Advertisement

The Genus Brochothrix

  • Erko Stackebrandt
  • Dorothy Jones

The genus Brochothrix contains Gram-positive, nonsporeforming, nonmotile, catalase-positive, facultatively anaerobic, regular, rod-shaped bacteria that show characteristic changes in cell morphology during growth. The genus was proposed by Sneath and Jones (1976) for some meat spoilage organisms, previously designated “Microbacterium thermosphactum” (McLean and Sulzbacher, 1953). The genus Brochothrix contains the type species B. thermosphacta (see Sneath and Jones, 1986) and B. campestrisTalon et al. (1988), described for isolates from soil and grass. As most of the scientific interests have focused on B. thermosphacta because of its association with off-odor development in meats, especially in prepacked products held at refrigeration temperatures, most of the information on the genus is consequently derived from studies on this species. There is no evidence that any Brochothrix strain is pathogenic to humans or animals. Neither species has been exploited in industrial processes.

The...

Keywords

Meat Product Lipase Production Pork Sausage Esterase Isoenzyme Meat Spoilage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Ackermann, H. W., G. G. Greer, and J. Rocourt. 1988 Morphology of Brochothrix thermosphacta phages Microbios 56 19–26PubMedGoogle Scholar
  2. Barlow J., and A. G. Kitchell. 1966 A note on the spoilage of prepacked lamb chops by Microbacterium thermosphactum J. Appl. Bacteriol. 29 185–188Google Scholar
  3. Bohaychuk, V. M., and G. G. Greer. 2003 Bacteriology and storage life of moisture-enhanced pork J. Food Prot. 66 293–299PubMedGoogle Scholar
  4. Borch, E., M. L. Kant-Muermans, and Y. Blixt. 1996 Bacterial spoilage of meat and cured meat products Intl. J. Food Microbiol. 33 103–120Google Scholar
  5. Breed, R. S., E. G. D. Murray, and A. P. Hitchens (Eds.). 1948 Bergey’s Manual of Determinative Bacteriology, 6th ed Williams & Wilkins Baltimore MDGoogle Scholar
  6. Brownlie, L. E. 1966 Effects of some environmental factors on psychrophilic microbacteria J. Appl. Bacteriol. 29 447–454PubMedGoogle Scholar
  7. Buchanan, R. E., and N. E. Gibbons (Eds.). 1974 Bergey’s Manual of Determinative Bacteriology, 8th ed Williams & Wilkins Baltimore MDGoogle Scholar
  8. Cocolin, L., M. Manzano, C. Cantoni, and G. Comi. 2001 Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages Appl. Environ. Microbiol. 67 5113–5121PubMedGoogle Scholar
  9. Collins, M. D., M. Goodfellow, and D. E. Minnikin. 1979 Isoprenoid quinones in the classification of coryneform and related bacteria J. Gen. Microbiol. 110 127–136PubMedGoogle Scholar
  10. Collins, M. D., and D. Jones. 1981 The distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications Microbiol. Rev. 45 316–354PubMedGoogle Scholar
  11. Collins, M. D., J. A. E. Farrow, B. A. Phillips, S. Feresu, and D. Jones. 1987 Classification of Lactobacillis divergens, Lactobacillus piscicola, and some catalase-negative, asporogenous, rod-shaped bacteria from poultry in a new genus Carnobacterium Intl. J. Syst. Bacteriol. 37 310–316Google Scholar
  12. Collins, M. D., S. Wallbanks, D. J. Lane, J. Shah, R. Nietupski, J. Smida, M. Dorsch, and E. Stackebrandt. 1991 Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA Intl. J. Syst. Bacteriol. 41 240–246Google Scholar
  13. Collins-Thompson, D. L., T. Sorhaug, L. D. Witter, and Z. J. Ordal. 1971 Glycerol ester hydrolase activity in Microbacterium thermosphactum Appl. Microbiol. 21 9–12PubMedGoogle Scholar
