An Introduction to the Family Clostridiaceae

  • Juergen Wiegel
  • Ralph Tanner
  • Fred A. Rainey
SECTION 1.2 Firmicutes with Low GC Content of DNA


The pre-16S rRNA sequence definition of the genus Clostridium was—non-sulfate-reducing sporeformer relying obligately on anaerobic energy metabolism and with a Gram-positive type cell wall (Hippe et al., 1992). Our view of bacterial classification has greatly changed in the past 10 years. We now define the overall taxonomic structure of the prokaryotes, for the most part, on the basis of relationships revealed by comparison of 16S rRNA gene sequences. This has lead to transferring many former clostridial species to novel genera and to a more narrow definition of the genus Clostridium (further referred to as Clostridium sensu stricto), encompassing much fewer species but including the majority of the medically important species.


The recent release of the second edition of Bergey’s Manual of Systematic Bacteriologytakes the bold step of proposing a taxonomic structure for all validly described prokaryotes on the basis of a 16S rRNA gene sequence phylogeny. This...


Clostridium Species Roll Tube Clostridium Butyricum Cluster XIVa Cell Wall Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Abraham, L. J., A. J. Wales, and J. L. Rood. 1985 Worldwide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid pCW3 Plasmid 14 37–46PubMedGoogle Scholar
  2. Adkins, J. P., L. A. Cornell, and R. S. Tanner. 1992 Microbial composition of carbonate petroleum reservoir fluids Geomicrobiol. J. 10 87–97Google Scholar
  3. Allen, S. P., and H. P. Blaschek. 1988 Electroporation-induced transformation of intact cells of Clostridium perfringens Appl. Environ. Microbiol. 54 2322–2324PubMedGoogle Scholar
  4. Andreesen, J. R. 2004 Degradation of heterocyclic compounds In: Peter Dürre (Ed.) Clostridia Plenum Publishing Corporation New York NY 324Google Scholar
  5. Angert, E. R., and M. R. Losick. 1998 Propagation by sporulation in the guinea pig symbiont Metabacterium polyspora PNAS (USA) 95 10218–10223Google Scholar
  6. Antranikian, G., C. Herzberg, F. Mayer, and G. Gottschalk. 1987 Changes in the cell envelope of Clostridium sp. strain EM1 during massive production of a-amylase and pullulanase FEMS Microbiol. Lett. 41 193–197Google Scholar
  7. Atlas, R. M., and L. C. Parks. 1997 Handbook of Microbiological Media, 2nd ed CRC Press Boca Raton FLGoogle Scholar
  8. Balch, W. E., and R. S. Wolfe. 1976 New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere Appl. Environ. Microbiol. 32 781–791PubMedGoogle Scholar
  9. Balch, W. E., L. J. Magrum, G. E. Fox, R. S. Wolfe, and C. R. Woese. 1979 Methanogens: Reevaluation of a unique biological group Microbiol. Rev. 43 260–296PubMedGoogle Scholar
  10. Bayer, E. A., and R. Lamed. 1986 Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose J. Bacteriol. 167 828–836PubMedGoogle Scholar
  11. Bayer, E. A., E. Morag, and R. Lamed. 1994 The cellulosome: A treasure-trove for biotechnology Trends Biotechnol. 12 378–386Google Scholar
  12. Boone, D., R. Castenholz, and G. Garrity (Eds.). 2001 Bergey’s Manual of Systematic Bacteriology Springer-Verlag New York NY 1Google Scholar
  13. Bramucci, M. G., K. M. Keggins, and P. S. Lovett. 1977 Bacteriophage PMB12 conversion of sporulation defect in RNA-polymerase mutants of Bacillus subtilis J. Virol. 24 194–200PubMedGoogle Scholar
  14. Breitenstein, A., J. Wiegel, C. Härtig, N. Weiß, J. R. Andreesen, and U. Lechner. 2001 Description of Sedimentibacter saalensis ZF2 gen. nov., sp. nov. and reclassification of Clostridium hydroxybenzoicum JW/Z-1T as Sedimentibacter hydroxybenzoicus JW/Z-1T gen. nov., comb. nov Int. J. Syst. Evol. Microbiol. 52 801–807Google Scholar
