Advertisement

The Genera Desulfitobacterium and Desulfosporosinus: Taxonomy

  • Stefan Spring
  • Frank Rosenzweig

Introduction

Members of the genera Desulfitobacterium and Desulfosporosinus represent a clade of strictly anaerobic, rod-shaped, and sporeforming bacteria within the phylum Firmicutes, previously also known as the “low G+C Gram-positive bacteria.”

The taxonomic and environmental significance of microorganisms belonging to this group escaped the attention of microbiologists for a long time and was only recently revealed, although the first representative species was already isolated in 1959. This species, however, was wrongly described as Desulfovibrio orientis (Adams and Postgate, 1959). Later the taxonomic affiliation of this bacterium to the Gram-positive sulfate reducers was recognized and it was reclassified as Desulfotomaculum orientis (Campbell and Postgate, 1965). Under this name it was included in the Approved Lists of Bacterial Names (Skerman et al., 1980). In the course of a phylogenetic analysis of the genus Desulfotomaculum, the separate taxonomic position of this species...

Keywords

Fatty Acid Pattern DSMZ Medium Lateral Flagellum Diagnostic Diamino Acid Desulfitobacterium Hafniense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Adams, M., and J. R. Postgate. 1959 A new sulfate-reducing vibrio J. Gen. Microbiol. 20 252–257PubMedGoogle Scholar
  2. Boone, D. R., R. W. Castenholz, and G. M. Garrity (Eds.). 2001 Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer-Verlag New York, NY 1Google Scholar
  3. Bouchard, B., R. Beaudet, R. Villemur, G. McSween, F. Lepine, and J.-G. Bisaillon. 1996 Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol Int. J. Syst. Bacteriol. 46 1010–1015PubMedCrossRefGoogle Scholar
  4. Breitenstein, A., A. Saano, M. Salkinoja-Salonen, J. R. Andreesen, and U. Lechner. 2001 Analysis of a 2,4,6-trichlorophenol-dehalogenating enrichment culture and isolation of the dehalogenating member Desulfitobacterium frappieri strain TCP-A Arch. Microbiol. 175 133–142PubMedCrossRefGoogle Scholar
  5. Bruce, J. L. 1996 Automated system rapidly identifies and characterizes microorganisms in food Food Technol. 50 77–81Google Scholar
  6. Campbell, L. L., and J. R. Postgate. 1965 Classification of the sporeforming sulfate-reducing bacteria Bacteriol. Rev. 29 359–363PubMedGoogle Scholar
  7. Christiansen, N., and B. K. Ahring. 1996 Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium Int. J. Syst. Bacteriol. 46 442–448CrossRefGoogle Scholar
  8. Cypionka, H., and N. Pfennig. 1986 Growth yield of Desulfotomaculum orientis with hydrogen in chemostat culture Arch. Microbiol. 143 396–399CrossRefGoogle Scholar
  9. Dennie, D., I. Gladu, F. Lépine, R. Villemur, J.-G. Bisaillon, and R. Beaudet. 1998 Spectrum of the reductive dehalogenation activity of Desulfitobacterium frappieri PCP-1 Appl. Environ. Microbiol. 64 4603–4606PubMedGoogle Scholar
  10. De Wildeman, S., G. Diekert, H. van Langenhove, and W. Verstraete. 2003 Stereoselective dehalorespiration with vicinal dichlorinated alkanes Appl. Environ. Microbiol. 69 5643–5647PubMedCrossRefGoogle Scholar
  11. Fantroussi, S. E., J. Mahillon, H. Naveau, and S. N. Agathos. 1997 Introduction of anaerobic dechlorinating bacteria into soil slurry microcosms and nested-PCR monitoring Appl. Environ. Microbiol. 63 806–811PubMedGoogle Scholar