  14. Collins-Thompson, D. L., T. Sorhaug, L. D. Witter, and Z. J. Ordal. 1972 Taxonomic consideration of Microbacterium lacticum, Microbacterium flavum and Microbacterium thermosphactum Intl. J. Syst. Bacteriol. 22 65–72Google Scholar
  15. Collins-Thompson, D. L., and G. Rodriguez-Lopez. 1980 Influence of sodium nitrite, temperature and lactic acid bacteria on the growth of Brochothrix thermosphacta under anaerobic conditions Can. J. Microbiol. 26 1416–1421PubMedGoogle Scholar
  16. Collins-Thompson, D. L., P. J. Slade, and M. Goethals. 1991 Use of low molecular mass RNA profiles to identify lactic acid bacteria and related organisms associated with foods Intl. J. Food Microbiol. 14 135–143Google Scholar
  17. Cutter, C. N., and G. R. Siragusa. 1996 Reduction of Brochothrix thermophacta on beef surfaces following immobilization of nisin in calcium alginate gels Lett. Appl. Microbiol. 23 9–12PubMedGoogle Scholar
  18. Cutter, C. N., and G. R. Siragusa. 1998 Incorporation of nisin into a meat binding system to inhibit bacteria on beef surfaces Lett. Appl. Microbiol. 27 19–23PubMedGoogle Scholar
  19. Cutter, C. N. 1999 The effectiveness of triclosan-incorporated plastic against bacteria on beef surfaces J. Food Prot. 62 474–479PubMedGoogle Scholar
  20. Cutter, C. N., J. L. Willett, and G. R. Siragusa. 2001 Improved antimicrobial activity of nisin-incorporated polymer films by formulation change and addition of food grade chelator Lett. Appl. Microbiol. 33 325–328PubMedGoogle Scholar
  21. Dainty, R. H., and G. C. Meredith. 1972 Mechanisms of inhibition of growth of bacteria by nitrite Meat Research Institute Annual Report 1972–73 HMSO London UK 82Google Scholar
  22. Dainty, R. H., and C. M. Hibbard. 1980 Aerobic metabolism of Brochothrix thermosphacta growing on meat surfaces and in laboratory media J. Appl. Bacteriol. 48 387–396PubMedGoogle Scholar
  23. Dainty, R. H., and C. M. Hibbard. 1983 Precursors of the major end-products of aerobic metabolism of Brochothrix thermosphacta J. Appl. Bacteriol. 55 127–133Google Scholar
  24. Dainty, R. H., R. A. Edwards, and C. M. Hibbard. 1985 Time course of volatile compound formation during refrigerated storage of naturally contaminated beef in air J. Appl. Bacteriol. 59 303–309PubMedGoogle Scholar
  25. Davidson, C. M., and E. F. Hartree. 1968a Cytochrome as a guide to classifying bacteria: Taxonomy of Microbacterium thermosphactum Nature 220 502–504PubMedGoogle Scholar
  26. Davidson, C. M., P. Mobbs, and J. M. Stubbs. 1968b Some morphological and physiological properties of Microbacterium thermosphactum J. Appl. Bacteriol. 31 551–559PubMedGoogle Scholar
  27. Davis, G. H. G., and K. G. Newton. 1969a Numerical taxonomy of some named coryneform bacteria J. Gen. Microbiol. 56 195–214PubMedGoogle Scholar
  28. Davis, G. H. G., L. Fomin, E. Wilson, and K. G. Newton. 1969b Numerical taxonomy of Listeria, streptococci and possibly related bacteria J. Gen. Microbiol. 57 333–348PubMedGoogle Scholar
  29. De Man, J. C., M. Rogosa, and M. E. Sharpe. 1960 A medium for the cultivation of lactobacilli J. Appl. Bacteriol. 23 130–135Google Scholar
  30. DeSoete, G. 1983 A least squares algorithm for fitting additive trees to proximity data Psychrometrika 48 621–626Google Scholar
  31. Dodd, C. E. R., and W. Waites. 1988 The use of plasmid profiling to determine strains of Brochothrix thermosphacta important in spoilage of sausages J. Appl. Bacteriol. 65 XVGoogle Scholar
  32. Dowdell, M. J., and R. G. Board. 1971 The microbial associations in British fresh sausages J. Appl. Bacteriol. 34 317–337PubMedGoogle Scholar