  15. Brill, J., and J. Wiegel. 1997 Differentiation between sporeforming and asporogenenic bacteria by a PCR and Southern hybridization based method J. Microbiol. Meth. 31 29–36Google Scholar
  16. Broda, D. M., D. J. Saul, R. G. Bell, and D. R. Musgrave. 2000 Clostridium algidixylanolyticum sp. nov., a psychrotolerant, xylan degrading, spore forming bacterium Int. J. Syst. Evol. Microbiol. 50 623–631PubMedGoogle Scholar
  17. Bruggemann, H., S. Baumer, W. F. Fricke, A. Wiezer, H. Lieseegang, I. Decker, C. Herzberg, R. Martinez-Arias, R. Merkl, A. Henne, and G. Gottschalk. 2003 The genome sequence of Clostridium tetani, the causative agent of tetanus disease Proc. Natl. Acad. Sci. USA 100 1316–1321PubMedGoogle Scholar
  18. Bryant, M. P. 1972 Commentary of the Hungate technique for culture of anaerobic bacteria Am. J. Clin. Nutr. 25 1324–1328PubMedGoogle Scholar
  19. Byrer, D. E., F. A. Rainey, and J. Wiegel. 2000 Novel Strains of Moorella thermoacetica form unusually heat resistant spores Arch. Microbiol. 174 334–339PubMedGoogle Scholar
  20. Canale-Parola, E., R. Barasky, and R. S. Wolfe. 1961 Studies on Sarcina ventriculi. III: Localization of cellulose J. Bacteriol. 81 311–318PubMedGoogle Scholar
  21. Canale-Parola, E. 1970 Biology of the sugar fermenting sarcina Bacteriol. Rev. 34 82–97PubMedGoogle Scholar
  22. Canganella, F., and J. Wiegel. 1999 Cultivation of Clostridium thermobutyricum in a rotary fermentor system J. Indust. Microbiol. Biotechnol. 24 7–13Google Scholar
  23. Cato, E. P., W. L. George, and S. M. Finegold. 1986 Genus Clostridium Prazmowski 1880, 23AL In: P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (Eds.) Bergey’s Manual of Systematic Bacteriology Williams and Wilkins Baltimore MD 2 1141–1200Google Scholar
  24. Cho, K. Y., and C. H. Doy. 1973 Ultrastructure of the obligately anaerobic bacteria Clostridium kluyveri and C. acetobutylicum Austral. J. Biol. Sci. 26 547–558Google Scholar
  25. Collins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandes-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. Farrow. 1994 The phylogeny of the genus Clostridium: Proposal of five new genera and eleven new species combinations Int. J. Syst. Bacteriol. 44 812–826PubMedGoogle Scholar
  26. Cook, G. M., P. H. Janssen, and H. W. Morgan. 1991 Endospore formation by Thermoanaerobium brockii HTD4 Syst. Appl. Microbiol. 12 240–244Google Scholar
  27. De la Maza, L. M., M. T. Pezzlo, J. T. Shigei, and E. M. Peterson. 2004 Color Atlas of Medical Bacteriology ASM Press Herndon VAGoogle Scholar
  28. Demain, A. L., and J. E. Davies (Eds.). 2000 Manual of Industrial Microbiology and Biotechnology, 2nd. ed ASM Press Washington DCGoogle Scholar
  29. Desai, R. P., and E. T. Papoutsakis. 1999 Antisense RNA strategies for the metabolic engineering of Clostridium acetobutylicum Appl. Environ. Microbiol. 65 936–945PubMedGoogle Scholar
  30. Doi, R. H., A. Ksugi, K. Murashima, Y. Tamaru, and S. O. Han. 2003 Cellulosomes from mesophilic bacteria J. Bacteriol. 185 5907–5914PubMedGoogle Scholar
  31. Dorner, C., and B. Schink. 1990 Clostridium homopropionicum sp. nov., a new strict anaerobe growing with 2-hydroxybutyrate, 3-hydroxybutyrate, or 4-hydroxybutyrate Arch. Microbiol. 154 342–348PubMedGoogle Scholar
  32. Drake, H. L. 1994 Acetogenesis Chapman & Hall New York NYGoogle Scholar
  33. Dürre, P., W. Andersch, and J. R. Andreesen. 1981 Isolation and characterization of an adenine-utilizing anaerobic sporeformer, Clostridium purinolyticum sp. nov Int. J. Syst. Bacteriol. 31 184–194Google Scholar
