Clostridium perfringens and Histotoxic Disease

  • Julian I. Rood


The clostridia are a diverse group of Gram-positive spore-forming bacteria that cause a variety of potentially fatal human diseases including gas gangrene, tetanus, botulism and pseudomembranous colitis. The common feature of all of these diseases is that spore formation is important in their epidemiology and that they are mediated by powerful protein toxins. Since these syndromes are best discussed on a systems-related basis, rather than by their causative bacterial species, the clostridial chapters have been divided into separate discussions on the neurotoxic (Neurotoxigenic Clostridia in this Volume), enterotoxic (The Enterotoxic Clostridia in this Volume) and histotoxic clostridia. For earlier reviews on these topics see Rood et al. (1997) and Fischetti et al. (2000). The reader is also referred to McLennan’s classical review of histotoxic clostridial infections of man (MacLennan, 1962) and a more recent review of clostridial diseases of animals (Songer, 1996). The...


Hemolytic Activity Clostridium Perfringens Tetracycline Resistance Clostridial Species Chloramphenicol Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Abraham, L. J., and J. I. Rood. 1985a Cloning and analysis of the Clostridium perfringens tetracycline resistance plasmid, pCW3 Plasmid 13 155–162PubMedGoogle Scholar
  2. Abraham, L. J., and J. I. Rood. 1985b Molecular analysis of transferable tetracycline resistance plasmids from Clostridium perfringens J. Bacteriol. 161 636–640PubMedGoogle Scholar
  3. Abraham, L. J., A. J. Wales, and J. I. Rood. 1985c Worldwide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid, pCW3 Plasmid 14 37–46PubMedGoogle Scholar
  4. Abraham, L. J., and J. I. Rood. 1987 Identification of Tn4451 and Tn4452, chloramphenicol resistance transposons from Clostridium perfringens J. Bacteriol. 169 1579–1584PubMedGoogle Scholar
  5. Adams, V., D. Lyras, K. Farrow, and J. Rood. 2002 The clostridial mobilisable transposons Cell. Molec. Life Sci. 59 2033–2043PubMedGoogle Scholar
  6. Adams, V., I. Lucet, D. Lyras, and J. I. Rood. 2004 DNA binding properties of TnpX indicate that different synapses are formed in the excision and integration of the Tn4451 family Molec. Microbiol. 53 1195–1207Google Scholar
  7. Alape-Girón, A., M. Flores-Díaz, I. Guillouard, C. E. Naylor, R. W. Titball, A. Rucavado, B. Lomonte, A. K. Basak, J. M. Gutierrez, S. T. Cole, and M. Thelestam. 2000 Identification of residues critical for toxicity in Clostridium perfringens phospholipase C, the key toxin in gas gangrene Eur. J. Biochem. 267 5191–5197PubMedGoogle Scholar
  8. Allen, S. P., and H. P. Blaschek. 1988 Electroporation-induced transformation of intact cells of Clostridium perfringens Appl. Environ. Microbiol. 54 2322–2324PubMedGoogle Scholar
  9. Allen, S. P., and H. P. Blaschek. 1990 Factors involved in the electroporation-induced transformation of Clostridium perfringens FEMS Microbiol. Lett. 70 217–220Google Scholar
  10. Awad, M. M., A. E. Bryant, D. L. Stevens, and J. I. Rood. 1995 Virulence studies on chromosomal α-toxin and q-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of α-toxin in Clostridium perfringens-mediated gas gangrene Molec. Microbiol. 15 191–202Google Scholar
  11. Awad, M. M., and J. I. Rood. 1997 Isolation of α-toxin, q-toxin and k-toxin mutants of Clostridium perfringens by Tn916 mutagenesis Microb. Pathog. 22 275–284PubMedGoogle Scholar
  12. Awad, M., D. Ellemor, A. Bryant, O. Matsushita, R. Boyd, D. Stevens, J. Emmins, and J. Rood. 2000 Construction and virulence testing of a collagenase mutant of Clostridium perfringens Microb. Pathog. 28 107–117PubMedGoogle Scholar
  13. Awad, M. M., D. M. Ellemor, R. L. Boyd, J. J. Emmins, and J. I. Rood. 2001 Synergistic effects of α-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene Infect. Immun. 69 7904–7910PubMedGoogle Scholar
