubacterium lentum Appl. Environ. Microbiol. 37 1001–1006PubMedGoogle Scholar
  10. Bokkenheuser, V. D., and J. Winter. 1980 Biotransformation of steroid hormones by gut bacteria Am. J. Clin. Nutr. 33 2502–2506PubMedGoogle Scholar
  11. Bokkenheuser, V. D., J. Winter, G. N. Morris, and S. Locascio. 1986 Steroid desmolase synthesis by Eubacterium desmolans and Clostridium cadaveris Appl. Environ. Microbiol. 52 1153–1156PubMedGoogle Scholar
  12. Bryant, M. P. 1959 Bacterial species of the rumen Bacteriol. Rev. 23 125–153PubMedGoogle Scholar
  13. Bryant, M. P., and B. R. S. Genthner. 1983 Microbial Production of Lower Aliphatic Carboxylic Acids US Patent 4,377,638Google Scholar
  14. Canzi, E., E. Maconi, F. Aragozzini, and A. Ferrari. 1989 Cooperative 3-epimerization of chenodeoxycholic acid by Clostridium innocuum and Eubacterium lentum Curr. Microbiol. 18 335–338Google Scholar
  15. Cato, E. P., L. V. H. Moore, and W. E. C. Moore. 1985 Fusobacterium alocis sp. nov. and Fusobacterium sulci sp. nov. from the human gingival sulcus Int. J. Syst. Bacteriol. 35 475–477Google Scholar
  16. Chandrasekaran, A., L. W. Robertson, and R. H. Reuning. 1987 Reductive inactivation of digitoxin by Eubacterium lentum cultures Appl. Environ. Microbiol. 53 901–904PubMedGoogle Scholar
  17. Coleman, J. P., W. B. White, B. Egestad, J. Sjövall, and P. B. Hylemon. 1987 Biosynthesis of a novel bile acid nucleotide and mechanism of 7α-dehydroxylation by an intestinal Eubacterium species J. Biol. Chem. 262 4701–4707PubMedGoogle Scholar
  18. Dewhirst, F. E., B. J. Paster, N. Tzellas, B. Coleman, J. Downes, D. A. Spratt, and W. G. Wade. 2001 Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of Olsenella gen. nov., reclassification of Lactobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov Int. J. Syst. Evol. Microbiol. 51 1797–1804PubMedGoogle Scholar
  19. Downes, J., M. A. Munson, D. A. Spratt, E. Kononen, E. Tarkka, E. H. Jousimies-Somer, and W. G. Wade. 2001 Characterisation of Eubacterium-like strains isolated from oral infections J. Med. Microbiol. 50 947–951PubMedGoogle Scholar
  20. Edenharder, R., and K. Mielek. 1984 Epimerization, oxidation and reduction of bile acids by Eubacterium lentum Syst. Appl. Microbiol. 5 287–298Google Scholar
  21. Edenharder, R., and J. Schneider. 1985 12 β-dehydrogenation of bile acids by Clostridium paraputrificum, C. tertium, and C. difficile and epimerization at carbon-12 of deoxycholic acid by cocultivation with 12 α-dehydrogenating Eubacterium lentum Appl. Environ. Microbiol. 49 964–968PubMedGoogle Scholar
  22. Eerola, E., T. Mottonen, P. Hannonen, R. Luukkainen, I. Kantola, K. Vuori, J. Tuominen, and P. Toivanen. 1994 Intestinal flora in early rheumatoid arthritis Br. J. Rheumatol. 33 1030–1038PubMedGoogle Scholar
  23. Eyssen, H., G. de Pauw, J. Stragier, and A. Verhulst. 1983 Cooperative formation of ?-muricholic acid by intestinal microorganisms Appl. Environ. Microbiol. 45 141–147PubMedGoogle Scholar
  24. Eyssen, H., and A. Verhulst. 1984 Biotransformation of linoleic acid and bile acids by Eubacterium lentum Appl. Environ. Microbiol. 47 39–43PubMedGoogle Scholar
  25. Finegold, S. M., V. L. Sutter, and G. E. Mathisen. 1983 Normal indigenous intestinal flora In: D. J. Hentges (Ed.) Human Intestinal Microflora in Health and Disease Academic Press New York NY 3–31Google Scholar
  26. Finegold, S. M., and W. L. George. 1989 Anaerobic Infections in Humans Academic Press San Diego CAGoogle Scholar