  34. Dürre, P. 2001 From Pandora’s box to cornucopia: Clostridia—a historical perspective In: P. Dürre (Ed.) Clostridia: Biotechnology and Medical Application Wiley-VCH New York NY 2–17Google Scholar
  35. Dürre, P. (Ed.). 2004 Handbook on Clostridia CRC Press Boca Raton FLGoogle Scholar
  36. Engle, M., Y. Li, F. Rainey, S. DeBlois, V. Mai, A. Reichert, F. Mayer, P. Messmer, and J. Wiegel. 1996 Thermobrachium celere, gen. nov., sp. nov., a fast growing thermophilic, alkalitolerant, and proteolytic obligate anaerobe Int. J. Syst. Bacteriol. 46 1025–1033PubMedGoogle Scholar
  37. Escheman, A., M. Kühl, and H. Cypionka. 1999 Aerotaxis in Desulfovibrio Environ. Microbiol. 1 489–494Google Scholar
  38. Felsenstein, J. 1993 PHYLIP (Phylogenetic Inference Package) Version 3.5.1 Department of Genetics, University of Washington Seattle WAGoogle Scholar
  39. Freier, D., C. P. Mothershed, and J. Wiegel. 1988 Clostridium thermocellum characterization of strain JW20 Appl. Environ. Microbiol. 54 104–111Google Scholar
  40. Good, N. E., G. D. Winget, W. Winter, T. N. Connolloy, S. Izawaw, and R. M. M. Singh. 1966 Hydrogen ion buffers for biological research Biochemistry 5 467–477PubMedGoogle Scholar
  41. Gottschal, J. C., W. Harder, and R. A. Prins. 1992 Principles of enrichment, isolation, cultivation, and preservation of bacteria In: A. Balows, H. G. Trüper, M. Dworkin, W., Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York NY 1 149–196Google Scholar
  42. Gottschalk, G. 1986 Bacterial Metabolism Springer-Verlag New York NYGoogle Scholar
  43. Hermann, M., K. M. Noll, and R. S. Wolfe. 1986 Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere Appl. Environ. Microbiol. 51 1124–1126PubMedGoogle Scholar
  44. Hespell, R. B. 1990 Isolation of anaerobic microorganisms In: D. P. Labeda (Ed.) Isolation of Biotechnological Organisms from Nature McGraw-Hill New York NY 117–140Google Scholar
  45. Hippe, H., J. R. Andreesen, and G. Gottschalk. 1992 The Genus Clostridium–nonmedical In: A. Balows, H. G. Trüper, M. Dworkin, W., Harder, and K.-H. Schleifer (Eds.) The Prokaryotes, 2nd ed Springer-Verlag New York NY 4 1800–1866Google Scholar
  46. Hoch, J. A. Control of cellular developments in sporulating bacteria bythe phosphorelay two component signal transduction system In: J. A. Hoch and T. J. Silhavy (Eds.) Two Component Signal Transduction ASM Press Washington DCGoogle Scholar
  47. Holdeman, L. V., E. P. Cato, and W. E. C. Moore. 1977 Anaerobe Laboratory Manual, 4th ed V.P.I. Anaerobic Laboratory, Virginia Polytechnic Institute and State University Blacksburg VAGoogle Scholar
  48. Hungate, R. E. 1969 A roll tube method for cultivation of strict anaerobes In: J. R. Norris and D. W. Ribbons (Eds.) Methods in Microbiology Academic Press New York NY 3B 117–132Google Scholar
  49. Hutson, R. A., D. E. Thompson, P. A. Lawson, R. P. Schocken-Itturino, E. C. Bottger, and M. D. Collins. 1993 Genetic interrelationships of proteolytic Clostridium botulinum types A, B, and F and other members of the Clostridium botulinum complex as revealed by small-subunit rRNA gene sequences Ant. v. Leeuwenhoek 64 273–283Google Scholar
  50. Johnson, J. L., and B. S. Francis. 1975 Taxonomy of the clostridia: ribosomal ribonucleic acid homologies among the species J. Gen. Microbiol. 88 229–244PubMedGoogle Scholar
  51. Johnson, J. L., and J. S. Chen. 1995 Taxonomic relationships among strains of Clostridium acetobutylicum and other phenotypically similar organisms FEMS Microbiol. Rev. 17 233–240Google Scholar