  14. Bannam, T. L., and J. I. Rood. 1993 Clostridium perfringens-Escherichia coli shuttle vectors that carry single antibiotic resistance determinants Plasmid 29 223–235Google Scholar
  15. Bannam, T. L., P. K. Crellin, and J. I. Rood. 1995 Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens: The TnpX site-specific recombinase excises a circular transposon molecule Molec. Microbiol. 16 535–551Google Scholar
  16. Bannam, T. L., and J. I. Rood. 1999 Identification of structural and functional domains of the tetracycline efflux protein TetA(P) from Clostridium perfringens Microbiology 145 2947–2955PubMedGoogle Scholar
  17. Bannam, T. L., P. A. Johanesen, C. L. Salvado, S. J. Pidot, K. A. Farrow, and J. I. Rood. 2004 The Clostridium perfringens TetA(P) efflux protein contains a functional variant of the Motif A region found in major facilitator superfamily transport proteins Microbiology 150 127–134PubMedGoogle Scholar
  18. Bennett, A., T. Lescott, R. Phillpotts, M. Mackett, and R. Titball. 1999 Recombinant vaccinia viruses protect against Clostridium perfringens α-toxin Viral Immunol. 12 97–105PubMedGoogle Scholar
  19. Billington, S. J., B. H. Jost, and J. G. Songer. 2000 Thiol-activated cytolysins: Structure, function and role in pathogenesis FEMS Microbiol. Lett. 182 197–205PubMedGoogle Scholar
  20. Bradshaw, M., M. Goodnough, and E. Johnson. 1998 Conjugative transfer of the E. coli-C. perfringens shuttle vector pJIR1457 to Clostridium botulinum type A strains Plasmid 40 233–237PubMedGoogle Scholar
  21. Brefort, G., M. Magot, H. Ionesco, and M. Sebald. 1977 Characterization and transferability of Clostridium perfringens plasmids Plasmid 1 52–66PubMedGoogle Scholar
  22. Bryant, A. E., R. Bergstrom, G. A. Zimmerman, J. L. Salyer, H. R. Hill, R. K. Tweten, H. Sato, and D. L. Stevens. 1993 Clostridium perfringens invasiveness is enhanced by effects of theta toxin upon PMNL structure and function: The roles of leukocytotoxicity and expression of CD11/CD18 adherence glycoprotein FEMS Immunol. Med. Microbiol. 7 321–336PubMedGoogle Scholar
  23. Bryant, A. E., and D. L. Stevens. 1996 Phospholipase C and perfringolysin O from Clostridium perfringens upregulate endothelial cell-leukocyte adherance molecule 1 and intercellular leukocyte adherance molecule 1 expression and induce interleukin-8 synthesis in cultured human umbilical vein endothelial cells Infect. Immun. 64 358–362PubMedGoogle Scholar
  24. Bryant, A. E., R. Y. Chen, Y. Nagata, Y. Wang, C. H. Lee, S. Finegold, P. H. Guth, and D. L. Stevens. 2000a Clostridial gas gangrene. I: Cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of Clostridium perfringens J. Infect. Dis. 182 799–807PubMedGoogle Scholar
  25. Bryant, A. E., R. Y. Chen, Y. Nagata, Y. Wang, C. H. Lee, S. Finegold, P. H. Guth, and D. L. Stevens. 2000b Clostridial gas gangrene. II: Phospholipase C-induced activation of platelet gpIIbIIIa mediates vascular occlusion and myonecrosis in Clostridium perfringens gas gangrene J. Infect. Dis. 182 808–815PubMedGoogle Scholar
  26. Bryant, A. E. 2003a Biology and pathogenesis of thrombosis and procoagulant activity in invasive infections caused by group A streptococci and Clostridium perfringens Clin. Microbiol. Rev. 16 451–462PubMedGoogle Scholar
  27. Bryant, A. E., C. R. Bayer, S. M. Hayes-Schroer, and D. L. Stevens. 2003b Activation of platelet gpIIbIIIa by phospholipase C from Clostridium perfringens involves store-operated calcium entry J. Infect. Dis. 187 408–417PubMedGoogle Scholar
  28. Brynestad, S., M. R. Sarker, B. A. McClane, P. E. Granum, and J. I. Rood. 2001 Enterotoxin plasmid from Clostridium perfringens is conjugative Infect. Immun. 69 3483–3487PubMedGoogle Scholar
  29. Bunting, M., D. E. Lorant, A. E. Bryant, G. A. Zimmerman, T. M. McIntyre, D. L. Stevens, and S. M. Prescott. 1997 Alpha toxin from Clostridium perfringens induces proinflammatory changes in endothelial cells J. Clin. Invest. 100 565–574PubMedGoogle Scholar