  12. Felsenstein, J. 1982 Numerical methods for inferring phylogenetic trees Q. Rev. Biol. 57 379–404CrossRefGoogle Scholar
  13. Finneran, K. T., H. M. Forbush, C. V. Gaw VanPraagh, and D. R. Lovley. 2002 Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds Int. J. Syst. Evol. Microbiol. 52 1929–1935PubMedCrossRefGoogle Scholar
  14. Friedrich, M., N. Springer, W. Ludwig, and B. Schink. 1996 Phylogenetic positions of Desulfofustis glycolicus gen. nov., sp. nov., and Syntrophobotulus glycolicus gen. nov., sp. nov., two new strict anaerobes growing with glycolic acid Int. J. Syst. Bacteriol. 46 1065–1069PubMedCrossRefGoogle Scholar
  15. Gerritse, J., V. Renard, T. M. Pedro Gomes, P. A. Lawson, M. D. Collins, and J. C. Gottschal. 1996 Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols Arch. Microbiol. 165 132–140PubMedCrossRefGoogle Scholar
  16. Gerritse, J., O. Drzyzga, G. Kloetstra, M. Keijmel, L. P. Wiersum, R. Hutson, M. D. Collins, and J. C. Gottschal. 1999 Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1 Appl. Environ. Microbiol. 65 5212–5221PubMedGoogle Scholar
  17. Heimbrook, M. E., W. L. L. Wang, and G. Campbell. 1989 Staining bacterial flagella easily J. Clin. Microbiol. 27 2612–2615PubMedGoogle Scholar
  18. Hippe, H. 1991 Maintenance of methanogenic bacteria In: B. E. Kirsop and A. Doyle (Eds.) Maintenance of Microorganisms and Cultured Cells, 2nd ed. Academic Press London, UK 101–113Google Scholar
  19. Hippe, H., A. Hagenauer, and R. M. Kroppenstedt. 1997 Menadione requirement for sulfate-reduction in Desulfotomaculum aeronauticum, and emended species description Syst. Appl. Microbiol. 20 554–558CrossRefGoogle Scholar
  20. Holliger, C., D. Hahn, H. Harmsen, W. Ludwig, W. Schumacher, B. Tindall, F. Vazquez, N. Weiss, and A. J. B Zehnder. 1998 Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration Arch. Microbiol. 169 313–321PubMedCrossRefGoogle Scholar
  21. Jukes, T. H., and C. R. Cantor. 1969 Evolution of protein molecules In: H. N. Murano (Ed.) Mammalian Protein Metabolism Academic Press New York, NY 21–132Google Scholar
  22. Klein, M., M. Friedrich, A. J. Roger, P. Hugenholtz, S. Fishbain, H. Abicht, L. L. Blackall, D. A. Stahl, and M. Wagner. 2001 Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes J. Bacteriol. 183 6028–6035PubMedCrossRefGoogle Scholar
  23. Klemps, R., H. Cypionka, F. Widdel, and N. Pfennig. 1985 Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species Arch. Microbiol. 143 203–208CrossRefGoogle Scholar
  24. Lanthier, M., R. Villemur, F. Lépine, J.-G. Bisaillon, and R. Beaudet. 2000 Monitoring of Desulfitobacterium frappieri PCP-1 in pentachlorophenol-degrading anaerobic soil slurry reactors Environ. Microbiol. 2 703–708PubMedCrossRefGoogle Scholar
  25. Lanthier, M., R. Villemur, F. Lépine, J.-G. Bisaillon, and R. Beaudet. 2001 Geographic distribution of Desulfitobacterium frappieri PCP-1 and Desulfitobacterium spp. in soils from the province of Quebec, Canada FEMS Microbiol. Ecol. 36 185–191PubMedCrossRefGoogle Scholar
  26. Lanthier, M., B. Tartakovsky, R. Villemur, G. de Luca, and S. R. Guiot. 2002 Microstructure of anaerobic granules bioaugmented with Desulfitobacterium frappieri PCP-1 Appl. Environ. Microbiol. 68 4035–4043PubMedCrossRefGoogle Scholar
  27. Lévesque, M.-J., S. La Boissière, J.-C. Thomas, R. Beaudet, and R. Villemur. 1997 Rapid method for detecting Desulfitobacterium frappieri strain PCP-1 in soil by the polymerase chain reaction Appl. Microbiol. Biotechnol. 47 719–725PubMedCrossRefGoogle Scholar