  52. Jones, D. T., and S. Keis. 1995 Origins and relationships of industrial solvent-producing clostridial strains FEMS Microbiol. Rev. 17 223–232Google Scholar
  53. Kaiser, J. P., Y. Feng, and J. M. Bollag. 1996 Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions Microbiol. Rev. 60 483–498PubMedGoogle Scholar
  54. Kandler, O., H. König, J. Wiegel, and D. Claus. 1982 Occurrence of poly-D-glutamic acid and poly-L-glutamine in the genera Xanthobacter, Flexithrix, Sporosarcina, and Planococcus System. Appl. Microbiol. 4 34–41Google Scholar
  55. Kawasaki, S., J. Ishikura, D. Chiba, T. Nishino, and Y. Niimura. 2004 Purification and characterization of an H2 forming NADH oxidase from Clostridium aminovalericum: existence of an oxygen-detoxifying enzyme in an obligae anaerobic bacterium Arch. Microbiol. 181 324–330PubMedGoogle Scholar
  56. Koransky, J. R., S. D. Allen, and V. R. Dowell Jr. 1978 Use of ethanol for selective isolation of sporeforming microorganisms Appl. Environ. Microbiol. 35 762–765PubMedGoogle Scholar
  57. Kühner, C. H., C. Matthies, G. Acker, M. Schmittroth, A. S. Gossner, and H. L. Drake. 2000 Clostridium akagii sp. nov. and Clostridium acidisoli sp. nov.: Acid-tolerant, N2-fixing clostridia isolated from acidic forest soil and litter Int. J. Syst. Evol. Microbiol. 50 873–881PubMedGoogle Scholar
  58. Labbe, R. G., and N.-J. R. Shih. 1997 Physiology of sporulation of clostridia In: J. I. Rood, B. A. McClane, J. G. Songer, and R. W. Titball (Eds.) The Clostridia: Molecular Biology and Pathogenesis Academic Press New York NY 21–32Google Scholar
  59. Lawson, P. A., P. Llop-Perez, R. A. Hutson, H. Hippe, and M. D. Collins. 1993 Towards a phylogeny of the clostridia based on 16S rRNA sequences FEMS Microbiol. Lett. 113 87–92PubMedGoogle Scholar
  60. Lee, Y. E., M. K. Jain, C. Lee, S. E. Lowe, and J. G. Zeikus. 1993 Taxonomic distinction of saccharolytic thermophilic anaerobes: Description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus Int. J. Syst. Bacteriol. 43 41–51Google Scholar
  61. Li, Y., L. Mandelco, and J. Wiegel. 1993 Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum, sp. nov Int. J. Syst. Bacteriol. 43 450–460Google Scholar
  62. Li, Y., M. Engle, L. Mandelco, and J. Wiegel. 1994 Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile Int. J. Syst. Bacteriol. 44 111–118PubMedGoogle Scholar
  63. Line, M. A., and M. W. Loutit. 1973 Nitrogen fixation by mixed cultures of aerobic and anaaerobic microorganisms in an aerobic environment J. Gen. Microbiol. 74 179–180Google Scholar
  64. Ljungdahl, L. G., and J. Wiegel. 1986 Anaerobic fermentations In: A. L. Demain and N. A. Solomon (Eds.) Manual of Industrial Microbiology and Biotechnology ASM Press Washington DC 84–96Google Scholar
  65. Ljungdahl, L. G., J. Hugenholtz, and J. Wiegel. 1989a Acetogenic and acid producing clostridia In: N. P. Minton and D. J. Clarke (Eds.) The Clostridia Plenum Press New York NY 1455–1491Google Scholar
  66. Ljungdahl, L. G., J. Hugenholtz, A. Das, and J. Wiegel. 1989b Physiology of clostridial homoacetogens: Autotrophy, energy metabolism and potential for industrial production of acetate In: M. S. Da Costa, J. C. Duarte, and R. A. D. Williams (Eds.) FEMS Symposium, Microbiology of Extreme Environments and its Potential for Biotechnology Elsevier Applied Science New York NY 6–23Google Scholar
  67. Long, S., D. T. Jones, and D. R. Woods. 1983 Sporulation of Clostridium acetobutylicum P262 in a defined medium Appl. Environ. Microbiol. 45 1389–1393PubMedGoogle Scholar