  33. Evans, J. B., and C. F. Niven Jr. 1951 Nutrition of the heterofermentative lactobacilli that cause greening of cured meat products J. Bacteriol. 62 599–603PubMedGoogle Scholar
  34. Felsenstein, J. 1993 PHYLIP (Phylogenetic Inference Package) Version 3.5.1 Department of Genetics, University of Washington Seattle WAGoogle Scholar
  35. Feresu, S. B., and D. Jones. 1988 Taxonomic studies on Brochothrix, Erysipelothrix, Listeria and atypical lactobacilli J. Gen. Microbiol. 134 1165–1183PubMedGoogle Scholar
  36. Fournaud, J., T. Degas, O. Schmitt, and J. Sechet. 1980 Pénétration des bactéries dans la viande Proceedings of the 26th European Meeting of Meat Research Workers Colorado Springs CO 2 268–271Google Scholar
  37. Gao, Y., M. J. van Belkum, and M. E. Stiles. 1999 The outer membrane of Gram-negative bacteria inhibits antibacterial activity of brochocin-C Appl. Environ. Microbiol. 65 4329–4333PubMedGoogle Scholar
  38. Gardner, G. A. 1966 A selective medium for the enumeration of Microbacterium thermosphactum in meat and meat products J. Appl. Bacteriol. 29 455–460PubMedGoogle Scholar
  39. Gardner, G. A., A. Carson, and J. Patton. 1967 Bacteriology of prepacked pork with reference to the gas composition within the pack J. Appl. Bacteriol. 30 321–333PubMedGoogle Scholar
  40. Gardner, G. A. 1981 Brochothrix thermosphacta (Microbacterium thermosphactum) in the spoilage of meats: A review In: T. A. Roberts, G. A. Hobbs, J. H. B. Christian, and N. Skovgaard (Eds.) Psychrotrophic Microorganisms in Spoilage and Pathogenicity Academic Press London UK 139–173Google Scholar
  41. Garneau, S., C. A. Ference, M. J. van Belkum, M. E. Stiles, and J. C. Vederas. 2003 Purification and characterization of brochocin A and brochocin B(10-43), a functional fragment generated by heterologous expression in Carnobacterium piscicola Appl. Environ. Microbiol. 69 1352–1358PubMedGoogle Scholar
  42. Gil, A., R. G. Kroll, and R. K. Poole. 1992 The cytochrome composition of the meat spoilage bacterium Brochothrix thermophacta: Identification of cytochrome a3-and d-type terminal oxidases under various conditions Arch. Microbiol. 158 226–233PubMedGoogle Scholar
  43. Gill, C. O., and N. Penney. 1977 Penetration of bacteria into meat Appl. Environ. Microbiol. 33 1284–1286PubMedGoogle Scholar
  44. Gill, C. O., and J. Bryant. 1992 The contamination of pork with spoilage bacteria during commercial dressing, chilling and cutting of pig carcasses Intl. J. Food Microbiol. 16 51–62Google Scholar
  45. Gill, A. O., and R. A. Holley. 2000 Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna Food Prot. 63 1338–1346Google Scholar
  46. Gill, C. O., and M. Badoni. 2002 Microbiological and organoleptic qualities of vacuum-packaged ground beef prepared from pasteurized manufacturing beef Intl. J. Food Microbiol. 74 111–118Google Scholar
  47. Gonzalez-Rodriguez, M. N., J. J. Sanz, J. A. Santos, A. Otero, and M. L. Garcia-Lopez. 2002 Numbers and types of microorganisms in vacuum-packed cold-smoked freshwater fish at the retail level Intl. J. Food Microbiol. 77 61–66Google Scholar
  48. Grant, K. A., J. H. Dickinson, M. J. Payne, S. Campbell, M. D. Collins, and R. G. Kroll. 1993 Use of the polymerase chain reaction and 16S rRNA sequences for the rapid detection of Brochothrix spp. in foods J. Appl. Bacteriol. 74 260–267PubMedGoogle Scholar
  49. Grau, F. H. 1979 Nutritional requirements of Microbacterium thermosphactum Appl. Environ. Microbiol. 38 818–820PubMedGoogle Scholar
