Neurotoxigenic Clostridia

  • Cesare Montecucco
  • Ornella Rossetto
  • Michel R. Popoff


Certain bacterial species of the genus Clostridium are characterized by their ability to produce extremely potent neurotoxins: tetanus neurotoxin (TeNT) and botulinum neurotoxin (BoNT). TeNT inhibits neurotransmitter release of synapses of the central nervous system (CNS) causing the spastic paralysis of tetanus; BoNT inhibits the release of acethylcholine at peripheral cholinergic nerve terminals causing the flaccid paralysis of botulism. To date, one TeNT and seven (A–G) serologically distinct BoNTs are known (Schiavo et al., 2000).

Clostridium Tetani

Morphological and Cultural Characteristics

Tetanus neurotoxin (TeNT) is produced by a uniform group of bacteria belonging to the Clostridium tetani species. These bacteria are usually 0.3–0.6 µm in width and may vary considerably in length between 3 and 12 µm. They are Gram positive in young cultures, but they lose the Gram coloration upon prolonged incubations. Clostridium tetaniis usually highly motile by peritrichous...


Cervical Dystonia Botulinum Neurotoxin Flaccid Paralysis Presynaptic Membrane Clostridium Botulinum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Arnon, S. S. 1989 Infant botulism In: S. M. Finegold and W. L. George (Eds.) Anaerobic Infections in Humans Academic Press San Diego, CA 601–609Google Scholar
  2. Aureli, P., L. Fenicia, B. Pasolini, M. Gianfranceschi, L. M. McCroskey, and C. L. Hatheway. 1986 Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy J. Infect. Dis. 154 207–211PubMedGoogle Scholar
  3. Beise, J., J. Hahnen, B. Andersen-Beckh, and F. Dreyer. 1994 Pore formation by tetanus toxin, its chain and fragments in neuronal membranes and evaluation of the underlying motifs in the structure of the toxin molecule Naunyn Schmiedebergs Arch. Pharmacol. 349 66–73PubMedGoogle Scholar
  4. Binz, T., S. Bade, A. Rummel, A. Kollewe, and J. Alves. 2002 Arg(362) and Tyr(365) of the botulinum neurotoxin type A light chain are involved in transition state stabilization Biochemistry 41 1717–1723PubMedGoogle Scholar
  5. Blaustein, R. O., W. J. Germann, A. Finkelstein, and B. R. DasGupta. 1987 The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers FEBS Lett. 226 115–120PubMedGoogle Scholar
  6. Bleck, T. P. 1989 Clinical aspect of tetanus In: L. L. Simpson (Ed.) Botulinum Neurotoxin and Tetanus Toxin Academic Press San Diego, CA 379–398Google Scholar
  7. Boquet, P., and E. Duflot. 1982 Tetanus toxin fragment forms channels in lipid vesicles at low pH Proc. Natl. Acad. Sci. USA 79 7614–7618PubMedGoogle Scholar
  8. Brashear, A., M. F. Lew, D. D. Dykstra, C. L. Comella, S. A. Factor, R. L. Rodnitzky, R. Trosch, C. Singer, M. F. Brin, J. J. Murray, J. D. Wallace, A. Willmer-Hulme, and M. Koller. 1999 Safety and efficacy of NeuroBloc (botulinum toxin type B) in type A-responsive cervical dystonia Neurology 53 1439–1446PubMedGoogle Scholar
  9. Brüggemann, H., S. Bäumer, W. F. Fricke, A. Wiezr, H. Liesagang, I. Decker, C. Herzberg, R. Martinez-Arias, A. Henne, and G. Gottschalk. 2003 The genome sequence of Clostridium tetani, the causative agent of tetanus disease Proc. Natl. Acad. Sci. USA 100 1316–1321PubMedGoogle Scholar