  68. Lund, B. M., T. F. Brocklehurst, and G. M. Wyatt. 1981 Characterization of strains of Clostridium puniceum sp. nov., a pink-pigmented, pectolytic bacterium J. Gen. Microbiol. 122 17–26Google Scholar
  69. Madkour, M., and F. Mayer. 2003 Structural organization of the intact bacterial cellulosome as revealed by electron microscopy Cell. Biol. Int. 27 831–836PubMedGoogle Scholar
  70. Mahony, D. E. 1979 Bacteriocions, bacteriophage and other epidemiological typing methods for the genus Clostridium Meth. Microbiol. 13 1–30Google Scholar
  71. Mai, V., and J. Wiegel. 1999 Recombinant DNA applications in thermophiles In: A. L. Demain and J. E. Davis (Eds.), Hershberger (section Ed.) ASM Manual of Industrial Microbiology and Biotechnology, 2nd ed ASM Press Washington DC 511–519Google Scholar
  72. Mai, V., and J. Wiegel. 2000 Advances in the development of a genetic system for Thermoanaerobacterium: Expression of genes encoding hydrolytic enzymes, development of a second shuttle vector and integration of genes into the chromosome Appl. Environ. Microbiol. 66 4817–4821PubMedGoogle Scholar
  73. Matthies, C., C. H. Kühner, G. Acker, and H. L. Drake. 2001 Clostridium uliginosum sp. nov., a novel acid-tolerant, anaerobic bacterium with connecting filaments Int. J. Syst. Evol. Microbiol. 51 1119–1125PubMedGoogle Scholar
  74. Mauchline, M. L., T. O. Davis, and N. P. Minton. 2000 Clostridia In: A. L. Demain and J. E. Davies (Eds.) Manual of Industrial Microbiology and Biotechnology, 2nd. ed ASM Press Washington DC 475–490Google Scholar
  75. Mayer, F., M. P. Coughlan, Y. Mori, and L. G. Ljungdahl. 1987 Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy Appl. Environ. Microbiol. 53 2785–2792PubMedGoogle Scholar
  76. McInerney, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981 Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium Appl. Environ. Microbiol. 41 1029–1039PubMedGoogle Scholar
  77. Meinecke, B., H. Bahl, and G. Gottschalk. 1984 Selection of an asporgenous strain of Clostridium acetobutylicum in continuous culture under phosphate limitation Appl. Environ. Microbiol. 48 1064–1065PubMedGoogle Scholar
  78. Merchante, R., H. M. Pooley, and D. Karamata. 1995 A periplasm in Bacillus subtilis J. Bacteriol. 177 6176–6183PubMedGoogle Scholar
  79. Moore, L. V. H., E. P. Cato, and W. E. C. Moore. 1987 Anaerobe Laboratory Manual, 4th ed V.P.I. Anaerobic Laboratory, Virginia Polytechnic Institute and State University Blackburg VAGoogle Scholar
  80. Murray, W. D., L. Hofmann, N. L. Cambell, and R. H. Madden. 1986 Clostridium lentocellum sp. nov., a cellulolytic species from river sediment containing paper mill waste Syst. Appl. Microbiol. 8 181–184Google Scholar
  81. Navarre, W. W., and O. Schneewind. 1999 Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope Microbiol. Molec. Biol. Rev. 63 174–229Google Scholar
  82. Nunoura, T., S. Akiharas, K. Takai, and Y. Sako. 2002 Thermaerobacter nagasakiensis sp. nov., a novel aerobic and extremely thermophilic marine bacterium Arch. Microbiol. 177 339–344PubMedGoogle Scholar
  83. O’Brien, J. R., and N. M. George. 1997 A Gram stain paradox: Bacillus circulans misindentified as Pseudomonas paucimobilis Am. J. Med. Sci. 18 11–115Google Scholar
  84. Oren, A., H. Pohla, and E. Stackebrandt. 1987 Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb. nov. and description of Sporohalobacter marismortui sp. nov Syst. Appl. Microbiol. 9 239–246Google Scholar
  85. Paster, B. J., J. B. Russell, C. M. J. Yang, J. M. Chow, C. R. Woese, and R. Tanner. 1993 Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov Int. J. Syst. Bacteriol. 43 107–110PubMedGoogle Scholar
