Advertisement

The Order Methanobacteriales

  • Adam S. Bonin
  • David R. Boone
Reference work entry

Characteristics of Methanobacteriales

Members of the order Methanobacteriales are distinguished from other methanogens by their limited range of catabolic substrates, their morphology, lipid composition, and rDNA sequence. The Methanobacteriales are generally hydrogenotrophic, using H2 to reduce CO2 to CH4. Some members of this order can use formate, CO, or secondary alcohols as electron donors for CO2 reduction. However, members of one genus within this order, Methanosphaera, use H2 to reduce methanol to methane. The predominant cell wall polymer of Methanobacteriales is pseudomurein, which distinguishes this order from the Methanomicrobiales. Lipids composing the cell membranes include caldarchaeol and myo-inositol. Cells usually stain Gram positive and are generally rod-shaped, often forming chains or long filaments up to 40 µm in length. The order Methanobacteriales is divided into two families, the Methanobacteriaceae and Methanothermaceae, on the basis of phylogenetic analysis...

Keywords

Type Strain Anaerobic Digestor Rumen Fluid Sole Substrate Methanobacterium Formicicum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Asakawa, S., H. Morii, M. Akagawa Matsushita, Y. Koga, and K. Hayano. 1993 Characterization of Methanobrevibacter arboriphilicus SA isolated from a paddy field soil and DNA-DNA hybridization among M. arboriphilicus strains Int. J. Syst. Bacteriol. 43 683–686CrossRefGoogle Scholar
  2. Balch, W. E., and R. S. Wolfe. 1976 New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminatium in a pressurized atmosphere Appl. Environ. Microbiol. 32 781–791PubMedPubMedCentralGoogle Scholar
  3. Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979 Methanogens: Reevaluation of a unique biological group Microbiol. Rev. 43 260–296PubMedPubMedCentralGoogle Scholar
  4. Biavati, B., M. Vasta, and J. G. Ferry. 1988 Isolation and characterization of “Methanosphaera cuniculi” sp. nov Appl. Environ. Microbiol. 54 768–771PubMedPubMedCentralGoogle Scholar
  5. Blotevogel, K. H., and U. Fischer. 1985 Isolation and characterization of a new thermophilic and autotrophic methane producing bacterium: Methanobacterium thermoaggregans spec. nov Arch. Microbiol. 142 218–222CrossRefGoogle Scholar
  6. Blotevogel, K. H., U. Fischer, M. Mocha, and S. Jannsen. 1985 Methanobacterium thermoalcaliphilum spec. nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen Arch. Microbiol. 142 211–217CrossRefGoogle Scholar
  7. Boone, D. R. 1987 Replacement of the type strain of Methanobacterium formicicum and reinstatement of Methanobacterium bryantii sp. nov. nom. rev. (ex Balch and Wolfe, 1981) with M.o.H. (DSM 863) as the type strain Int. J. Syst. Bacteriol. 37 172–173CrossRefGoogle Scholar
  8. Boone, D. R., and W. B. Whitman. 1988 Proposal of minimal standards for describing new taxa of methanogenic bacteria Int. J. Syst. Bacteriol. 38 212–219CrossRefGoogle Scholar
  9. Boone, D. R., R. L. Johnson, and Y. Liu. 1989 Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake Appl. Environ. Microbiol. 55 1735–1741PubMedPubMedCentralGoogle Scholar
  10. Boone, D. R. 2001 Class I: Methanobacteria class. nov In: D. R. Boone and R. W. Catenholz (Eds.) Bergey’s Manual of Systematic Bacteriology, 2nd ed, Springer-Verlag, New York, NY 1 213–235CrossRefGoogle Scholar
  11. Bryant, M. P. 1965 Rumen methanogenic bacteria In: R. W. Dougherty, R. S. Allen, W. Burroughs, N. L. Jacobson, and A. D. McGilliard (Eds.) Physiology of Digestion in the Ruminant, Butterworths, Washington, DC 411–418Google Scholar
  12. Bryant, M. P., E. A. Wolin, M. J. Wolin, and R. S. Wolfe. 1967 Methanobacillus omelianskii, a symbiotic association of two species of bacteria Arch. Mikrobiol. 59 20–31CrossRefPubMedGoogle Scholar
  13. Bryant, M. P., S. F. Tzeng, I. M. Robinson, and A. E. Joyner. 1971 Nutrient requirements of methanogenic bacteria In: R. F. Gould (Ed.) Anaerobic Biological Treatment Processes, American Chemical Society, Washington, DC Advances in Chemistry Series 105 23–40CrossRefGoogle Scholar