  27. Freier, T. A., D. C. Beitz, L. Li, P. A. Hartman. 1994 Characterization of Eubacterium coprostanoligenes sp. nov., a cholesterol-reducing anaerobe Int. J. Syst. Bacteriol. 44 137–142PubMedGoogle Scholar
  28. Garre, M., C. le Henaff, Tande, J. Chailloux, T. Bensousan, B. Garo, and J. M. Boles. 1991 Fulminant Eubacterium plautii infection following dog bite in asplenic man Lancet 338 384–385PubMedGoogle Scholar
  29. Genthner, B. R. S., C. L. Davis, and M. P. Bryant. 1981 Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol-and H2-CO2-utilizing species Appl. Environ. Microbiol. 42 12–19PubMedGoogle Scholar
  30. Genthner, B. R. S., and M. P. Bryant. 1982 Growth of Eubacterium limosum with carbon monoxide as the energy source Appl. Environ. Microbiol. 43 70–74PubMedGoogle Scholar
  31. Genthner, B. R. S., and M. P. Bryant. 1987 Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii Appl. Environ. Microbiol. 53 471–476Google Scholar
  32. Glass, T. L., and C. Z. Burley. 1985 Stimulation of 16-dehydroprogesterone and progesterone reductases of Eubacterium sp. strain 144 by hemin and hydrogen or pyruvate Appl. Environ. Microbiol. 49 1146–1153PubMedGoogle Scholar
  33. Gunsolley, J. C., J. G. Tew, C. Gooss, D. R. Marshall, J. A. Burmeister, and H. A. Schenkein. 1990 Serum antibodies to periodontal bacteria J. Periodontol. 61 412–419PubMedGoogle Scholar
  34. Haddock, J. D., and J. G. Ferry. 1989 Purification and properties of phloroglucinol reductase from Eubacterium oxidoreducens G-41 J. Biol. Chem. 264 4423–4427PubMedGoogle Scholar
  35. Hill, G. B., O. M. Ayers, and A. P. Kohan. 1987 Characteristics and sites of infection of Eubacterium nodatum, Eubacterium timidum, Eubacterium brachy, and other asaccharolytic eubacteria J. Clin. Microbiol. 25 1540–1545PubMedGoogle Scholar
  36. Hofstad, T., and P. Aasjord. 1982 Eubacterium plautii (Seguin 1928) comb. nov Int. J. Syst. Bacteriol. 32 346–349Google Scholar
  37. Holdeman, L. V., and W. E. C. Moore. 1974 New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces Int. J. Syst. Bacteriol. 24 260–277Google Scholar
  38. Holdeman, L. V., I. J. Good, and W. E. C. Moore. 1976 Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress Appl. Environ. Microbiol. 31 359–375PubMedGoogle Scholar
  39. Holdeman, L. V., E. P. Cato, and W. E. C. Moore. 1977 Anaerobe Laboratory Manual, 4th ed Anaerobe Laboratory, Virginia Polytechnic Institute and State University Blacksburg VAGoogle Scholar
  40. Holdeman, L. V., E. P. Cato, J. A. Burmeister, and W. E. C. Moore. 1980 Descriptions of Eubacterium timidum sp. nov., Eubacterium brachy sp. nov., and Eubacterium nodatum sp. nov. isolated from human periodontitis Int. J. Syst. Bacteriol. 30 163–169Google Scholar
  41. Hormann, K., and J. R. Andreesen. 1989 Reductive cleavage of sarcosine and betaine by Eubacterium acidaminophilum via enzyme systems different from glycine reductase Arch. Microbiol. 153 50–59Google Scholar
  42. Hoshino, E. 1985 Predominant obligate anaerobes in human carious dentine J. Dent. Res. 64 1195–1198PubMedGoogle Scholar
  43. Hylemon, P. B. 1985 Metabolism of bile acids in intestinal microflora In: H. Danielsson and J. Sjovall (Eds.) Sterols and Bile Acids Elsevier Science Amsterdam The Netherlands 331–343Google Scholar
  44. Jalava, J., and E. Eerola. 1999 Phylogenetic analysis of Fusobacterium alocis and Fusobacterium sulci based on 16S rRNA gene sequences: proposal of Filifactor alocis (Cato, Moore and Moore) comb. nov. and Eubacterium sulci (Cato, Moore and Moore) comb. nov Int. J. Syst. Bacteriol. 49 1375–1379PubMedGoogle Scholar