  86. Pasteur, L. 1861 Animacules infusoires vivant sans gaz oxygene libré et déterminant des fermentations C.R. Acad. Sci. 52 344–347Google Scholar
  87. Phillips, R. W., J. Wiegel, C. J. Berry, C. Fliermans, A. D. Peacock, D. C. White, and L. J. Shimkets. 2002 Kineococcus radiotolerans sp. nov., a radiation-resistant, Gram positive bacterium Int. J. Syst. Evol. Microbiol. 52 933–938PubMedGoogle Scholar
  88. Popescu, A., and R. J. Doyle. 1996 The Gram stain after more than a century Biotech. Histochem. 71 145–151PubMedGoogle Scholar
  89. Postgate, J. R. 1974 New advances and future potential in biological nitrogen fixation J. Appl. Bacteriol. 37 185–202PubMedGoogle Scholar
  90. Pusheva, M. A., A. V. Pitryuk, and E. N. Detkova. 1999 Bioenergetics of acetogenesis in the extremely alkaliphilic homoacetogenic bacteria Natroniella acetigena and Natronoincola histidinovorans Microbiology 68 568–573Google Scholar
  91. Rainey, F. A., and E. Stackebrandt. 1993a 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia FEMS Microbiol. Lett. 113 125–128PubMedGoogle Scholar
  92. Rainey, F. A., N. L. Ward, H. W. Morgan, R. Toalster, and E. Stackebrandt. 1993b Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification J. Bacteriol. 175 4772–4779PubMedGoogle Scholar
  93. Rogers, P. 1986 Genetics and biochemistry of Clostridium relevant to development of fermentation processes Adv. Appl. Microbiol. 31 1–60Google Scholar
  94. Rood, J. I., B. A. McClane, J. G. Songer, and R. W. Titball. 1997 The Clostridia: Molecular Biology and Pathogenesis Academic Press San Diego CAGoogle Scholar
  95. Sara, M., and U. B. Sleytr. 2000 S-layer proteins J. Bacteriol. 182 859–868PubMedGoogle Scholar
  96. Sara, M. 2001 Conserved anchoring mechanisms between crystalline cell surface S-layer proteins and secondary cell wall polymers in Gram-positive bacteria? Trends Microbiol. 9 47–49PubMedGoogle Scholar
  97. Schleifer, K.-H., and O. Kandler. 1972 Peptidoglycan types of bacterial cell walls and their taxonomic implications Bacteriol. Rev. 36 407–477PubMedGoogle Scholar
  98. Schmitz, R. A., R. Daniel, U. Deppenmeier, and G. Gottschalk. 2004 The anaerobic way of life In: Dworkin, M. (Ed.) The Prokaryotes, 3rd ed Springer-Verlag New York NY The Prokaryotes onlineGoogle Scholar
  99. Seeliger, S., P. H. Janssen, and B. Schink. 2002 Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA FEMS Microbiol. Lett. 211 65–70PubMedGoogle Scholar
  100. Self, W. T. 2002 Regulation of purine hydroxylase and xanthine dehydrogenase from Clostridium purinolyticum in response to purines, selenium, and molybdenum J. Bacteriol. 184 2039–2044PubMedGoogle Scholar
  101. Siunov, A. V., D. V. Nikitin, N. E. Sizina, V. V. Dmitriev, N. P. Kuzmin, and V. I. Duda. 1999 Phylogenetic status of Anaerobacter polyendosporus, an anaerobic, polysporogenic bacterium Int. J. Syst. Bacteriol. 49 1119–1124PubMedGoogle Scholar
  102. Sleytr, U. B., D. Pum, and M. Sara. 1996 Advances in S-layer nanotechnology and biomimetics Adv. Biophys. 34 71–79Google Scholar
  103. Slobodkin, A., A.-L. Reysenbach, and J. Wiegel. 1997 Isolation and characterization of the homoacetogenic thermophile Moorella glycerini sp. nov Int. J. Syst. Bacteriol. 47 969–997PubMedGoogle Scholar
  104. Smith, L. D. S., and B. L. Williams. 1984 The Pathogenic Anaerobic Bacteria C. C. Thomas Springfield ILGoogle Scholar
  105. Spanevello, M. D., H. Yamamoto, and B. K. C. Patel. 2002 Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter Int. J. Syst. Evol. Microbiol. 52 795–800PubMedGoogle Scholar