  50. Grau, F. H. 1983 End products of glucose fermentation by Brochothrix thermosphacta Appl. Environ. Microbiol. 45 84–90PubMedGoogle Scholar
  51. Grau, F. H. 1988 Substrates used by Brochothrix thermosphacta when growing on meat J. Food Prot. 51 639–642Google Scholar
  52. Greer, G. G. 1983 Psychrotrophic Brochothrix thermosphacta bacteriophages isolated from beef Appl. Environ. Microbiol. 46 245–251PubMedGoogle Scholar
  53. Greer, G. G., and B. D. Dilts. 2002 Control of Brochothrix thermophacta spoilage of pork adipose tissue using bacteriophages J. Food Prot. 65 861–863PubMedGoogle Scholar
  54. Greer, G. G., F. Nattress, B. Dilts, and L. Baker. 2004 Bacterial contamination of recirculating brine used in the commercial production of moisture-enhanced pork J. Food Prot. 67 185–188PubMedGoogle Scholar
  55. Hitchener, B. J., A. F. Egan, and P. J. Rogers. 1979 Energetics of Microbacterium thermosphactum in glucose-limited continuous culture Appl. Environ. Microbiol. 37 1047–1052PubMedGoogle Scholar
  56. Ingram, M., and R. H. Dainty. 1971 Changes caused by microbes in spoilage of meats J. Appl. Bacteriol. 34 21–39PubMedGoogle Scholar
  57. Jimenez, S. M., M. S. Salsi, M. C. Tiburzi, R. C. Rafaghelli, M. A. Tessi, and V. R. Coutaz. 1997 Spoilage microflora in fresh chicken breast stored at 4 degrees C: Influence of packaging methods J. Appl. Microbiol. 83 613–618PubMedGoogle Scholar
  58. Jones, D. 1975 A numerical taxonomic study of coryneform and related bacteria J. Gen. Microbiol. 87 52–96PubMedGoogle Scholar
  59. Jones, D., P. A. Pell, and P. H. A. Sneath. 1984 Maintenance of bacteria on glass beads at −60°C to −76°C In: B. E. Kirsop and J. J. S. Snell (Eds.) Maintenance of Microorganisms: A Manual of Laboratory Methods Academic Press London UK 35–40Google Scholar
  60. Jones, D. 1991 The genus Brochothrix In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) The Prokaryotes Springer-Verlag New York NY 1617–1628Google Scholar
  61. Kakouri, A., and G. J. Nychas. 1994 Storage of poultry meat under modified atmospheres or vacuum packs: Possible role of microbial metabolites as indicator of spoilage J. Appl. Bacteriol. 76 163–172PubMedGoogle Scholar
  62. Keddie, R. M., and D. Jones. 1981 Saprophytic, aerobic coryneform bacteria In: M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel (Eds.) The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria Springer-Verlag Berlin Germany 1838–1878Google Scholar
  63. Kim, C., B. Swaminathan, P. K. Cassaday, L. W. Mayer, and B. P. Holloway. 1991 Rapid confirmation of Listeria monocytogenes isolated from foods by a colony blot assay using a digoxigenin-labeled synthetic oligonucleotide probe Appl. Environ. Microbiol. 57 1609–1614PubMedGoogle Scholar
  64. Koutsoumanis, K., and G. J. Nychas. 1999 Chemical and sensory changes associated with microbial flora of Mediterranean boque (Boops boops) stored aerobically at 0, 3, 7, and 10 degrees C Appl. Environ. Microbiol. 65 698–706PubMedGoogle Scholar
  65. Lannelongue, M., M. O. Hanna, G. Finne, R. Nickelson, and C. Vanderzant. 1982 Storage characteristics of fin-fish fillets (Archosargus probatocephalus) packaged in modified gas atmospheres containing carbon dioxide J. Food Prot. 45 440–444Google Scholar
  66. Leer, R. J., J. M. van der Vossen, M. van Giezen, J. M. van Noort, and P. H. Pouwels. 1995 Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus Microbiology 141 1629–1635PubMedGoogle Scholar