  30. Canard, B., B. Saint-Joanis, and S. T. Cole. 1992 Genomic diversity and organization of virulence genes in the pathogenic anaerobe Clostridium perfringens Molec. Microbiol. 6 1421–1429Google Scholar
  31. Canard, B., T. Garnier, B. Saint-Joanis, and S. T. Cole. 1994 Molecular genetic analysis of the nagH gene encoding a hyaluronidase of Clostridium perfringens Molec. Gen. Genet. 243 215–224PubMedGoogle Scholar
  32. Clark, G. C., D. C. Briggs, T. Karasawa, X. Wang, A. R. Cole, T. Maegawa, P. N. Jayasekera, C. E. Naylor, J. Miller, D. S. Moss, S. Nakamura, A. K. Basak, and R. W. Titball. 2003 Clostridium absonum α-toxin: New insights into clostridial phospholipase C substrate binding and specificity J. Molec. Biol. 333 759–769PubMedGoogle Scholar
  33. Collins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. Farrow. 1994 The phylogeny of the genus Clostridium: Proposal of five new genera and eleven new species combinations Int. J. Syst. Bacteriol. 4 812–826Google Scholar
  34. Cornillot, E., B. Saint-Joanis, G. Daube, S.-I. Katayama, P. E. Granum, B. Canard, and S. T. Cole. 1995 The enterotoxin gene (cpe) of Clostridium perfringens can be chromosomal or plasmid-borne Molec. Microbiol. 15 639–647Google Scholar
  35. Crellin, P. K., and J. I. Rood. 1997 The resolvase/invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn4451 J. Bacteriol. 179 5148–5156PubMedGoogle Scholar
  36. Crellin, P., and J. Rood. 1998 Tn4451 from Clostridium perfringens is a mobilisable transposon that encodes the functional Mob protein, TnpZ Molec. Microbiol. 27 631–642Google Scholar
  37. Czajkowsky, D. M., E. M. Hotze, Z. Shao, and R. K. Tweten. 2004 Vertical collapse of a cytolysin prepore moves its transmembrane β-hairpins to the membrane EMBO J. 23 3206–3215PubMedGoogle Scholar
  38. Eaton, J. T., C. E. Naylor, A. M. Howells, D. S. Moss, R. W. Titball, and A. K. Basak. 2002 Crystal structure of the C. perfringens α-toxin with the active site closed by a flexible loop region J. Molec. Biol. 319 275–281PubMedGoogle Scholar
  39. Ellemor, D. M., R. N. Baird, M. M. Awad, R. L. Boyd, J. I. Rood, and J. J. Emmins. 1999 Use of genetically manipulated strains of Clostridium perfringens reveals that both α-toxin and θ-toxin are required for vascular leukostasis to occur in experimental gas gangrene Infect. Immun. 67 4902–4907PubMedGoogle Scholar
  40. Fischetti, V. A., R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood. 2000 Gram-positive Pathogens ASM Press Washington, DCGoogle Scholar
  41. Flores-Díaz, M., A. Alape-Girón, R. Titball, M. Moos, I. Guillouard, S. Cole, A. Howells, C. von Eichel-Streiber, I. Florin, and M. Thelestam. 1998 UDP-glucose deficiency causes hypersensitivity to the cytotoxic effect of Clostridium perfringens phospholipase C J. Biol. Chem. 273 24433–24438PubMedGoogle Scholar
  42. Flores-Díaz, M., A. Alape-Girón, G. Clark, B. Catimel, Y. Hirabayashi, E. Nice, J.-M. Gutiérrez, R. Titball, and M. Thelestam. 2004 UDP-glucose deficiency causes hypersensitivity to the cytotoxic effect of Clostridium perfringens phospholipase C J. Biol. Chem. 273(38) 24433–8Google Scholar
  43. Garnier, T., W. Saurin, and S. T. Cole. 1987 Molecular characterization of the resolvase gene, res, carried by a multicopy plasmid from Clostridium perfringens: Common evolutionary origin for procaryotic site-specific recombinases Molec. Microbiol. 1 371–376Google Scholar
  44. Garnier, T., and S. T. Cole. 1988a Complete nucleotide sequence and genetic organization of the bacteriocinogenic plasmid, pIP404, from Clostridium perfringens Plasmid 19 134–150PubMedGoogle Scholar
  45. Garnier, T., and S. T. Cole. 1988b Identification and molecular genetic analysis of replication functions of the bacteriocinogenic plasmid pIP404 from Clostridium perfringens Plasmid 19 151–160PubMedGoogle Scholar