  10. Bullough, P. A., F. M. Hughson, J. J. Skehel, and D. C. Wiley. 1994 Structure of influenza haemagglutinin at the pH of membrane fusion Nature 371 37–43PubMedGoogle Scholar
  11. Bytchenko, B. 1981 Microbiology of tetanus In: R. Veronesi (Ed.) Tetanus: Important New Concepts Excerpta Medica Amsterdam, The Netherlands 28–39Google Scholar
  12. Cato, E. P., W. L. George, and S. M. Finegold. 1986 Genus Clostridium In: P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore, MD 1141–1200Google Scholar
  13. Chen, F., G. M. Kuziemko, and R. C. Stevens. 1998 Biophysical characterization of the stability of the 150-kilodalton botulinum toxin, the nontoxic component, and the 900-kilodalton botulinum toxin complex species Infect. Immun. 66 2420–2425PubMedGoogle Scholar
  14. Chen, Y. A., and R. H. Scheller. 2001 SNARE-mediated membrane fusion Natl. Rev. Cell Biol. Molec. 2 98–106Google Scholar
  15. Chia, J. K., J. B. Clark, C. A. Ryan, and M. Pollack. 1986 Botulism in an adult associated with food-borne intestinal infection with Clostridium botulinum N. Engl. J. Med. 315 239–241PubMedGoogle Scholar
  16. Cornille, F, L. Martin, C. Lenoir, D. Cussac, B. P. Roques, and M. C. Fournie-Zaluski. 1997 Cooperative exosite-dependent cleavage of synaptobrevin by tetanus toxin light chain J. Biol. Chem. 272 3459–64PubMedGoogle Scholar
  17. De Paiva, A., B. Poulain, G. W. Lawrence, C. C. Shone, L. Tauc, and J. O. Dolly. 1993 A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly J. Biol. Chem. 268 20838–20844PubMedGoogle Scholar
  18. Dezfulian, M. 1989 Animal models of botulism and tetanus In: L. L. Simpson (Ed.) Botulinum Neurotoxin and Tetanus Toxin Academic Press San Diego, CA 335–350Google Scholar
  19. Dodds, K. L. 1993a Clostridium botulinum in foods In: A. H. W. Hauschild and K. L. Dodds (Eds.) Clostridium botulinum: Ecology and Control in Foods Marcel Dekker New York, NY 53–68Google Scholar
  20. Dodds, K. L. 1993b Clostridium botulinum in the environment In: A. H. W. Hauschild and K. L. Dodds (Eds) Clostridium botulinum: Ecology and Control in Foods Marcel Dekker New York, NY 21–51Google Scholar
  21. Dolly, J. O., J. Black, R. S. Williams, and J. Melling. 1984 Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization Nature 307 457–460PubMedGoogle Scholar
  22. Dong, M., D. A. Richards, M. C. Goodnough, W. H. Tepp, E. A. Johnson, and E. R. Chapman. 2003 Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells J. Cell. Biol. 162 1293–1303PubMedGoogle Scholar
  23. Eklund, M. W., M. E. Peterson, F. T. Poysky, F. T. Peck, and L. F. Conrad. 1982 Botulism in juvenile Coho salmon (Onchorhyncushus kisutch) in the United States Aquaculture 27 1–11Google Scholar
  24. Eklund, M. W., and J. Dowell. 1987 Avian Botulism Charles C. Thomas Springfield, ILGoogle Scholar
  25. Eleopra, R., V. Tugnoli, O. Rossetto, C. Montecucco, and D. De Grandis. 1997 Botulinum neurotoxin serotype C: a novel effective botulinum toxin therapy in human Neurosci. Lett. 224 91–94PubMedGoogle Scholar
  26. Eleopra, R., V. Tugnoli, O. Rossetto, D. De Grandis, and C. Montecucco. 1998 Botulinum neurotoxin serotype A and E in human: evidence of a different temporal profile in the neuromuscular block induced Neurosci. Lett. 224 91–94Google Scholar