  45. Jousimies-Somer, H. R., P. Summanen, D. M. Citron, E. J. Baron, H. M. Wexler, and S. M. Finegold. 2002 Anaerobic Bacteriology Manual Star Publishing Belmont CAGoogle Scholar
  46. Kageyama, A., Y. Benno, and T. Nakase. 1999a Phylogenetic and phenotypic evidence for the transfer of Eubacterium aerofaciens to the genus Collinsella as Collinsella aerofaciens gen. nov., comb. nov Int. J. Syst. Bacteriol. 49 557–565PubMedGoogle Scholar
  47. Kageyama, A., Y. Benno, and T. Nakase. 1999b Phylogenic and phenotypic evidence for the transfer of Eubacterium fossor to the genus Atopobium as Atopobium fossor comb. nov Microbiol. Immunol. 43 389–395PubMedGoogle Scholar
  48. Krumholz, L. R., and M. P. Bryant. 1986 Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin Arch. Microbiol. 144 8–14Google Scholar
  49. Krumholz, L. R., R. L. Crawford, M. E. Hemling, and M. P. Bryant. 1987 Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate J. Bacteriol. 169 1886–1890PubMedGoogle Scholar
  50. Krumholz, L. R., and M. P. Bryant. 1988 Characterization of the pyrogallol-phloroglucinol isomerase of Eubacterium oxidoreducens J. Bacteriol. 170 2472–2479PubMedGoogle Scholar
  51. Lawson, P. A., E. Falsen, E. Akervall, P. Vandamme, and M. D. Collins. 1997 Characterization of some Actinomyces-like isolates from human clinical specimens: Reclassification of Actinomyces suis (Soltys and Spratling) as Actinobaculum suis comb. nov. and description of Actinobaculum schaalii sp. nov Int. J. Syst. Bacteriol. 47 899–903PubMedGoogle Scholar
  52. Li, L., C. A. Baumann, D. D. Meling, J. L. Sell, and D. C. Beitz. 1996 Effect of orally administered Eubacterium coprostanoligenes ATCC 51222 on plasma cholesterol concentration in laying hens Poultry Sci. 75 743–745Google Scholar
  53. Li, L., S. M. Batt, M. Wannemuehler, A. Dispirito, and D. C. Beitz. 1998 Effect of feeding a cholesterol-reducing bacterium, Eubacterium coprostanoligenes, to germ-free mice Lab. Anim. Sci. 48 253–255PubMedGoogle Scholar
  54. Lindley, N. D., P. Loubière, S. Pacaud, C. Mariotto, and G. Goma. 1987 Novel products of the acidogenic fermentation of methanol during growth of Eubacterium limosum in the presence of high concentrations of organic acids J. Gen. Microbiol. 133 3557–3563Google Scholar
  55. Ludwig, W., G. Kirchhof, M. Weizenegger, and N. Weiss. 1992 Phylogenetic evidence for the transfer of Eubacterium suis to the genus Actinomyces as Actinomyces suis comb. nov Int. J. Syst. Bacteriol. 42 161–165PubMedGoogle Scholar
  56. MacDonald, I. A., and D. M. Hutchison. 1982 Epimerization versus dehydroxylation of the 7 α-hydroxyl-group of primary bile acids: competitive studies with Clostridium absonum and 7 α-dehydroxylating bacteria (Eubacterium sp.) J. Steroid Biochem. 17 295–303PubMedGoogle Scholar
  57. MacDonald, I. A., V. D. Bokkenheuser, J. Winter, A. M. McLernon, and E. H. Mosbach. 1983 Degradation of steroids in the human gut J. Lipid. Res. 24 675–700PubMedGoogle Scholar
  58. Margaret, B. S., and G. N. Krywolap. 1986 Eubacterium yurii subsp. yurii sp. nov. and Eubacterium yurii subsp. margaretiae subsp. nov.: Test tube brush bacteria from subgingival dental plague Int. J. Syst. Bacteriol. 36 145–149Google Scholar
  59. Margaret, B. S., and G. N. Krywolap. 1988 Eubacterium yurii subsp. schtitka subsp. nov.: Test tube brush bacteria from subgingival dental plague Int. J. Syst. Bacteriol. 38 207–208Google Scholar
  60. Mechichi, T., M. Labat, T. H. S. Woo, P. Thomas, J-L. Garcia, and B. K. C. Patel. 1998 Eubacterium aggregans sp. nov., a new homoacetogenic bacterium from olive mill wastewater treatment digestor Anaerobe 4 283–291PubMedGoogle Scholar