  46. Garnier, T., and S. T. Cole. 1988c Studies of UV-inducible promoters from Clostridium perfringens in vivo and in vitro Molec. Microbiol. 2 607–614Google Scholar
  47. Gibert, M., C. Jolivet-Renaud, and M. R. Popoff. 1997 Beta2 toxin, a novel toxin produced by Clostridium perfringens Gene 203 65–73PubMedGoogle Scholar
  48. Guillouard, I., T. Garnier, and S. T. Cole. 1996 Use of site-directed mutagenesis to probe structure-function relationships of α-toxin from clostridium perfringens Infect. Immun. 64 2440–2444PubMedGoogle Scholar
  49. Guillouard, I., P. M. Alzari, B. Saliou, and S. T. Cole. 1997 The carboxy-terminal C2-like domain of the α-toxin from Clostridium perfringens mediates calcium-dependent membrane recognition Molec. Microbiol. 26 867–876Google Scholar
  50. Iwamoto, M., Y. Ohno-Iwashita, and S. Ando. 1990 Effect of isolated C-terminal fragment of q-toxin (perfringolysin O) on toxin assembly and membrane lysis Eur. J. Biochem. 194 25–31PubMedGoogle Scholar
  51. Jepson, M., A. Howells, H. Bullifent, B. Bolgiano, D. Crane, J. Miller, J. Holley, P. Jayasekera, and R. Titball. 1999 Differences in the carboxy-terminal (putative phospholipid binding) domains of Clostridium perfringens and Clostridium bifermentans phospholipases C influence the hemolytic and lethal properties of these enzymes Infect. Immun. 67 3297–3301PubMedGoogle Scholar
  52. Jepson, M., H. L. Bullifent, D. Crane, M. Flores-Díiaz, A. Alape-Girón, P. Jayasekeera, B. Lingard, D. Moss, and R. W. Titball. 2001 Tyrosine 331 and phenylalanine 334 in Clostridium perfringens α-toxin are essential for cytotoxic activity FEBS Lett. 495 172–177PubMedGoogle Scholar
  53. Johanesen, P. A., D. Lyras, T. L. Bannam, and J. I. Rood. 2001a Transcriptional Analysis of the tet(P) Operon from Clostridium perfringens J. Bacteriol. 183 7110–7119PubMedGoogle Scholar
  54. Johanesen, P. A., D. Lyras, and J. I. Rood. 2001b Induction of pCW3-encoded tetracycline resistance in Clostridium perfringens involves a host-encoded factor Plasmid 46 229–232PubMedGoogle Scholar
  55. Justin, N., N. Walker, H. L. Bullifent, G. Songer, D. M. Bueschel, H. Jost, C. Naylor, J. Miller, D. S. Moss, R. W. Titball, and A. K. Basak. 2002 The first strain of Clostridium perfringens isolated from an avian source has an α-toxin with divergent structural and kinetic properties Biochemistry 41 6253–6262PubMedGoogle Scholar
  56. Katayama, S., B. Dupuy, G. Daube, B. China, and S. T. Cole. 1996 Genome mapping of Clostridium perfringens strains with I-CeuI shows many virulence genes to be plasmid-borne Molec. Gen. Genet. 251 720–726PubMedGoogle Scholar
  57. Kennan, R. M., L. M. McMurry, S. B. Levy, and J. I. Rood. 1997 Glutamate residues located within putative transmembrane helices are essential for TetA(P)-mediated tetracycline efflux J. Bacteriol. 179 7011–7015PubMedGoogle Scholar
  58. Lucet, I. S., F. E. Tynan, V. Adams, J. Rossjohn, D. Lyras, and J. I. Rood. 2005 Identification of the structural and functional domains of the large serine recombinase TnpX from Clostridium perfringens J. Biol. Chem. 280 2503–2511PubMedGoogle Scholar
  59. Lyras, D., and J. I. Rood. 1998a Conjugative transfer of RP4-oriT shuttle vectors from Escherichia coli to Clostridium perfringens Plasmid 39 160–164PubMedGoogle Scholar
  60. Lyras, D., C. Storie, A. S. Huggins, P. K. Crellin, T. L. Bannam, and J. I. Rood. 1998b Chloramphenicol resistance in Clostridium difficile is encoded on Tn4453 transposons that are closely related to Tn4451 from Clostridium perfringens Antimicrob. Agents Chemother. 42 1563–1567PubMedGoogle Scholar
  61. Lyras, D., and J. I. Rood. 2000a Clostridial genetics In: V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood (Eds.) Gram-positive Pathogens ASM Press Washington, DC 529–539Google Scholar
  62. Lyras, D., and J. Rood. 2000b Transposition of Tn4451 and Tn4453 involves a circular intermediate that forms a promoter for the large resolvase, TnpX Molec. Microbiol. 38 588–601Google Scholar