  27. Eleopra, R., V. Tugnoli, R. Quatrale, E. Gastaldo, O. Rossetto, D. De Grandis, D. and C. Montecucco. 2002 Botulinum neurotoxin serotype A and C do not affect motor units survival in humans Clin. Neurophys. 113 1258–1264Google Scholar
  28. Franciosa, G., J. L. Ferreira, and C. L. Hatheway. 1994 Detection of type A, B, and E botulism neurotoxin genes in Clostridium botulinum and other Clostridium species by PCR: evidence of unexpressed type B toxin genes in type A toxigenic organisms J. Clin. Microbiol. 32 1911–1917PubMedGoogle Scholar
  29. Franciosa, G., L. Fenicia, M. Pourshaban, and P. Aureli. 1997 Recovery of a strain of Clostridium botulinum producing both neurotoxin A and neurotoxin B from canned macrobiotic food Appl. Environ. Microbiol. 63 1148–1150PubMedGoogle Scholar
  30. Fujinaga, Y., K. Takeshi, K. Inoue, R. Fujita, T. Ohyama, K. Moriishi, and K. Oguma. 1995 Type A and B neurotoxin genes in a Clostridium botulinum type AB strain Biochem. Biophys. Res. Commun. 213 737–745PubMedGoogle Scholar
  31. Galazka, A., and F. Gasse. 1995 The present status of tetanus and tetanus vaccination Curr. Top. Microbiol. Immunol. 195 31–53PubMedGoogle Scholar
  32. Ghanem, F. M., A. C. Ridpath, W. E. C. Moore, and L. V. H. Moore. 1991 Identification of Clostridium botulinum, Clostridium argentinense, and related organisms by cellular fatty acid analysis J. Clin. Microbiol. 29 1114–1124PubMedGoogle Scholar
  33. Gill, D. M. 1982 Bacterial toxins: A table of lethal amounts Microbiol. Rev. 46 86–94PubMedGoogle Scholar
  34. Habermann, E., and F. Dreyer. 1986 Clostridial neurotoxins: Handling and action at the cellular and molecular level Curr. Top. Microbiol. Immunol. 129 93–179PubMedGoogle Scholar
  35. Halpern, J. L., and E. A. Neale. 1995 Neurospecific binding, internalization, and retrograde axonal transport Curr. Top. Microbiol. Immunol. 195 221–241PubMedGoogle Scholar
  36. Hatheway, C. L. 1990 Toxigenic Clostridia Clin. Microbiol. Rev. 3 66–98PubMedGoogle Scholar
  37. Hatheway, C. L. 1993a Bacteriology and pathology of neurotoxigenic Clostridia In: B. R. DasGupta (Ed.) Botulinum and Tetanus Neurotoxins Plenum Press New York, NY 491–502Google Scholar
  38. Hatheway, C. L. 1993b Clostridium botulinum and other Clostridia that produce botulinum neurotoxin In: A. H. W. Hauschild and K. L. Dodds (Eds.) Clostridium botulinum: Ecology and Control in Foods Marcel Dekker New York, NY 3–20Google Scholar
  39. Hauschild, A. H. W. 1993 Epidemiology of human foodborne botulism In: A. H. W. Hauschild and K. L. Dodds (Eds.) Clostridium botulinum: Ecology and Control in Foods Marcel Dekker New York, NY 69–104Google Scholar
  40. Hayashi, T., H. McMahon, S. Yamasaki, T. Binz, Y. Hata, T. C. Sudhof, and H. Niemann. 1994 Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly EMBO J. 13 5051–5061PubMedGoogle Scholar
  41. Henderson, I., T. Davis, M. Elmore, and N. Minton. 1997 The genetic basis of toxin production in Clostridium botulinum and Clostridium tetani In: I. Rood (Ed.) The Clostridia: Molecular Biology and Pathogenesis Academic Press New York, NY 261–294Google Scholar
  42. Herreros, J., and G. Schiavo. 2002 Lipid microdomains are involved in neurospecific binding and internalisation of clostridial neurotoxins Int. J. Med. Microbiol. 291 447–53PubMedGoogle Scholar