  67. Lemay, M. J., J. Choquette, P. J. Delaquis, G. Claude, N. Rodrigue, and L. Saucier. 2002 Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model Intl. J. Food Microbiol. 78 217–226Google Scholar
  68. Lopez-Caballero, M. E., J. Carballo, and F. Jimenez-Colmenero. 1999 Microbiological changes in pressurized, prepackaged sliced cooked ham J. Food Prot. 62 1411–1415PubMedGoogle Scholar
  69. Ludwig, W., K.-H. Schleifer, and E. Stackebrandt. 1984 16S rRNA analysis of Listeria monocytogenes and Brochothrix thermosphacta FEMS Microbiol. Lett. 25 199–204Google Scholar
  70. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, I. Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Förster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. König, T. Liss, R. Lüßmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode, and K.-H. Schleifer. 2004 ARB: A software environment for sequence data Nucl. Acids Res. 32 1363–1371PubMedGoogle Scholar
  71. Macaskie, L. E., R. H. Dainty, and P. J. F. Henderson. 1981 The role of thiamin as a factor for the growth of Brochothrix thermosphacta J. Appl. Bacteriol. 50 267–273Google Scholar
  72. Macaskie, L. E. 1982 Inhibition of growth of Brochothrix thermosphacta by palmitic acid J. Appl. Bacteriol. 52 339–343Google Scholar
  73. Mathot, A. G., E. Beliard, and D. Thuault. 2003 Streptococcus thermophilus 580 produces a bacteriocin potentially suitable for inhibition of Clostridium tyrobutyricum in hard cheese J. Dairy Sci. 86 3068–3074PubMedGoogle Scholar
  74. McCormick, J. K., A. Poon, M. Sailer, Y. Gao, K. L. Roy, L. M. McMullen, J. C. Vederas, M. E. Stiles, and M. J. van Belkum. 1998 Genetic characterization and heterologous expression of brochocin-C, an antibotulinal, two-peptide bacteriocin produced by Brochothrix campestris ATCC 43754 Appl. Environ. Microbiol. 64 4757–4766PubMedGoogle Scholar
  75. McLean, R. A., and W. L. Sulzbacher. 1953 Microbacterium thermosphactum, spec. nov., a nonheat resistant bacterium from fresh pork sausage J. Bacteriol. 65 428–433PubMedGoogle Scholar
  76. Minnikin, D. E., M. Goodfellow, and M. D. Collins. 1978 Lipid composition in the classification and identification of coryneform and related taxa In: I. J. Bousfield and A. G. Callely (Eds.) Coryneform bacteria Special Publications of the Society for General Microbiology Academic Press London UK 85–160Google Scholar
  77. Mulder, S. J. 1978 Microbacterium thermosphactum: Spoilage indicator of beef Proceedings of the 24th European Meeting of Meat Research Workers Kulmbach Germany 1.Google Scholar
  78. Nattress, F. M., C. K. Yost, and L. P. Baker. 2001 Evaluation of the ability of lysozyme and nisin to control meat spoilage bacteria Intl. J. Food Microbiol. 70 111–119Google Scholar
  79. Nattress, F. M., and L. P. Baker. 2003 Effects of treatment with lysozyme and nisin on the microflora and sensory properties of commercial pork Intl. J. Food Microbiol. 85 259–267Google Scholar
  80. Newton, K. G., J. C. L. Harrison, and A. M. Wauters. 1978 Sources of psychrotrophic bacteria on meat at the abattoir J. Appl. Bacteriol. 45 75–82PubMedGoogle Scholar
  81. Nickelson, R., G. Finne, M. O. Hanna, and C. Vanderzant. 1980 Minced fish flesh from non-traditional Gulf of Mexico finfish species: Bacteriology J. Food Sci. 45 1321–1326Google Scholar
  82. Nychas, G. J., V. M. Dillon, and R. G. Board. 1988 Glucose, the key substrate in the microbiological changes occurring in meat and certain meat products Biotechnol. Appl. Biochem. 10 203–231PubMedGoogle Scholar