  63. Lyras, D., V. Adams, I. Lucet, and J. I. Rood. 2004 The large resolvase TnpX is the only transposon-encoded protein required for transposition of the Tn4451/3-family of integrative mobilizable elements Molec. Microbiol. 51 1787–1800Google Scholar
  64. Lyristis, M., A. E. Bryant, J. Sloan, M. M. Awad, I. T. Nisbet, D. L. Stevens, and J. I. Rood. 1994 Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens Molec. Microbiol. 12 761–777Google Scholar
  65. MacFarlane, M. G., and B. C. J. G. Knight. 1941 The biochemistry of bacterial toxins I. The lecithinase activity of Cl. welchii toxins Biochem. J. 35 884–902PubMedGoogle Scholar
  66. MacLennan, J. D. 1962 The histotoxic clostridial infections of man Bacteriol. Rev. 26 177–276PubMedGoogle Scholar
  67. Mani, N., and B. Dupuy. 2001 Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor Proc. Natl. Acad. Sci. USA 98 5844–5849PubMedGoogle Scholar
  68. Mani, N., D. Lyras, L. Barroso, P. Howarth, T. Wilkins, J. I. Rood, A. L. Sonenshein, and B. Dupuy. 2002 Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression J. Bacteriol. 184 5971–5978PubMedGoogle Scholar
  69. Marvaud, J., M. Gibert, K. Inoue, Y. Fujinaga, K. Oguma, and M. Popoff. 1998a botR/A is a positive regulator of botulinum neurotoxin and associated non-toxin protein genes in Clostridium botulinum A Molec. Microbiol. 29 1009–1018Google Scholar
  70. Marvaud, J.-C., U. Eisel, T. Binz, H. Niemann, and M. R. Popoff. 1998b TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to BotR Infect. Immun. 66 5698–5702PubMedGoogle Scholar
  71. Matsushita, C., O. Matsushita, M. Koyama, and A. Okabe. 1994 A Clostridium perfringens vector for the selection of promoters Plasmid 31 317–319PubMedGoogle Scholar
  72. Matsushita, C., O. Matsushita, S. Katayama, J. Minami, K. Takai, and A. Okabe. 1996 An upstream activating sequence containing curved DNA involved in activation of the Clostridium perfringens plc promoter Microbiology 142 2561–2566PubMedGoogle Scholar
  73. McClane, B. A., D. M. Lyerly, J. S. Moncrief, and T. D. Wilkins. 2000 Enterotoxic clostridia: Clostridium perfringens type A and Clostridium difficile In: V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood (Eds.) Gram-positive Pathogens ASM Press Washington, DC 531–562Google Scholar
  74. McNee, J. W., and J. S. Dunn. 1917 The method of spread of gas gangrene into living tissue Br. Med. J. 1 727–729Google Scholar
  75. Michel, E., K. A. Reich, R. Favier, P. Berche, and P. Cossart. 1990 Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by a single amino acid substitution in listeriolysin O Molec. Microbiol. 4 2167–2178Google Scholar
  76. Moreau, H., G. Pieroni, C. Joilivet-Reynaud, J. E. Alouf, and R. Verger. 1988 A new kinetic approach for studying phospholipase C (Clostridium perfringens α-toxin) activity on phospholipid monolayers Biochemistry 27 2319–2323PubMedGoogle Scholar
  77. Nagahama, M., Y. Okagawa, T. Nakayama, E. Nishioka, and J. Sakurai. 1995 Site-directed mutagenesis of histidine residues in Clostridium perfringens α-toxin J. Bacteriol. 177 1179–1185PubMedGoogle Scholar
  78. Nagahama, M., and J. Sakurai. 1996 Threonine-74 is a key site for the activity of Clostridium perfringens α-toxin Microbiol. Immunol. 40 189–193PubMedGoogle Scholar
  79. Nagahama, M., T. Nakayama, K. Michiue, and J. Sakurai. 1997 Site-specific mutagenesis of Clostridium perfringens α-toxin: Replacement of Asp-56, Asp-130, or Glu-152 causes loss of enzymatic and hemolytic activities Infect. Immun. 65 3489–3492PubMedGoogle Scholar
  80. Nagahama, M., M. Mukai, S. Ochi, and J. Sakurai. 2000 Role of tryptophan-1 in hemolytic and phospholipase C activities of Clostridium perfringens α-toxin Microbiol. Immunol. 44 585–589PubMedGoogle Scholar