  43. Hippe, H., J. R. Andreesen, and G. Gottschalk. 1992 The genus Clostridium—nonmedical In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder and K.-H. Scheifer (Eds.) The Prokaryotes Springer-Verlag New York, NY 1800–1866Google Scholar
  44. Hoch, D. H., M. Romero-Mira, B. E. Ehrlich, A. Finkelstein, B. R. DasGupta, and L. L. Simpson. 1985 Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes Proc. Natl. Acad. Sci. USA 82 1692–1696PubMedGoogle Scholar
  45. Humeau, Y., F. Doussau, N. J. Grant, and B. Poulain. 2000 How botulinum and tetanus neurotoxins block neurotransmitter release Biochimie 82 427–446PubMedGoogle Scholar
  46. Hutson, R. A., Y. Zhou, M. D. Collins, E. A. Johnson, C. L. Hatheway, and H. Sugiyama. 1996 Genetic characterization of Clostridium botulinum type A containing silent type B neurotoxin gene sequences J. Biol. Chem. 271 10786–10792PubMedGoogle Scholar
  47. Inoue, K., Y. Fujinaga, T. Watanabe, T. Ohyama, K. Takeshi, K. Moriishi, H. Nakajima, K. Inoue, and K. Oguma. 1996 Molecular composition of Clostridium botulinum type A progenitor toxins Infect. Immun. 64 1589–1594PubMedGoogle Scholar
  48. Jankovic, J., and M. Hallett. 1994 Therapy with Botulinum Toxin Marcel Dekker New York, NYGoogle Scholar
  49. Johnson, J. L., and B. S. Francis. 1975 Taxonomy of the Clostridia: Ribosomal ribonucleic acid homologies among the species J. Gen. Microbiol. 88 229–244PubMedGoogle Scholar
  50. Jovita, M. R., M. D. Collins, and A. K. East. 1998 Gene organization and sequence determination of the two botulinum neurotoxin gene clusters in Clostridium botulinum Curr. Microbiol. 36 226–231Google Scholar
  51. Koriazova, L. L., and M. Montal. 2003 Translocation of botulinum neurotoxin light chain protease through the heavy chain channel Nature Struct. Biol. 10 13–18PubMedGoogle Scholar
  52. Lacy, D. B., W. Tepp, A. C. Cohen, B. R. DasGupta, and R. C. Stevens. 1998 Crystal structure of botulinum neurotoxin type A and implications for toxicity Nature Struct. Biol. 5 898–902PubMedGoogle Scholar
  53. Lacy, D. B., and R. C. Stevens. 1999 Sequence homology and structural analysis of the clostridial neurotoxins J. Molec. Biol. 291 1091–1104PubMedGoogle Scholar
  54. Lalli, G., J. Herreros, S. L. Osborne, C. Montecucco, R. Rossetto, and G. Schiavo. 1999 Functional characterisation of tetanus and botulinum neurotoxins binding domains J. Cell Sci. 112 2715–2724PubMedGoogle Scholar
  55. Lalli, G., S. Bohnert, K. Deinhardt, C. Verastegui, and G. Schiavo. 2003 The journey of tetanus and botulinum neurotoxins in neurons Trends Microbiol. 11 431–437PubMedGoogle Scholar
  56. Li, L., T. Binz, H. Niemann, and B. R. Singh. 2000 Probing the mechanistic role of glutamate residue in the zinc-binding motif of type A botulinum neurotoxin light chain Biochemistry 39 2399–2405PubMedGoogle Scholar
  57. Lin, W. J., and E. A. Johnson. 1995 Genome analysis of Clostridium botulinum type A by pulsed-field gel electrophoresis Appl. Environ. Microbiol. 61 4441–4447PubMedGoogle Scholar
  58. Maksymowych, A. B., and L. L. Simpson. 1998 Binding and transcytosis of botulinum neurotoxin by polarized human colon carcinoma cells J Biol Chem. 21, 273 21950–21957Google Scholar