  83. Ouattara, B., M. Giroux, W. Smoragiewicz, L. Saucier, and M. Lacroix. 2002 Combined effect of gamma irradiation, ascorbic acid, and edible coating on the improvement of microbial and biochemical characteristics of ground beef J. Food Prot. 65 981–987PubMedGoogle Scholar
  84. Papon, M., and R. Talon. 1988 Factors affecting growth and lipase production by meat lactobacilli strains and Brochothrix thermosphacta J. Appl. Bacteriol. 64 107–115PubMedGoogle Scholar
  85. Patterson, J. T., and P. A. Gibbs. 1978 Sources and properties of some organisms isolated in two abattoirs Meat Sci. 2 263–273PubMedGoogle Scholar
  86. Pin, C., G. D. Garcia de Fernando, and J. A. Ordonez. 2002 Effect of modified atmosphere composition on the metabolism of glucose by Brochothrix thermophacta Appl. Environ. Microbiol. 68 4441–4447PubMedGoogle Scholar
  87. Prieto, M., M. L. Garcia-Lopez, M. R. Garcia-Armesto, A. Otero, T. M. Lopez, and B. Moreno. 1993 Factors affecting spoilage microflora succession on lamb carcasses at refrigeration temperatures J. Appl. Bacteriol. 74 521–525PubMedGoogle Scholar
  88. Rattanasomboon, N., S. R. Bellara, C. L. Harding, P. J. Fryer, C. R. Thomas, M. Al-Rubeai, and C. M. McFarlane. 1999 Growth and enumeration of the meat spoilage bacterium Brochothrix thermophacta Intl. J. Food Microbiol. 51 145–158Google Scholar
  89. Roberts, T. A., C. R. Britton, and N. N. Shroff. 1979 The effect of pH, water activity, sodium nitrite and incubation temperature on growth of bacteria isolated from meats In: B. Jarvis, J. H. B. Christian, and H. D. Michener (Eds.) Food Microbiology and Technology Medecina Viva Parma Italy 57–71Google Scholar
  90. Robinson, K. 1966 Some observations on the taxonomy of the genus Microbacterium. II: Cell wall analysis, gel electrophoresis and serology J. Appl. Bacteriol. 29 616–624PubMedGoogle Scholar
  91. Rogosa, M., J. A. Mitchell, and R. F. Wiseman. 1951 A selective medium for the isolation and enumeration of oral and fecal lactobacilli J. Bacteriol. 62 132–133PubMedGoogle Scholar
  92. Sakala, R. M., H. Hayashidani, Y. Kato, T. Hirata, Y. Makino, A. Fukushima, T. Yamada, C. Kaneuchi, and M. Ogawa. 2002 Change in the composition of the microflora on vacuum-packaged beef during chiller storage Intl. J. Food Microbiol. 74 87–99Google Scholar
  93. Salvat, G., P. Coppen, J. C. Allo, S. Fenner, M. J. Laisney, M. T. Toquin, F. Humbert, and P. Colin. 1997 Effects of AvGard treatment on the microbiological flora of poultry carcases Br. Poultry Sci. 38 489–498Google Scholar
  94. Samelis, J., and K. G. Georgiadou. 2000 The microbial association of Greek taverna sausage stored at 4 and 10 degrees C in air, vacuum or 100% carbon dioxide, and its spoilage potential J. Appl. Microbiol. 88 58–68PubMedGoogle Scholar
  95. Savvaidis, I. N., P. Skandamis, K. A. Riganakos, N. Panagiotakis, and M. G. Kontominas. 2002 Control of natural microbial flora and Listeria monocytogenes in vacuum-packaged trout at 4 and 10 degrees C using irradiation J. Food Prot. 65 515–522PubMedGoogle Scholar
  96. Schleifer, K.-H. 1970 Die Mureintypen in der Gattung Microbacterium Archiv. Mikrobiologie 71 271–282Google Scholar
  97. Schleifer, K.-H., and O. Kandler. 1972 Peptidoglycan types of bacterial cell walls and their taxonomic implications Bacteriol. Rev. 36 407–477PubMedGoogle Scholar
  98. Shaw, N., and D. Stead. 1970 A study of the lipid composition of Microbacterium thermosphactum as a guide to its taxonomy J. Appl. Bacteriol. 33 470–473PubMedGoogle Scholar
  99. Shaw, N. 1974 Lipid composition as a guide to the classification of bacteria Adv. Appl. Microbiol. 17 63–108PubMedGoogle Scholar