  106. Stackebrandt, E., and F. A. Rainey. 1997 Phylogenetic relationships In: J. I. Rood, B. A. McClane, J. G. Songer, and R. W. Titball (Eds.) The Clostridia: Molecular Biology and Pathogenesis Academic Press New York NY 533Google Scholar
  107. Stackebrandt, E., I. Kramer, J. Swiderski, and H. Hippe. 1999 Phylogenetic basis for a taxonomic dissection of the genus Clostridium FEMS Immunol. Med. Lett. 24 253–258Google Scholar
  108. Stragier, P. 2001 A gene odyssey: Exploring the genomes of endospore-forming bacteria In: A. L. Sonensheim, J. A. Hoch, and R. Losick (Eds.) Bacillus subtilis and its Relatives: From Genes to Cells ASM Press Washington DC 629Google Scholar
  109. Strömpl, C., B. J. Tindall, H. Lunsdorf, T. Y. Wong, E. R. B. Moore, and H. Hippe. 2000 Reclassification of Clostridium quercicolum as Dendrosporobacter quercicolus gen. nov., comb. nov Int. J. Syst. Evol. Microbiol. 50 101–106PubMedGoogle Scholar
  110. Sussman, M. (Ed). 2001 Molecular Medical Microbiology Academic Press New York NYGoogle Scholar
  111. Sutter, V. L., D. M. Citron, M. A. C. Edelstein, and S. M. Finegold. 1985 Wadsworth Anaerobic Bacteriology Manual, 4th ed Star Publishing Belmont CAGoogle Scholar
  112. Takai, K., A. Inoue, and K. Horikoshi. 1999 Thermaerobacter marianensis, gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11000 m deep Mariana Trench Int. J. Syst. Bacteriol. 49 619–628PubMedGoogle Scholar
  113. Tanner, R. S., E. Stackebrandt, G. E. Fox, and C. R. Woese. 1981 A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum and Eubacterium tenue Curr. Microbiol. 5 35–38Google Scholar
  114. Tanner, R. S., and C. R. Woese. 1994 A phylogenetic assessment of the acetogens In: H. L. Drake (Ed.) Acetogenesis Chapman & Hall New York NY 254–269Google Scholar
  115. Tanner, R. S. 1997 Cultivation of bacteria and fungi In: C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach, and M. V. Walter (Eds.) Manual of Environmental Microbiology ASM Press Washington DC 52–60Google Scholar
  116. Tanner, R. S. 2002 Cultivation of bacteria and fungi In: C. J. Hurst, R. L. Crawford, G. R. Knudsen, M. J. McInerney, and L. D. Stetzenbach (Eds.) Manual of Environmental Microbiology, 2nd ed ASM Press Washington DC 62–70Google Scholar
  117. Tholozan, J. L., J. P, Touzel, E. Samain, J. P. Grivet, G. Prensier, and G. Albagnac. 1992 Clostridium neopropionicum sp. nov., a strict anaerobic bacterium fermenting ethanol to propionate through acrylate pathway Arch. Microbiol. 157 249–257PubMedGoogle Scholar
  118. Troy, F. A. 1973 Chemistry and biosynthesis of the poly γ(-D-glutamyl) capsule in Bacillus licheniformis. I: Properties of the membrane-mediated biosynthesis reaction J. Biol. Chem. 248 305–315PubMedGoogle Scholar
  119. Tumbula, D. L., J. Keswani, J. Shieh, and W. B. Whitman. 1995 Long-term maintenance of methanogen stock cultures in glycerol In: F. T. Robb (Ed.) Archaea: A Laboratory Manual Cold Spring Harbor Laboratory Press Cold Spring Harbor NY 85–87Google Scholar
  120. Tummala, S. B., N. E. Welker, and E. T. Papoutsakis. 1999 Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824 Appl. Environ. Microbiol. 65 3793–3799PubMedGoogle Scholar
  121. Tummala, S. B., C. Tomas, L. M. Harris, N. E. Welker, F. B. Rudolph, G. N. Bennet, and E. T. Papoutsakis. 2001 Genetic tools for solventogenic clostridia In: H. Bahl and P. Dürre (Eds.) Clostridia: Biotechnology and Medical Applications Wiley-VCH New York NY 105–123Google Scholar
  122. Van der Wielen, P. W. J. J., G. M. L. L. Rovers, J. M. A. Scheepens, and S. Biesterveld. 2002 Clostridium lactatifermentans sp nov., a lactate fermenting anaerobe isolated from the caeca of a chicken Int. J. Syst. Evol. Microbiol. 52 921–925PubMedGoogle Scholar