  61. Moore, W. E. C., J. L. Johnson, and L. V. Holdeman. 1976 Emendation of Bacteriodaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium and Ruminococcus Int. J. Syst. Bacteriol. 26 238–252Google Scholar
  62. Moore, W. E. C., L. V. Holdeman, R. M. Smibert, D. E. Hash, J. A. Burmeister, and R. R. Ranney. 1982 Bacteriology of severe periodontitis in young adult humans Infect. Immun. 38 1137–1148PubMedGoogle Scholar
  63. Moore, W. E. C., L. V. Holdeman, E. P. Cato, R. M. Smibert, J. A. Burmeister, and R. R. Ranney. 1983 Bacteriology of moderate (chronic) periodontitis in mature adult humans Infect. Immun. 42 510–515PubMedGoogle Scholar
  64. Moore, W. E. C., and L. V. Holdeman Moore. 1986 Genus Eubacterium In: P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams & Wilkins Baltimore MD 2 1353–1373Google Scholar
  65. Morris, G. N., J. Winter, E. P. Cato, A. E. Ritchie, and V. D. Bokkenheuser. 1986 Eubacterium desmolans sp. nov., a steroid desmolase producing species from cat fecal flora Int. J. Syst. Bacteriol. 36 183–186Google Scholar
  66. Mott, G. E., and A. W. Brinkley. 1979 Plasmenylethanolamine: growth factor for cholesterol-reducing Eubacterium J. Bacteriol. 139 755–760PubMedGoogle Scholar
  67. Mountfort, D. O., W. D. Grant, R. Clarke, and R. A. Asher. 1988 Eubacterium callanderi sp. nov. that demethoxylates O-methoxylated aromatic acids to volatile fatty acids Int. J. Syst. Bacteriol. 38 254–258Google Scholar
  68. Munson, M. A., T. Pitt-Ford, B. Chong, A. J. Weightman, and W. G. Wade. 2002 Molecular and cultural analysis of the microflora associated with endodontic infections J. Dent. Res. 81 761–766PubMedGoogle Scholar
  69. Nakazawa, F., S. E. Poco, T. Ikeda, M. Sato, S. Kalfas, G. Sundqvist, and E. Hoshino. 1999 Cryptobacterium curtum gen. nov., sp. nov., a new genus of gram-positive anaerobic rod isolated from human oral cavities Int. J. Syst. Bacteriol. 49 1193–200PubMedGoogle Scholar
  70. Nakazawa, F., M. Sato, S. E. Poco, T. Hashimura, T. Ikeda, S. Kalfas, G. Sundqvist, and E. Hoshino. 2000 Description of Mogibacterium pumilum gen. nov., sp. nov. and Mogibacterium vescum gen. nov., sp. nov., and reclassification of Eubacterium timidum (Holdeman et al. 1980) as Mogibacterium timidum gen. nov., comb. nov Int. J. Syst. Evol. Microbiol. 50 679–688PubMedGoogle Scholar
  71. Nakazawa, F., S. E. Poco Jr, M. Sato, T. Ikeda, S. Kalfas, G. Sundqvist, and E. Hoshino. 2002 Taxonomic characterization of Mogibacterium diversum sp. nov. and Mogibacterium neglectum sp. nov., isolated from human oral cavities Int. J. Syst. Evol. Microbiol. 52 115–122PubMedGoogle Scholar
  72. Perlman, D., and J. B. Semar. 1963 Production of cobamides by Butyribacterium rettgeri Biotechnol. Bioengin. 5 21–25Google Scholar
  73. Poco Jr., S. E., F. Nakazawa, T. Ikeda, M. Sato, T. Sato, and E. Hoshino. 1996 Eubacterium exiguum sp. nov., isolated from human oral lesions Int. J. Syst. Bacteriol. 46 1120–1124PubMedGoogle Scholar
  74. Prévot, A. R. 1938 Etude de systématique bactérienne. III: Invalideté du genre Bacteroides castellani et Chalmers démembrement et reclassification Ann. Inst. Pasteur 60 287–307Google Scholar
  75. Ren, D., L. Li, A. W. Schwabacher, J. W. Young, and D. C. Beitz. 1996 Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222 Steroids 61 33–40PubMedGoogle Scholar
  76. Robertson, L. W., A. Chandrasekaran, R. H. Reuning, J. Hui, and B. D. Rawal. 1986 Reduction of digoxin to 20R-dihydrodigoxin by cultures of Eubacterium lentum Appl. Environ. Microbiol. 51 1300–1303PubMedGoogle Scholar