  28. Miller, E., G. Wohlfarth, and G. Diekert. 1998 Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S Arch. Microbiol. 169 497–502PubMedCrossRefGoogle Scholar
  29. Nevin, K. P., K. T. Finneran, and D. R. Lovley. 2003 Microorganisms associated with uranium bioremedation in a high-salinity subsurface sediment Appl. Environ. Microbiol. 69 3672–3675PubMedCrossRefGoogle Scholar
  30. Newman, D. K., E. K. Kennedy, J. D. Coates, D. Ahmann, D. J. Ellis, D. R. Lovley, and F. M. M. Morel. 1997 Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov Arch. Microbiol. 168 380–388PubMedCrossRefGoogle Scholar
  31. Niggemyer, A., S. Spring, E. Stackebrandt, and R. F. Rosenzweig. 2001 Isolation and characterization of a novel As(V)-reducing bacterium: Implications for arsenic mobilization and the genus Desulfitobacterium Appl. Environ. Microbiol. 67 5568–5580PubMedCrossRefGoogle Scholar
  32. Robertson, W. J., P. D. Franzmann, and B. J. Mee. 2000 Spore-forming, Desulfosporosinus-like sulphate-reducing bacteria from a shallow aquifer contaminated with gasolene J. Appl. Microbiol. 88 248–259PubMedCrossRefGoogle Scholar
  33. Robertson, W. J., J. P. Bowman, P. D. Franzmann, and B. J. Mee. 2001 Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater Int. J. Syst. Evol. Microbiol. 51 133–140PubMedGoogle Scholar
  34. Saitou, N., and M. Nei. 1987 The neighbor-joining method: A new method for reconstructing phylogenetic trees Molec. Biol. Evol. 4 406–425PubMedGoogle Scholar
  35. Sanford, R. A., J. R. Cole, F. E. Löffler, and J. M. Tiedje. 1996 Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chlor-4-hydroxybenzoate Appl. Environ. Microbiol. 62 3800–3808PubMedGoogle Scholar
  36. Sasser, M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids USFCC News Lett. 20 1–6Google Scholar
  37. Skerman, V. B. D., V. McGrowan, and P. H. A. Sneath. 1980 Approved lists of bacterial names Int. J. Syst. Bacteriol. 30 225–420CrossRefGoogle Scholar
  38. Stackebrandt, E., C. Spröer, F. A. Rainey, J. Burghardt, O. Päuker, and H. Hippe. 1997 Phylogenetic analysis of the genus Desulfotomaculum: Evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov Int. J. Syst. Bacteriol. 47 1134–1139PubMedCrossRefGoogle Scholar
  39. Stackebrandt, E., P. Schumann, E. Schüler, and H. Hippe. 2003 Reclassification of Desulfotomaculum auripigmentum as Desulfosporosinus auripigmenti corrig., comb. nov Int. J. Syst. Evol. Microbiol. 53 1439–1443PubMedCrossRefGoogle Scholar
  40. Utkin, I., C. Woese, and J. Wiegel. 1994 Isolation and Characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds Int. J. Syst. Bacteriol. 44 612–619PubMedCrossRefGoogle Scholar
  41. Vainshtein, M. B., G. I. Gogotova, and H. Hippe. 1995 A sulfate-reducing bacterium from permafrost Microbiology 64 436–439Google Scholar
  42. Van de Pas, B. A., H. J. M. Harmsen, G. C. Raangs, W. M. de Vos, G. Schraa, and A. J. M. Stams. 2001 A Desulfitobacterium strain isolated from human feces that does not dechlorinate chloroethenes or chlorophenols Arch. Microbiol. 175 389–394PubMedCrossRefGoogle Scholar
  43. Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Trüper. 1987 Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics Int. J. Syst. Bacteriol. 37 463–464CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Stefan Spring
  • Frank Rosenzweig

There are no affiliations available

Personalised recommendations