  81. Nagahama, M., M. Mukai, S. Morimitsu, S. Ochi, and J. Sakurai. 2002 Role of the C-domain in the biological activities of Clostridium perfringens α-toxin Microbiol. Immunol. 46 647–655PubMedGoogle Scholar
  82. Nakamura, M., N. Sekino-Suzuki, Y. Shimada, and Y. Ohno-Iwashita. 1999 Contribution of histidine residues to oligomerization of θ-toxin (perfringolysin O), a cholesterol-binding cytolysin Biosci. Biotechnol. Biochem. 63 1640–1643PubMedGoogle Scholar
  83. Naylor, C., J. Eaton, A. Howells, N. Justin, D. Moss, R. Titball, and A. Basak. 1998 Structure of the key toxin in gas gangrene has a prokaryotic calcium-binding C2 domain Nature Struct. Biol. 5 738–746PubMedGoogle Scholar
  84. Naylor, C., M. Jepson, D. Crane, R. Titball, J. Miller, A. Basak, and B. Bolgiano. 1999 Characterisation of the calcium-binding C-terminal domain of Clostridium perfringens α-toxin J. Molec. Biol. 294 757–770PubMedGoogle Scholar
  85. O’Brien, D. K., and S. B. Melville. 2000 The anaerobic pathogen can escape the phagosome of macrophages under aerobic conditions Cell. Microbiol. 2 505–519PubMedGoogle Scholar
  86. O’Brien, D. K., and S. B. Melville. 2003 Multiple effects on Clostridium perfringens binding, uptake and trafficking to lysosomes by inhibitors of macrophage phagocytosis receptors Microbiology 149 1377–1386PubMedGoogle Scholar
  87. O’Brien, D. K., and S. B. Melville. 2004 Effects of Clostridium perfringens α-toxin (PLC) and Perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues Infect. Immun. 72 5204–5215PubMedGoogle Scholar
  88. Ochi, S., T. Miyawaki, H. Matsuda, M. Oda, M. Nagahama, and J. Sakurai. 2002 Clostridium perfringens α-toxin induces rabbit neutrophil adhesion Microbiology 148 237–245PubMedGoogle Scholar
  89. Ochi, S., M. Oda, H. Matsuda, S. Ikari, and J. Sakurai. 2004 Clostridium perfringens α-toxin activates the sphingomyelin metabolism system in sheep erythrocytes J. Biol. Chem. 279 12181–12189PubMedGoogle Scholar
  90. Ohanian, J., and V. Ohanian. 2001 Sphingolipids in mammalian cell signalling Cell. Molec. Life Sci. 58 2053–2068PubMedGoogle Scholar
  91. Ohsaki, Y., Y. Sugimoto, M. Suzuki, T. Kaidoh, Y. Shimada, Y. Ohno-Iwashita, J. P. Davies, Y. A. Ioannou, K. Ohno, and H. Ninomiya. 2004 Reduced sensitivity of Niemann-Pick C1-deficient cells to θ-toxin (perfringolysin O): Sequestration of toxin to raft-enriched membrane vesicles Histochem. Cell Biol. 121 263–272PubMedGoogle Scholar
  92. Petit, L., M. Gibert, and M. R. Popoff. 1999 Clostridium perfringens: Toxinotype and genotype Trends Microbiol. 7 104–110PubMedGoogle Scholar
  93. Ramachandran, R., A. P. Heuck, R. K. Tweten, and A. E. Johnson. 2002 Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin Nature Struct. Biol. 9 823–827PubMedGoogle Scholar
  94. Ramachandran, R., R. K. Tweten, and A. E. Johnson. 2004 Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit β-strand alignment Nature Struct. Molec. Biol. 11 697–705Google Scholar
  95. Roggentin, P., and R. Schauer. 1997 Clostridial sialidases In: J. I. Rood, B. A. McClane, J. G. Songer, and R. W. Titball (Eds.) The Clostridia: Molecular Biology and Pathogenesis Academic Press London, UK 423–437Google Scholar
  96. Rood, J. I., V. N. Scott, and C. L. Duncan. 1978 Identification of a transferable resistance plasmid (pCW3) from Clostridium perfringens Plasmid 1 563–570PubMedGoogle Scholar
  97. Rood, J. I. 1983 Transferable tetracycline resistance in Clostridium perfringens strains of porcine origin Can. J. Microbiol. 29 1241–1246PubMedGoogle Scholar
  98. Rood, J. I., and S. T. Cole. 1991 Molecular genetics and pathogenesis of Clostridium perfringens Microbiol. Rev. 55 621–648PubMedGoogle Scholar
  99. Rood, J. I., B. A. McClane, J. G. Songer, and R. W. Titball. 1997 The Clostridia: Molecular Biology and Pathogenesis Academic Press London, UKGoogle Scholar
  100. Rood, J. I. 1998 Virulence genes of Clostridium perfringens Ann. Rev. Microbiol. 52 333–360Google Scholar