  59. Maksymowych, A. B., M. Reinhard, C. J. Malizio, M. C. Goodnough, E. A. Johnson. 1999 Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuro muscular blockade. Infect. Immuno 67 4708–4712Google Scholar
  60. Maksymowych, A. B., and L. L. Simpson. 1998 Binding and transcytosis of botulinum neurotoxin by polarized human colon carcinoma cells J Biol Chem. 21, 273 21950–21957Google Scholar
  61. Matteoli, M., C. Verderio, O. Rossetto, N. Iezzi, S. Coco, G. Schiavo, and C. Montecucco. 1996 Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons Proc. Natl. Acad. Sci. USA 93 13310–13315PubMedGoogle Scholar
  62. McCroskey, L. M., and C. L. Hatheway. 1988 Laboratory findings in four cases of adult botulism suggest colonization of the intestinal tract J. Clin. Microbiol. 26 1052–1054PubMedGoogle Scholar
  63. Minton, N. 1995 Molecular genetics of clostridial neurotoxins Curr. Top. Microbiol. Immunol. 195 161–194PubMedGoogle Scholar
  64. Montecucco, C. 1986 How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem. Sci. 11 315–317Google Scholar
  65. Montecucco, C., G. Schiavo, and B. R. Dasgupta. 1989 Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes Biochem. J. 259 47–53PubMedGoogle Scholar
  66. Montecucco, C., E. Papini, and G. Schiavo. 1994 Bacterial protein toxins penetrate cells via a four-step mechanism FEBS Lett. 346 92–98PubMedGoogle Scholar
  67. Montecucco, C., and G. Schiavo. 1995 Structure and function of tetanus and botulinum neurotoxins Q. Rev. Biophys. 28 423–472PubMedGoogle Scholar
  68. Moore, A. P., and M. Naumann. 2003 Handbook of Botulinum Toxin Treatment, 2nd ed Blackwell Science Oxford, UKGoogle Scholar
  69. Niemann, H. 1991 Molecular biology of clostridial neurotoxins In: J. E. Alouf and J. H. Freer (Eds.) A Sourcebook of Bacterial Protein Toxins Academic Press London, UK 303–348Google Scholar
  70. Nishiki, T., Y. Tokuyama, Y. Kamata, Y. Nemoto, A. Yoshida, K. Sato, M. Sekiguchi, M. Takahashi, and S. Kozaki. 1996 The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a FEBS Lett. 378 253–257PubMedGoogle Scholar
  71. Oguma, K., T. Yamaguchi, K. Sudou, N. Yokosawa, and Y. Fujikawa. 1986 Biochemical classification of Clostridium botulinum type C and D strains and their nontoxigenic derivatives Appl. Environ. Microbiol. 51 256–260PubMedGoogle Scholar
  72. Payling-Wright, G. 1955 The neurotoxins of Clostridium botulinum and Clostridium tetani Pharmacol. Rev. 7 413–465Google Scholar
  73. Pellegrini, L. L., V. O’Connor, F. Lottspeich, and H. Betz. 1995 Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion EMBO J. 14 4705–4713PubMedGoogle Scholar
  74. Pellizzari, R., O. Rossetto, L. Lozzi, S. Giovedi, E. Johnson, C. C. Shone, and C. Montecucco. 1996 Structural determinants of the specificity for synaptic vesicle-associated membrane protein/synaptobrevin of tetanus and botulinum type B and G neurotoxins J. Biol. Chem. 271 20353–20358PubMedGoogle Scholar
  75. Popoff, M. R., and M. W. Eklund. 1995 Tetanus and botulinum neurotoxins: genetics and molecular mode of action In: M. W. Eklund, J. Richards, and K. Mise (Eds.) Molecular Approaches to Food Safety Issues Involving Toxic Microorganisms Alaken Fort Collins, CO 481–511Google Scholar
  76. Poulet, S., D. Hauser, M. Quanz, H. Niemann, and M. R. Popoff. 1992 Sequences of the botulinal neurotoxin E derived from Clostridium botulinum type E (strain Beluga) and Clostridium butyricum (strains ATCC43181 and ATCC43755) Biochem. Biophys. Res. Commun. 183 107–113PubMedGoogle Scholar