  123. Van Gylswyk, N. O., and J. J. T. K. van der Toorn. 1987 Clostridium aerotolerans sp. nov., a xylanolytic bacterium from corn stover and from the rumina of sheep fed corn stover Int. J. Syst. Bacteriol. 37 102–105Google Scholar
  124. White, D. 1995 The Physiology and Biochemistry of Prokaryotes Oxford University Press New York NYGoogle Scholar
  125. Wiegel, J. 1981 Distinction between the Gram reaction and the Gram type of bacteria Int. J. Syst. Bacteriol. 31 88Google Scholar
  126. Wiegel, J., and L. Quandt. 1982 Determination of the Gram type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria J. Gen. Microbiol. 128 2261–2270PubMedGoogle Scholar
  127. Wiegel, J. 1986 Methods for isolation and study of thermophiles In: T. D. Brock (Ed.) Thermophiles: General, Molecular and Applied Microbiology John Wiley New York NY 17–37Google Scholar
  128. Wiegel, J., L. H. Carreira, R. Garrison, N. E. Rabek, and L. G. Ljungdahl. 1991 Calcium magnesium acetate (CMA) Manufacture from glucose by fermentation with thermophilic homoacetogenic bacteria In: D. L. Wise, Y. A. Levendis, and M. Metghalchi (Eds.) Calcium Magnesium Acetate Elsevier Science New York NY 359–418Google Scholar
  129. Wiegel, J., J. Hanel, and K. Ayres. 2003 Chemolithoautotrophic thermophilic iron(III)-reducer In: L. G. Ljungdahl, M. W. W. Adams, L. Barton, G. Ferry, and M. Johnson (Eds.) Biology and Physiology of Anaerobic Bacteria Springer-Verlag New York NY 235–251Google Scholar
  130. Wiegel, J., R. Tanner, and F. A. Rainey. 2004 An introduction to the family Clostridiaceae In: Dworkin, M. (Ed.) The Prokaryotes, 3rd ed Springer-Verlag New York NY [{}{The Prokaryotes online}]Google Scholar
  131. Willems, A., and M. D. Collins. 1994 Phylogenetic placement of Sarcina ventriculi and Sarcina maxima within group I Clostridium, a possible problem for future revision of the genus Clostridium: Request for an opinion Int. J. Syst. Bacteriol. 44 591–593PubMedGoogle Scholar
  132. Willis, A. T. 1969 Techniques for the study of anaerobic, spore-forming bacteria In: J. R. Norris and D. W. Ribbons (Eds.) Methods in Microbiology Academic Press New York NY 3B 79–115Google Scholar
  133. Wolin, E. A., M. J. Wolin, and R. S. Wolfe. 1963 Formation of methane by bacterial extracts J. Biol. Chem. 238 2882–2886PubMedGoogle Scholar
  134. Wust, J., and U. Hardegger. 1983 Transferable resistance to clindamycin, erythromycin, and tetracycline in Clostridium difficile Antimicrob. Agents. Chemother. 23 784–786PubMedGoogle Scholar
  135. Young, M., W. L. Staudenbauer, and N. P. Minton. 1989 Genetics of Clostridium In: N. P. Minton and D. J. Clarke (Ed.) Biotechnology Handbooks, Volume 3: Clostridia Plenum Press New York NY 63–103Google Scholar
  136. Youngleson, J. S., J. D. Santangelo, D. T. Jones, and D. R. Woods. 1988 Cloning and expression of Clostridium acetobutylicum alcohol dehydrogenase in Escherichia coli Appl. Environ. Microbiol. 54 676–682PubMedGoogle Scholar
  137. Zhao, H., D. Yang, C. R. Woese, and M. P. Bryant. 1990 Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture Int. J. Syst. Bacteriol. 40 40–44PubMedGoogle Scholar
  138. Zhilina, T. N., E. N. Detkova, F. A. Rainey, G. A. Osipov, A. M. Lysenko, N. A. Kostrikina, and G. A. Zavarzin. 1998 Natronoincola histidinovorans gen. nov., sp. nov., a new alkaliphilic acetogenic anaerobe Curr. Microbiol. 37 177–185PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Juergen Wiegel
  • Ralph Tanner
  • Fred A. Rainey

There are no affiliations available

Personalised recommendations