  14. Bryant, M. P., and D. R. Boone. 1987 Isolation and characterization of Methanobacterium formicicum MF Int. J. Syst. Bacteriol. 37 171CrossRefGoogle Scholar
  15. Cuzin, N., A. S. Ouattara, M. Labat, and J. L. Garcia. 2001 Methanobacterium congolense sp. nov., from a methanogenic fermentation of cassava peel Int. J. Syst. Bacteriol. 51 489–493CrossRefGoogle Scholar
  16. Ferguson, T. J., and R. A. Mah. 1983 Effect of H2-CO2 on methanogenesis from acetate and methanol in Methanosarcina spp Appl. Environ. Microbiol. 46 348–355PubMedPubMedCentralGoogle Scholar
  17. Ferrari, A., T. Brusa, A. Rutilik, E. Canzi, and B. Biavati. 1994 Isolation and characterization of Methanobrevibacter oralis sp. nov Curr. Microbiol. 29 7–12CrossRefGoogle Scholar
  18. Garcia, J. L., B. Ollivier, and W. B. Whitman. 2003 The Order Methanomicrobiales In: M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (Eds.) The Prokaryotes, 3rd ed, Springer-Verlag, New York, NY 2Google Scholar
  19. Hungate, R. E. 1969 A roll tube method for cultivation of strict anaerobes In: J. B. Norris and D. W. Ribbons (Eds.) Methods in Microbiology, Academic Press, London, UK 3B 117–132Google Scholar
  20. Jain, M. K., T. E. Thompson, E. Conway de Macario, and J. G. Zeikus. 1987 Speciation of Methanobacterium strain Ivanov as Methanobacterium ivanovii, sp. nov Syst. Appl. Microbiol. 9 77–82CrossRefGoogle Scholar
  21. Judicial Commission. 1992 Designation of strain MF (DSM 1535) in place of strain MoH (DSM 863) as the type strain of Methanobacterium formicicum Schnellen 1947, and designation of strain MoH (DSM 863) as the type strain of Methanobacterium bryantii (Balch and Wolfe in Balch, Fox, Magrum, Woese, and Wolfe 1979, 284) Boone 1987, 173 Int. J. Syst. Bacteriol. 42 654CrossRefGoogle Scholar
  22. Joulian, C., B. K. C. Patel, B. Ollivier, J. L. Garcia, and P. A. Roger. 2000 Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield Int. J. Syst. Bacteriol. 50 525–528CrossRefGoogle Scholar
  23. KÖnig, H. 1984 Isolation and characterization of Methanobacterium uliginosum, new species from a marshy soil Can. J. Microbiol. 30 1477–1481CrossRefGoogle Scholar
  24. Kotelnikova, S. V., A. Y. Obraztsova, K. H. Blotevogel, and I. N. Popov. 1993 Methanobacterium thermoflexum sp. nov. and Methanobacterium defluvii sp. nov.: Thermophilic rod-shaped methanogens isolated from anaerobic digestor sludge Syst. Appl. Microbiol. 16 427–435CrossRefGoogle Scholar
  25. Kotelnikova, S. V., A. J. L. Macario, and K. Pederson. 1998 Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater Int. J. Syst. Bacteriol. 48 357–367CrossRefPubMedGoogle Scholar
  26. Lauerer, G., J. K. Kristjansson, T. A. Langworthy, H. KÖnig, and K. O. Stetter. 1986 Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C Syst. Appl. Microbiol. 8 100–105CrossRefGoogle Scholar
  27. Laurinavichus, K. S., S. V. Kotelnikova, and A. Y. Obraztsova. 1987 Methanobacterium thermophilum, a new species of thermophilic methane-forming bacterium Mikrobiol. 57 1035–1041Google Scholar
  28. Leadbetter, J. R., and J. A. Breznak. 1996 Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes Appl. Environ. Microbiol. 62 3620–3631PubMedPubMedCentralGoogle Scholar
  29. Leadbetter, J. R., L. D. Crosby, and J. A. Breznak. 1998 Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts Arch. Microbiol. 169 287–292CrossRefPubMedGoogle Scholar
  30. Lin, C., and T. L. Miller. 1998 Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals Arch. Microbiol. 169 397–403CrossRefPubMedGoogle Scholar
  31. Magingo, F. S. S., and C. K. Stumm. 1991 Nitrogen fixation by Methanobacterium formicicum FEMS Microbiol. Lett. 81 273–278CrossRefGoogle Scholar
  32. Miller, T. L., and M. J. Wolin. 1974 A serum bottle modification of the Hungate technique for cultivating obligate anaerobes Appl. Microbiol. 27 985–987PubMedPubMedCentralGoogle Scholar