  77. Rigoni, M., P. Caccin, E. A. Johnson, C. Montecucco, and O. Rossetto. 2001 Site-directed mutagenesis identifies active site residues of the light chain of botulinum neurotoxin type A Biochem. Biophys. Res. Commun. 288 1231–1237PubMedGoogle Scholar
  78. Rossetto, O., G. Schiavo, C. Montecucco, B. Poulain, F. Deloye, L. Lozzi, and C. C. Shone. 1994 SNARE motif and neurotoxins Nature 372 415–416PubMedGoogle Scholar
  79. Rossetto, O., P. Caccin, M. Rigoni, F. Tonello, N. Bortoletto, R. C. Stevens, and C. Montecucco. 2001a Active-site mutagenesis of tetanus neurotoxin implicates TYR-375 and GLU-271 in metalloproteolytic activity Toxicon 39 1151–1159PubMedGoogle Scholar
  80. Rossetto, O., M., Seveso, P. Caccin, G. Schiavo, and C. Montecucco. 2001b Tetanus and botulinum neurotoxins: turning bad guys into good by research Toxicon 39 27–41PubMedGoogle Scholar
  81. Rummel, A., S. Bade, J. Alves, H. Bigalke, and T. Binz. 2003a Two carboydrate binding sites in the Hcc-domain of tetanus neurotoxin are required for toxicity J. Molec. Biol. 326 835–847PubMedGoogle Scholar
  82. Rummel, A., S. Mahrhold, H. Bigalke, and T. Binz. 2003b The Hcc-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site isplying serotype specific carbohydrate interaction Molec. Microbiol. 51 631–643Google Scholar
  83. Rummel, A., T. Karnath, T. Henke, H. Bigalke, and T. Binz. 2004 Synaptotagmins I and II Act as nerve cell receptors for botulinum neurotoxin G J. Biol. Chem 279(29) 30865–30870Google Scholar
  84. Sakaguchi, G. 1983 Clostridium botulinum toxins Pharmacol. Ther. 19 165–194Google Scholar
  85. Schiavo, G., E. Papini, G. Genna, and C. Montecucco. 1990 An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin Infect. Immun. 58 4136–4141PubMedGoogle Scholar
  86. Schiavo, G., F. Benfenati, B. Poulain, O. Rossetto, P. Polverino de Laureto, B. R. DasGupta, and C. Montecucco. 1992a Tetanus and botulinum B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin Nature 359 832–835PubMedGoogle Scholar
  87. Schiavo, G., B. Poulain, O. Rossetto, F. Benfenati, L. Tauc, and C. Montecucco. 1992b Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depends on zinc EMBO J. 11 3577–3583PubMedGoogle Scholar
  88. Schiavo G, M. Matteoli, and C. Montecucco. 2000 Neurotoxins affecting neuroexocytosis Physiol. Rev. 80 717–766PubMedGoogle Scholar
  89. Schwab, M. E., and H. Thoenen. 1976 Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: an autoradiographic and morphometric study Brain Res. 105 213–227PubMedGoogle Scholar
  90. Scott, A. B. 1989 Clostridial neurotoxins as therapeutic agents In: L. L. Simpson (Ed.) Botulinum Neurotoxin and Tetanus Toxin Academic Press San Diego, CA 399–412Google Scholar
  91. Sheridan, R. E. 1998 Gating and permeability of ion channel produced by botulinum toxin types A and E in PC12 cells membrane Toxicon 36 703–717PubMedGoogle Scholar
  92. Simpson, L. L., J. L. Coffield, and N. Bakry. 1994 Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins J. Pharmacol. Exp. Therap. 269 256–269Google Scholar
  93. Simpson, L. L. 2000 Identification of the characteristics that underlie botulinum toxin potency: implications for designing novel drugs Biochimie 82 943–953PubMedGoogle Scholar