  101. Rossjohn, J., S. C. Feil, W. J. McKinstry, R. K. Tweten, and M. W. Parker. 1997 Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form Cell 88 685–692Google Scholar
  102. Sakka, K., M. Kawase, D. Baba, K. Morimoto, S. Karita, T. Kimura, and K. Ohmiya. 2003 Electrotransformation of Clostridium paraputrificum M-21 with some plasmids J. Biosci. Bioengin. 96 304–306Google Scholar
  103. Sarker, M. R., R. J. Carman, and B. A. McClane. 1999 Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops Molec. Microbiol. 33 946–958Google Scholar
  104. Sasaki, Y., N. Takikawa, A. Kojima, M. Norimatsu, S. Suzuki, and Y. Tamura. 2001a Phylogenetic positions of Clostridium novyi and Clostridium haemolyticum based on 16S rDNA sequences Int. J. Syst. Bacteriol. 51 901–904Google Scholar
  105. Sasaki, Y., K. Yamamoto, Y. Tamura, and T. Takahashi. 2001b Tetracycline-resistance genes of Clostridium perfringens, Clostridium septicum and Clostridium sordellii isolated from cattle affected with malignant edema Vet. Microbiol. 83 61–69PubMedGoogle Scholar
  106. Sasaki, Y., A. Kojima, H. Aoki, Y. Ogikubo, N. Takikawa, and Y. Tamura. 2002 Phylogenetic analysis and PCR detection of Clostridium chauvoei, Clostridium haemolyticum, Clostridium novyi types A and B, and Clostridium septicum based on the flagellin gene Vet. Microbiol. 86 257–267PubMedGoogle Scholar
  107. Scott, P. T., and J. I. Rood. 1989 Electroporation-mediated transformation of lysostaphin-treated Clostridium perfringens Gene 82 327–333PubMedGoogle Scholar
  108. Sebald, M., and R. N. Costilow. 1975 Minimal growth requirements for Clostridium perfringens and isolation of auxotrophic mutants Appl. Microbiol. 29 1–6PubMedGoogle Scholar
  109. Sekino-Suzuki, N., M. Nakamura, K. Mitsui, and Y. Ohno-Iwashita. 1996 Contribution of individual tryptophan residues to the structure and activity of θ-toxin (perfringolysin O), a cholesterol-binding cytolysin Eur. J. Biochem. 241 941–947PubMedGoogle Scholar
  110. Shatursky, O., A. Heuck, L. Shepard, J. Rossjohn, M. Parker, A. Johnson, and R. Tweten. 1999 The mechanism of membrane insertion of a cholesterol-dependent cytolysin: A novel paradigm for pore-foring toxins Cell 99 293–299PubMedGoogle Scholar
  111. Sheedy, S. A., A. B. Ingham, J. I. Rood, and R. J. Moore. 2004 Highly conserved α-toxin sequences of avian isolates of Clostridium perfringens J. Clin. Microbiol. 42 1345–1347PubMedGoogle Scholar
  112. Shepard, L. A., A. P. Heuck, B. D. Hamman, J. Rossjohn, M. W. Parker, K. R. Ryan, A. E. Johnson, and R. K. Tweten. 1998 Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: An α-helical to β-sheet transition identified by fluorescence spectroscopy Biochemistry 37 14563–14574PubMedGoogle Scholar
  113. Shepard, L., O. Shatursky, A. Johnson, and R. Tweten. 2000 The mechanism of pore assembly for a cholesterol-dependent cytolysin: Formation of a large prepore complex precedes the insertion of the transmembrane β-hairpins Biochemistry 39 10284–10293PubMedGoogle Scholar
  114. Shimada, Y., M. Nakamura, Y. Naito, K. Nomura, and Y. Ohno-Iwashita. 1999 C-terminal amino acid residues are required for the folding and cholesterol binding property of perfringolysin O, a pore-forming cytolysin J. Biol. Chem. 274 18536–18542PubMedGoogle Scholar
  115. Shimizu, T., W. Ba-Thein, M. Tamaki, and H. Hayashi. 1994 The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens J. Bacteriol. 176 1616–1623PubMedGoogle Scholar
  116. Shimizu, T., K. Ohtani, H. Hirakawa, K. Ohshima, A. Yamashita, T. Shiba, N. Ogasawara, M. Hattori, S. Kuhara, and H. Hayashi. 2002 Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater Proc. Natl. Acad. Sci. USA 99 996–1001PubMedGoogle Scholar
  117. Sloan, J., T. A. Warner, P. T. Scott, T. L. Bannam, D. I. Berryman, and J. I. Rood. 1992 Construction of a sequenced Clostridium perfringens-Escherichia coli shuttle plasmid Plasmid 27 207–219PubMedGoogle Scholar