  77. Schleifer, K.-H., and O. Kandler. 1972 Peptidoglycan types of bacterial cell walls and their taxonomic implications Bacteriol. Rev. 36 407–477PubMedGoogle Scholar
  78. Schwiertz, A., G. Le Blay, and M. Blaut. 2000 Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes Appl. Environ. Microbiol. 66 375–382PubMedGoogle Scholar
  79. Sedlaczek, L. 1988 Biotransformations of steroids CRC Rev. Biotechnol. 7 186–236Google Scholar
  80. Severin, A. I., S. Kokeguchi, and K. Kato. 1989a Chemical composition of Eubacterium alactolyticum cell wall peptidoglycan Arch. Microbiol. 151 348–352PubMedGoogle Scholar
  81. Severin, A. I., S. Kokeguchi, and K. Kato. 1989b Chemical composition of Eubacterium nodatum cell wall peptidoglycan Arch. Microbiol. 151 353–358PubMedGoogle Scholar
  82. Simmering, H., B. Kleesen, and M. Blaut. 1999 Quantification of the flavonoid-degrading bacterium Eubacterium ramulus in human fecal samples with a species-specific oligonucleotide hybridization probe Appl. Environ. Microbiol. 65 3705–3709PubMedGoogle Scholar
  83. Smith, A. J., and W. G. Wade. 1999 Serum antibody response against oral Eubacterium species in periodontal disease J. Periodont. Res. 34 175–178PubMedGoogle Scholar
  84. Stewart, C. S., and M. P. Bryant. 1988 The rumen bacteria In: P. N. Hobson (Ed.) The Rumen Microbial Ecosystem Elsevier Applied Science London UK 21–75Google Scholar
  85. Tanner, R. S., E. Stackebrandt, G. E. Fox, and C. R. Woese. 1981 A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, and Eubacterium tenue Curr. Microbiol. 5 35–38Google Scholar
  86. Taras, D., R. Simmering, M. D. Collins, P. A. Lawson, and M. Blaut. 2002 Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces Int. J. Syst. Evol. Microbiol. 52 423–428PubMedGoogle Scholar
  87. Tew, J. G., D. R. Marshall, W. E. C. Moore, A. M. Best, K. G. Palcanis, and R. R. Ranney. 1985 Serum antibody reactive with predominant organisms in the subgingival flora of young adults with generalised severe periodontitis Infect. Immun. 48 303–311PubMedGoogle Scholar
  88. Thiolas, A., C. Bollet, M. Gasmi, M. Drancourt, and D. Raoult. 2003 Eubacterium callanderi bacteremia: report of the first case J. Clin. Microbiol. 41 2235–2236PubMedGoogle Scholar
  89. Udey, L. R., R. Young, and B. Sallman. 1977 Isolation and characterization of an anaerobic bacterium, Eubacterium tarantellus sp. nov., associated with striped mullet (Mugil cephalus) mortality in Biscayne Bay, Florida J. Fish. Res. Board Can. 34 402–409Google Scholar
  90. Uematsu, H., and E. Hoshino. 1992 Predominant obligate anaerobes in human periodontal pockets J. Periodont. Res. 27 15–19PubMedGoogle Scholar
  91. Uematsu, H., F. Nakazawa, T. Ikeda, and E. Hoshino. 1993 Eubacterium saphenum sp. nov., isolated from human periodontal pockets Int. J. Syst. Bacteriol. 43 302–304PubMedGoogle Scholar
  92. Van Gylswyk, N. O., and J. J. T. K. van der Toorn. 1985 Eubacterium uniforme sp. nov. and Eubacterium xylanophilum sp. nov., fiber-digesting bacteria from the rumina of sheep fed corn stover Int. J. Syst. Bacteriol. 35 323–326Google Scholar
  93. Van Gylswyk, N. O., and J. J. T. K. van der Toorn. 1986 Description and designation of a neotype strain of Eubacterium cellulosolvens (Cillobacterium cellulosolvens Bryant, Small, Bouma and Robinson) Holdeman and Moore Int. J. Syst. Bacteriol. 36 275–277Google Scholar
  94. Vogels, G. D., and C. van der Drift. 1976 Degradation of purines and pyrimidines by microorganisms Bacteriol. Rev. 40 403–468PubMedGoogle Scholar