  33. Miller, T. L., M. J. Wolin, E. Conway de Macario, and A. J. L. Macario. 1982 Isolation of Methanobrevibacter smithii from human feces Appl. Environ. Microbiol. 43 227–232PubMedPubMedCentralGoogle Scholar
  34. Miller, T. L., and M. J. Wolin. 1985 Methanosphaera stadtmaniae, gen. nov., sp. nov.: A species that forms methane by reducing methanol with hydrogen Arch. Microbiol. 141 116–122CrossRefPubMedGoogle Scholar
  35. Miller, T. L., M. J. Wolin, and E. A. Kusel. 1986 Isolation and characterization of methanogens from animal feces Syst. Appl. Microbiol. 8 234–238CrossRefGoogle Scholar
  36. Miller, T. L., and C. Lin. 2002 Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesi sp. nov. and Methanobrevibacter wolinii sp. nov Int. J. Syst. Bacteriol. 52 819–822Google Scholar
  37. Mylorie, R. L., and R. E. Hungate. 1954 Experiments on the methane bacteria of sludge Can. J. Microbiol. 1 55–64CrossRefGoogle Scholar
  38. Patel, G. B., G. D. Sprott, and J. E. Fein. 1990 Isolation and characterization of Methanobacterium espanolae sp. nov., a mesophilic, moderately acidiphilic methanogen Int. J. Syst. Bacteriol. 40 12–18CrossRefGoogle Scholar
  39. Savant, D. V., Y. S. Shouche, S. Prakash, and D. R. Ranade. 2002 Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester Int. J. Syst. Bacteriol. 52 1081–1087Google Scholar
  40. Schnellen, C. G. T. P. 1947. Onderzoekingen over de Methaangisting [thesis] Delft, The Netherlands 1–137Google Scholar
  41. Skerman, V. B. D., V. McGowan, and P. H. A. Sneath. 1989. Approved Lists of Bacterial Names: Amended Edition, American Society for Microbiology, Washington, DC 87Google Scholar
  42. Smith, P. H., and R. E. Hungate. 1958 Isolation and characterization of Methanobacterium ruminatium n. sp J. Bacteriol. 75 713–718PubMedPubMedCentralGoogle Scholar
  43. Stetter, K. O., M. Thomm, J. Winter, G. Wildgruber, H. Huber, W. Zillig, D. Jane-Covic, H. KÖnig, P. Palm, and S. Wunderl. 1981 Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring Zbl. Bacteriol. Mikrobiol. Hyg. C 2 166–178Google Scholar
  44. Taylor, C. D., B. C. McBride, R. S. Wolfe, and M. P. Bryant. 1974 Coenzyme M, essential for growth of a rumen strain of Methanbacterium ruminatium J. Bacteriol. 120 974–975PubMedPubMedCentralGoogle Scholar
  45. van Bruggen, J. J. A., K. B. Zwart, R. M. van Assema, C. K. Stumm, and G. D. Vogels. 1984 Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich Arch. Microbiol. 139 1–7CrossRefGoogle Scholar
  46. Wasserfallen, A., J. Nolling, P. Pfister, J. Reeve, and E. Conway de Macario. 2000 Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermoautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov Int. J. Syst. Evol. Microbiol. 50 43–53CrossRefPubMedGoogle Scholar
  47. Winter, J., C. Lerp, H. P. Zabel, F. X. Wildenauer, H. KÖnig, and F. Schindler. 1984 Methanobacterium wolfeii sp. nov., a new tungsten-requiring, thermophilic, autotrophic methanogen Syst. Appl. Microbiol. 5 457–466CrossRefGoogle Scholar
  48. Worakit, S., D. R. Boone, R. A. Mah, M. E. Abdel-Samie, and M. M. El-Halwagi. 1986 Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values Int. J. Syst. Bacteriol. 36 380–382CrossRefGoogle Scholar
  49. Zeikus, J. G., and R. S. Wolfe. 1972 Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile J. Bacteriol. 109 707–713PubMedPubMedCentralGoogle Scholar
  50. Zeikus, J. G., and D. L. Henning. 1975 Methanobacterium arbophilicum sp. nov. an obligate anaerobe isolated from wetwood of living trees Ant. v. Leeuwenhoek 41 543–552CrossRefGoogle Scholar
  51. Zellner, G., K. Bleicher, E. Braun, H. Kneifel, B. J. Tindall, E. Conway de Macario, and J. Winter. 1989 Characterization of a new mesophilic, secondary alcohol-utilizing methanogen, Methanobacterium palustre spec. nov. from a peat bog Arch. Microbiol. 151 1–9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Adam S. Bonin
  • David R. Boone

There are no affiliations available

Personalised recommendations