  118. Sloan, J., L. M. McMurry, D. Lyras, S. B. Levy, and J. I. Rood. 1994 The Clostridium perfringens TetP determinant comprises two overlapping genes: tetA(P) which mediates active tetracycline efflux and tetB(P) which is related to the ribosomal protection family of tetracycline resistance determinants Molec. Microbiol. 11 403–415Google Scholar
  119. Smith, M. C., and H. M. Thorpe. 2002 Diversity in the serine recombinases Molec. Microbiol. 44 299–307Google Scholar
  120. Solovyova, A. S., M. Nollmann, T. J. Mitchell, and O. Byron. 2004 The solution structure and oligomerization behavior of two bacterial toxins: Pneumolysin and perfringolysin O Biophys. J. 87 540–552PubMedGoogle Scholar
  121. Songer, J. G. 1996 Clostridial enteric diseases of domestic animals Clin. Microbiol. Rev. 9 216–234PubMedGoogle Scholar
  122. Stackebrandt, E., and F. A. Rainey. 1997 Phylogenetic relationships In: J. I. Rood, B. A. McClane, J. G. Songer, and R. W. Titball (Eds.) The Clostridia: Molecular Biology and Pathogenesis Academic Press London, UK 3–19Google Scholar
  123. Stackebrandt, E., I. Kramer, J. Swiderski, and H. Hippe. 1999 Phylogenetic basis for a taxonomic dissection of the genus Clostridium FEMS Immunol. Med. Microbiol. 24 253–258PubMedGoogle Scholar
  124. Stevens, D. L., R. Tweten, M. M. Awad, J. I. Rood, and A. E. Bryant. 1997 Clostridial gas gangrene: Evidence that a and q toxins differentially modulate the immune response and induce acute tissue necrosis J. Infect. Dis. 176 189–195PubMedGoogle Scholar
  125. Stevens, D. L. 2000 The pathogenesis of clostridial myonecrosis Int. J. Med. Microbiol. 290 497–502PubMedGoogle Scholar
  126. Stevens, D. L., and A. E. Bryant. 2002 The role of clostridial toxins in the pathogenesis of gas gangrene Clin. Infect. Dis. 35 S93–S100PubMedGoogle Scholar
  127. Stevens, D. L., R. W. Titball, M. Jepson, C. R. Bayer, S. M. Hayes-Schroer, and A. E. Bryant. 2004 Immunization with the C-domain of α-toxin prevents lethal infection, localizes tissue injury, and promotes host response to challenge with Clostridium perfringens J. Infect. Dis. 190 767–773PubMedGoogle Scholar
  128. Takamizawa, A., S. Miyata, O. Matsushita, M. Kaji, Y. Taniguchi, E. Tamai, S. Shimamoto, and A. Okabe. 2004 High-level expression of clostridial sialidase using a ferredoxin gene promoter-based plasmid Prot. Expr. Purif. 36 70–75Google Scholar
  129. Titball, R., and J. Rood. 2000 Bacterial phospholipases In: K. Aktories and I. Just (Eds.) Bacterial Protein Toxins Springer-Verlag New York, NY 529–556Google Scholar
  130. Titball, R. W., and J. I. Rood. 2002 Clostridium perfringens: Wound infections In: M. Sussman (Ed.) Molecular Medical Microbiology Academic Press London, UK 1875–1903Google Scholar
  131. Waheed, A. A., Y. Shimada, H. F. Heijnen, M. Nakamura, M. Inomata, M. Hayashi, S. Iwashita, J. W. Slot, and Y. Ohno-Iwashita. 2001 Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts) Proc. Natl. Acad. Sci. USA 98 4926–4931PubMedGoogle Scholar
  132. Walker, N., J. Holley, C. E. Naylor, M. Flores-Díaz, A. Alape-Girón, G. Carter, F. J. Carr, M. Thelestam, M. Keyte, D. S. Moss, A. K. Basak, J. Miller, and R. W. Titball. 2000 Identification of residues in the carboxy-terminal domain of Clostridium perfringens α-toxin (phospholipase C) which are required for its biological activities Arch. Biochem. Biophys. 384 24–30PubMedGoogle Scholar
  133. Williamson, E. D., and R. W. Titball. 1993 A genetically engineered vaccine against the α-toxin of Clostridium perfringens protects against experimental gas gangrene Vaccine 11 1253–1258PubMedGoogle Scholar
  134. Zhao, Y., and S. B. Melville. 1998 Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene (cpe) of Clostridium perfringens J. Bacteriol. 180 136–142PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Julian I. Rood

There are no affiliations available

Personalised recommendations