  95. Vogt, J. R. A., L. Lamm-Kolonko, and P. Renz. 1988 Biosynthesis of vitamin B12 in anaerobic bacteria: Experiments with Eubacterium limosum and D-erythrose 14C-labeled in different positions Eur. J. Biochem. 174 637–640PubMedGoogle Scholar
  96. Wade, W. G., M. A. O. Lewis, S. L. Cheeseman, E. G. Absi, and P. A. Bishop. 1993 An unclassified Eubacterium taxon in acute dentoalveolar abscess J. Med. Microbiol. 40 115–117Google Scholar
  97. Wade, W. G., J. Downes, D. Dymock, S. J. Hiom, A. J. Weightman, F. E. Dewhirst, B. J. Paster, N. Tzellas, and B. Coleman. 1999 The family Coriobacteriaceae: reclassification of Eubacterium exiguum (Poco et al. 1996) and Peptostreptococcus heliotrinreducens (Lanigan 1976) as Slackia exigua gen. nov., comb. nov. and Slackia heliotrinireducens gen. nov., comb. nov., and Eubacterium lentum (Prevot 1938) as Eggerthella lenta gen. nov., comb. nov Int. J. Syst. Bacteriol. 49 595–600PubMedGoogle Scholar
  98. Wallace, R. J., N. McKain, N. R. McEwan, E. Miyagawa, L. C. Chaudhary, T. P. King, N. D. Walker, J. H. A. Apajalahti, and C. J. Newbold. 2003 Eubacterium pyruvativorans sp. nov., a novel non-saccharolytic anaerobe from the rumen that ferments pyruvate and amino acids, forms caproate and utilizes acetate and propionate Int. J. Syst. Evol. Microbiol. 53 965–970PubMedGoogle Scholar
  99. Wegienek, J., and C. A. Reddy. 1982 Taxonomic study of “Corynebacterium suis” Soltyns and Spratling: proposal of Eubacterium suis (nov. rev.) comb. nov Int. J. Syst. Bacteriol. 32 218–228Google Scholar
  100. Weiss, N. 1981 Cell wall structure of anaerobic cocci Rev. Inst. Pasteur Lyon 14 53–59Google Scholar
  101. White, W. B., J. P. Coleman, and P. B. Hylemon. 1988a Molecular cloning of a gene encoding a 45.000 dalton polypeptide associated with bile acid 7-dehydroxylation in Eubacterium sp. strain VPI 12 708 J. Bacteriol. 170 611–616PubMedGoogle Scholar
  102. White, W. B., C. V. Franklund, J. P. Coleman, and P. B. Hylemon. 1988b Evidence for a multigene family involved in bile acid 7-dehydroxylation in Eubacterium sp. strain VPI 12 708 J. Bacteriol. 170 4555–4561PubMedGoogle Scholar
  103. Willems, A., and M. D. Collins. 1996 Phylogenetic relationships of the genera Acetobacterium and Eubacterium sensu stricto and reclassification of Eubacterium alactolyticum as Pseudoramibacter alactolyticus gen. nov., comb. nov Int. J. Syst. Bacteriol. 46 1083–1087PubMedGoogle Scholar
  104. Willems, A, Moore, W. E. C., N. Weiss, and M. D. Collins. 1997 Phenotypic and phylogenetic characterization of some Eubacterium-like isolates containing a novel type B wall murein from human feces: Description of Holdemania filiformis gen. nov., sp. nov Int. J. Syst. Bacteriol. 47 1201–1204PubMedGoogle Scholar
  105. Zellner, G., and J. Winter. 1987 Analysis of a highly efficient methanogenic consortium producing biogas from whey Syst. Appl. Microbiol. 9 284–292Google Scholar
  106. Zhang, X., M. Rimpilainen, E. Simelyte, and P. Toivanen. 2001 Characterisation of Eubacterium cell wall: peptidoglycan structure determines arthritogenicity Ann. Rheum. Dis. 60 269–274PubMedGoogle Scholar
  107. Zindel, U., W. Freudenberg, M. Rieth, J. R. Andreesen, J. Schnell, and F. Widdel. 1988 Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate: Description and enzymatic studies Arch. Microbiol. 150 254–266Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • William G. Wade

There are no affiliations available

Personalised recommendations