  94. Smith, L. D., and B. L. Williams. 1984 The Pathogenic Anaerobic Bacteria, 2nd ed Charles C. Thomas Springfield, ILGoogle Scholar
  95. Smith, L. D. S., and H. Sugiyama. 1988 Botulism: The Organism, its Toxins, the Disease, 2nd ed Charles C. Thomas Springfield, ILGoogle Scholar
  96. Smith, L. D. S. 1992 The genus Clostridium—medical In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Scheifer (Eds.) The Prokaryotes Springer-Verlag New York, NY 1867–1880Google Scholar
  97. Suen, J. C., C. L. Hatheway, A. G. Steigerwalt, and D. J. Brenner. 1988a Clostridium argentinense sp. nov.: A genetically homogeneous group composed of all strains of Clostridium botulinum toxin type G and some nontoxigenic strains previously identified as Clostridium subterminale or Clostridium hastiforme Int. J. Syst. Bacteriol. 38 375–381Google Scholar
  98. Sutton, R. B., D. Fasshauer, R. Jahn, A. T. Brunger. 1998 Crystal-structure of a SNARE complex involved in synaptic exocytosis at 2.4 Ångstrom resolution Nature 395 347–353PubMedGoogle Scholar
  99. Swaminathan, S., and S. Eswaramoorthy. 2000 Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B Nature Struct. Biol. 7 693–699PubMedGoogle Scholar
  100. Tacket, C. O., and M. A. Rogawski. 1989 Botulism In: L. L. Simpson (Ed.) Botulinum Neurotoxin and Tetanus Toxin Academic Press San Diego, CA 351–378Google Scholar
  101. Umland, T. C., L. M. Wingert, S. Swaminathan, W. F. Furey, J. J. Schmidt, and M. Sax. 1997 Structure of the receptor binding fragment Hc of tetanus toxin Nature Struct. Biol. 4 788–792PubMedGoogle Scholar
  102. Vaidyanathan, V. V., K. Yoshino, M. Jahnz, C. Dorries, S. Bade, S. Nauenburg, and H. Niemann. 1999 Proteolysis of SNAP-25 isoforms by botulinum neurotoxins type A, C and E: Domains of amino-acid residues controlling the formation of enzyme-substrate complexes and cleavage J. Neurochem. 72 327–337PubMedGoogle Scholar
  103. Washbourne, P., R. Pellizzari, G. Baldini, M. C. Wilson, and C. Montecucco. 1997 Botulinum neurotoxin type A and type E require the SNARE motif in SNAP-25 for proteolysis FEBS Lett. 418 1–5PubMedGoogle Scholar
  104. Weissenhorn, W., A. Dessen, S. C. Harrison, J. J. Skehel, and D. C. Wiley. 1997 Atomic structure of the ectodomain from HIV-1 gp41 Nature 387 426–430PubMedGoogle Scholar
  105. Wells, C. L., and E. Balish. 1983 Clostridium tetani growth and toxin production in the intestines of germfree rats Infect. Immun. 41 826–828PubMedGoogle Scholar
  106. Williamson L. C., and E. A. Neale. 1994 Bafilomycin A1 inhibits the action of tetanus toxin in spinal cord neurons in cell culture J. Neurochem 63 2342–2345PubMedGoogle Scholar
  107. Yowler, B. C., R. D. Kensinger, and C. L. Schengrund. 2002 Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I J Biol Chem. 277 32815–32819PubMedGoogle Scholar
  108. Zhou, Y., H. Sugiyama, and E. A. Johnson. 1993 Transfer of neurotoxigenicity from Clostridium butyricum to a nontoxigenic Clostridium botulinum type E-like strain Appl. Environ. Microbiol. 59 3825–3831PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Cesare Montecucco
  • Ornella Rossetto
  • Michel R. Popoff

There are no affiliations available

Personalised recommendations