  100. Silv, C. F., R. F. Schwan, E. S. Sousa Dias, and A. E. Wheals. 2000 Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil Intl. J. Food Microbiol. 60 251–260Google Scholar
  101. Siragusa, G. R., and C. N. Cutter. 1993 Brochocin-C, a new bacteriocin produced by Brochothrix campestris Appl. Environ. Microbiol. 59 2326–2328PubMedGoogle Scholar
  102. Sneath, P. H. A., and D. Jones. 1976 Brochothrix, a new genus tentatively placed in the family Lactobacillaceae Intl. J. Syst. Bacteriol. 26 102–104Google Scholar
  103. Sneath, P. H. A., and D. Jones. 1986 The genus Brochothrix In: P. H. A. Sneath, N. S., Mair, and M. E. Sharpe (Eds.) Bergey’s Manual of Systematic Bacteriology Williams & Wilkins Baltimore MD 2 1249–1253Google Scholar
  104. Stackebrandt, E., and C. R. Woese. 1981 The evolution of prokaryotes In: Carlile, M. J., J. F. Collins, and B. E. B. Moseley (Eds.) Molecular and Cellular Aspects of Evolution Cambridge University Press Cambridge UK Society for General Microbiology, Symposium 32 1–31Google Scholar
  105. Stackebrandt, E., and B. M. Goebel. 1994 A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology Intl. J. Syst. Bacteriol. 44 846–849Google Scholar
  106. Stringer, S. C., B. J. Chaffey, C. E. Dodd, M. R. Morgan, and W. M. Waites. 1995 Specific antibody-mediated detection of Brochothrix thermophacta in situ in British fresh sausage J. Appl. Bacteriol. 78 335–340PubMedGoogle Scholar
  107. Sulzbacher, W. L., and R. A. McLean. 1951 The bacterial flora of fresh pork sausage Food Technol. 5 7–8Google Scholar
  108. Susiluoto, T., H. Korkeala, and K. J. Bjorkroth. 2003 Leuconostoc gasicomitatum is the dominating lactic acid bacterium in retail modified-atmosphere-packaged inated broiler meat strips on sell-by-day Intl. J. Food Microbiol. 80 89–97Google Scholar
  109. Sutherland, J. P., J. T. Patterson, P. A. Gibbs, and J. G. Murray. 1975 Some metabolic and biochemical characteristics of representative microbial isolates from vacuum-packaged beef J. Appl. Bacteriol. 39 239–249PubMedGoogle Scholar
  110. Talon, R., P. A. D. Grimont, F. Grimont, F. Gasser, and J. M. Boeufgras. 1988 Brochothrix campestris sp. nov Intl. J. Syst. Bacteriol. 38 99–102Google Scholar
  111. Ten Brink, B., M. Minekus, J. M. van der Vossen, R. J. Leer, and J. H. Huis in’t Veld. 1994 Antimicrobial activity of lactobacilli: preliminary characterization and optimization of production of acidocin B, a new bacteriocin produced by Lactobacillus acidophilus M46 J. Appl. Bacteriol. 77 140–148PubMedGoogle Scholar
  112. Thomson, I. Q., and D. L. Collins-Thompson. 1986 Iron requirement of Brochothrix thermosphacta Intl. J. Food Microbiol. 3 299–309Google Scholar
  113. Thomson, I. Q., and D. L. Collins-Thompson. 1988 Secondary role of manganese during iron deprivation of Brochothrix thermosphacta System. Appl. Microbiol. 10 195–199Google Scholar
  114. Wilkinson, B. J., and D. Jones. 1975 Some serological studies on Listeria and possibly related bacteria In: M. Woodbine (Ed.) Problems of Listeriosis Leicester University Press Leicester UK 251–261Google Scholar
  115. Wilkinson, B. J., and D. Jones. 1977 A numerical taxonomic survey of Listeria and related bacteria J. Gen. Microbiol. 98 399–421PubMedGoogle Scholar
  116. Wolin, E. F., J. B. Evans, and C. F. Niven. 1957 The microbiology of fresh and irradiated beef Food Res. 22 682–686Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Erko Stackebrandt
  • Dorothy Jones

There are no affiliations available

Personalised recommendations